

LECTURE NOTES
ON

DIGITAL ELECTRONICS

GGS COLLEGE OF MODERN TECHNOLOGY

KHARAR

DEPT. OF ELECTRICAL ENGINEERING

MODULE - 1
Number Systems

Understanding Decimal Numbers

° Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9)

° Decimal number representation:

• 8653 = 8x103 + 6x102 + 5x101 + 3x100

° What about fractions?

• 97654.35 = 9x104 + 7x103 + 6x102 + 5x101 + 4x100 + 3x10-1 + 5x10-2

• In formal notation -> (97654.35)10

° Why do we use 10 digits?

Understanding Binary Numbers

° Binary numbers are made of binary digits (bits):

• 0 and 1

° How many items does an binary number represent?

• (1011)2 = 1x23 + 0x22 + 1x21 + 1x20 = (11)10

° What about fractions?

• (110.10)2 = 1x22 + 1x21 + 0x20 + 1x2-1 + 0x2-2

° Groups of eight bits are called a byte

• (11001001) 2

° Groups of four bits are called a nibble.

• (1101) 2

Why Use Binary Numbers?

° Easy to represent 0 and 1 using
electrical values.

° Possible to tolerate noise.

° Easy to transmit data

° Easy to build binary circuits.

AND Gate

1

0
0

Conversion Between Number Bases

° Conversion demonstrated in next slides

Octal(base 8)

Decimal(base 10) Binary(base 2)

° Learn to convert between bases.

Hexadecimal

(base16)

Convert an Integer from Decimal to Another Base

For each digit position:

1. Divide decimal number by the base (e.g. 2)

2. The remainder is the lowest-order digit

3. Repeat first two steps until no divisor remains.

Example for (13)10:

Integer

Quotient

Remainder Coefficient

13/2 = 6 + ½ a0 = 1
6/2 = 3 + 0 a1 = 0
3/2 = 1 + ½ a2 = 1
1/2 = 0 + ½ a3 = 1

Answer (13)10 = (a3 a2 a1 a0)2 = (1101)2

Convert an Fraction from Decimal to Another Base

For each digit position:

1. Multiply decimal number by the base (e.g. 2)

2. The integer is the highest-order digit

3. Repeat first two steps until fraction becomes zero.

Example for (0.625)10:

Integer Fraction Coefficient

0.625 x 2 = 1 + 0.25 a-1 = 1
0.250 x 2 = 0 + 0.50 a-2 = 0
0.500 x 2 = 1 + 0 a-3 = 1

Answer (0.625)10 = (0.a-1 a-2 a-3)2 = (0.101)2

The Growth of Binary Numbers

Mega

Giga

Tera

n 2n

0 20=1

1 21=2

2 22=4

3 23=8

4 24=16

5 25=32

6 26=64

7 27=128

n 2n

8 28=256

9 29=512

10 210=1024

11 211=2048

12 212=4096

20 220=1M

30 230=1G

40 240=1T

Binary Addition

° Binary addition is very simple.

° This is best shown in an example of adding two binary
numbers…

carries 1 1 1 1 1 1

 1 1 1 1 0 1

+ 1 0 1 1 1

1 0 1 0 1 0 0

Binary Subtraction

0

° We can also perform subtraction (with borrows in place of
carries).

° Let’s subtract (10111)2 from (1001101)2…

1 10

0 10 10 0 10
borrows

0 1 1 0 1

- 1 0 1 1 1

1 1 0 1 1 0

0 1

Binary Multiplication

° Binary multiplication is much the same as decimal

multiplication, except that the multiplication operations are

much simpler…

 1 0 1 1 1

X 1 0 1 0

0 0 0 0 0

 1 0 1 1 1

0 0 0 0 0

1 0 1 1 1

1 1 1 0 0 1 1 0

Convert an Integer from Decimal to Octal

For each digit position:

1. Divide decimal number by the base (8)

2. The remainder is the lowest-order digit

3. Repeat first two steps until no divisor remains.

Example for (175)10:

 Integer Remainder Coefficient

 Quotient

175/8 = 21 + 7/8 a0 = 7
21/8 = 2 + 5/8 a1 = 5

2/8 = 0 + 2/8 a2 = 2

Answer (175)10 = (a2 a1 a0)2 = (257)8

Understanding Octal Numbers

° Octal numbers are made of octal digits: (0,1,2,3,4,5,6,7)

° Octal number representation:

• (4536)8 = 4x83 + 5x82 + 3x81 + 6x80 = (1362)10

° What about fractions?

• (465.27)8 = 4x82 + 6x81 + 5x80 + 2x8-1 + 7x8-2

° Octal numbers don’t use digits 8 or 9

Understanding Hexadecimal Numbers

° Hexadecimal numbers are made of 16 digits:

• (0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F)

° hex number representation:

• (3A9F)16 = 3x163 + 10x162 + 9x161 + 15x160 = 1499910

° What about fractions?

• (2D3.5)16 = 2x162 + 13x161 + 3x160 + 5x16-1 = 723.312510

° Note that each hexadecimal digit can be represented with four
bits.

• (1110) 2 = (E)16

° Groups of four bits are called a nibble.

• (1110) 2

Putting It All Together

° Binary, octal, and hexadecimal
similar

° Easy to build circuits to
operate on these
representations

° Possible to convert between
the three formats

Converting Between Base 16 and Base 2

3A9F16 = 0011 1010 1001 11112

3 A 9 F

° Determine 4-bit value for each hex digit

° Note that there are 24 = 16 different values of four bits

° Easier to read and write in hexadecimal.

° Representations are equivalent!

Converting Between Base 16 and Base 8

352378 = 011 101 010 011 1112

3 5 2 3 7

1. Convert from Base 16 to Base 2

2. Regroup bits into groups of three starting from right

3. Ignore leading zeros

4. Each group of three bits forms an octal digit.

3A9F16 = 0011 1010 1001 11112

3 A 9 F

How To Represent Signed Numbers

• Plus and minus sign used for decimal numbers: 25 (or
+25), -16, etc.

• For computers, desirable to represent everything as bits.

• Three types of signed binary number representations: signed
magnitude, 1’s complement, 2’s complement.

• In each case: left-most bit indicates sign: positive (0) or
negative (1).

Consider signed magnitude:

000011002 = 1210

Sign bit Magnitude

100011002 = -1210

Sign bit Magnitude

One’s Complement Representation

• The one’s complement of a binary number involves inverting
all bits.

• 1’s comp of 00110011 is 11001100

• 1’s comp of 10101010 is 01010101

• For an n bit number N the 1’s complement is (2n-1) – N.

• Called diminished radix complement by Mano since 1’s
complement for base (radix 2).

• To find negative of 1’s complement number take the 1’s
complement.

000011002 = 1210

Sign bit Magnitude

111100112 = -1210

Sign bit Magnitude

Two’s Complement Representation

• The two’s complement of a binary number involves inverting
all bits and adding 1.

• 2’s comp of 00110011 is 11001101

• 2’s comp of 10101010 is 01010110

• For an n bit number N the 2’s complement is (2n-1) – N + 1.

• Called radix complement by Mano since 2’s complement for
base (radix 2).

• To find negative of 2’s complement number take the 2’s
complement.

000011002 = 1210 111101002 = -1210

Sign bit Magnitude Sign bit Magnitude

Two’s Complement Shortcuts

° Algorithm 1 – Simply complement each bit and then add 1 to the
result.

• Finding the 2’s complement of (01100101)2 and of its 2’s
complement…

N = 01100101 [N] = 10011011

 10011010 01100100

+ 1

 -

10011011

+ 1

01100101

° Algorithm 2 – Starting with the least significant bit, copy all of the bits
up to and including the first 1 bit and then complementing the
remaining bits.

• N = 0 1 1 0 0 1 0 1

[N] = 1 0 0 1 1 0 1 1

1’s Complement Addition

° Using 1’s complement numbers, adding numbers is easy.

° For example, suppose we wish to add +(1100)2 and +(0001)2.

° Let’s compute (12)10 + (1)10.

• (12)10 = +(1100)2 = 011002 in 1’s comp.

• (1)10 = +(0001)2 = 000012 in 1’s comp.

Step 1: Add binary numbers

Step 2: Add carry to low-order bit

Add +

0 0 1 1 0 1
Add carry

Final

Result

0

0 1 1 0 1

0 1 1 0 0

0 0 0 0 1

1’s Complement Subtraction

° Using 1’s complement numbers, subtracting numbers is also easy.

° For example, suppose we wish to subtract +(0001)2 from +(1100)2.

° Let’s compute (12)10 - (1)10.

• (12)10 = +(1100)2 = 011002 in 1’s comp.

• (-1)10 = -(0001)2 = 111102 in 1’s comp. -

1’s comp
0 1 1 0 0

Step 1: Take 1’s complement of 2nd operand

Step 2: Add binary numbers

Step 3: Add carry to low order bit

Add

Add car

Final

Result

+ 1 1 1 1 0

1 0 1 0 1 0
ry 1

0 1 0 1 1

0 1 1 0 0

0 0 0 0 1

2’s Complement Addition

0 1 1 0 1

° Using 2’s complement numbers, adding numbers is easy.

° For example, suppose we wish to add +(1100)2 and +(0001)2.

° Let’s compute (12)10 + (1)10.

• (12)10 = +(1100)2 = 011002 in 2’s comp.

• (1)10 = +(0001)2 = 000012 in 2’s comp.

Step 1: Add binary numbers

Step 2: Ignore carry bit

Add

Final

Result

+

0

Ignore

0 1 1 0 0

0 0 0 0 1

2’s Complement Subtraction

0 1 0 1 1

° Using 2’s complement numbers, follow steps for
subtraction

° For example, suppose we wish to subtract +(0001)2 from
+(1100)2.

° Let’s compute (12)10 - (1)10.

• (12)10 = +(1100)2 = 011002 in 2’s comp.

• (-1)10 = -(0001)2 = 111112 in 2’s comp.

-

2’s comp

Step 1: Take 2’s complement of 2nd operand

Step 2: Add binary numbers

Step 3: Ignore carry bit

Add

Final

Result

0 1 1 0 0

+ 1 1 1 1 1

1

Ignore

Carry

0 1 1 0 0

0 0 0 0 1

2’s Complement Subtraction: Example #2

° Let’s compute (13)10 – (5)10.

• (13)10 = +(1101)2 = (01101)2

• (-5)10 = -(0101)2 = (11011)2

° Adding these two 5-bit codes…

carry

° Discarding the carry bit, the sign bit is seen to be zero, indicating

a correct result. Indeed,

(01000)2 = +(1000)2 = +(8)10.

 0 1 1 0 1

+ 1 1 0 1 1

1 0 1 0 0 0

2’s Complement Subtraction: Example #3

° Let’s compute (5)10 – (12)10.

• (-12)10 = -(1100)2 = (10100)2

• (5)10 = +(0101)2 = (00101)2

° Adding these two 5-bit codes…
0 0 1 0 1

+ 1 0 1 0 0

1 1 0 0 1

° Here, there is no carry bit and the sign bit is 1. This

indicates a negative result, which is what we expect.

(11001)2 = -(7)10.

Boolean Algebra

Overview

° Logic functions with 1’s and 0’s

• Building digital circuitry

° Truth tables

° Logic symbols and waveforms

° Boolean algebra

° Properties of Boolean Algebra

• Reducing functions

• Transforming functions

Digital Systems

° Analysis problem:

Inputs .
.

. Outputs

.

• Determine binary outputs for each combination of inputs

° Design problem: given a task, develop a circuit that
accomplishes the task

• Many possible implementation

• Try to develop “best” circuit based on some criterion (size,
power, performance, etc.)

Logic

Circuit

Describing Circuit Functionality: Inverter

A Y

Symbol

Truth Table

A Y

0 1

1 0

° Basic logic functions have symbols.

Input Output

° The same functionality can be represented with truth tables.

• Truth table completely specifies outputs for all input combinations.

° The above circuit is an inverter.

• An input of 0 is inverted to a 1.

• An input of 1 is inverted to a 0.

The AND Gate

A
Y

B

° This is an AND gate.

° So, if the two inputs signals

are asserted (high) the

output will also be asserted.

Otherwise, the output will

be deasserted (low).

Truth Table

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

The OR Gate

A
Y

B

° This is an OR gate.

° So, if either of the two

input signals are

asserted, or both of

them are, the output

will be asserted.

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

Describing Circuit Functionality: Waveforms

AND Gate

A B Y

0 0 0

0 1 0

1 0 0

1 1 1

° Waveforms provide another approach for representing functionality.

° Values are either high (logic 1) or low (logic 0).

° Can you create a truth table from the waveforms?

Consider three-input gates

3 Input OR Gate

Ordering Boolean Functions

° How to interpret AB+C?

• Is it AB ORed with C ?

• Is it A ANDed with B+C ?

° Order of precedence for Boolean algebra: AND before OR.

° Note that parentheses are needed here :

Boolean Algebra

° A Boolean algebra is defined as a closed algebraic system containing a
set K or two or more elements and the two operators, . and +.

° Useful for identifying and minimizing circuit functionality

° Identity elements

• a + 0 = a

• a . 1 = a

° 0 is the identity element for the + operation.

° 1 is the identity element for the . operation.

Commutativity and Associativity of the Operators

° The Commutative Property:

For every a and b in K,

• a + b = b + a

• a . b = b . a

° The Associative Property:

For every a, b, and c in K,

• a + (b + c) = (a + b) + c

• a . (b . c) = (a . b) . c

Distributivity of the Operators and Complements

° The Distributive Property:

For every a, b, and c in K,

• a + (b . c) = (a + b) . (a + c)

• a . (b + c) = (a . b) + (a . c)

° The Existence of the Complement:

For every a in K there exists a unique element called a’ (complement of
a) such that,

• a + a’ = 1

• a . a’ = 0

° To simplify notation, the . operator is frequently omitted. When two
elements are written next to each other, the AND (.) operator is
implied…

• a + b . c = (a + b) . (a + c)

• a + bc = (a + b)(a + c)

Duality

° The principle of duality is an important concept. This says that if an

expression is valid in Boolean algebra, the dual of that expression is also

valid.

° To form the dual of an expression, replace all + operators with .

operators, all . operators with + operators, all ones with zeros, and all

zeros with ones.

° Form the dual of the expression

a + (bc) = (a + b)(a + c)

° Following the replacement rules…

a(b + c) = ab + ac

° Take care not to alter the location of the parentheses if they are present.

Involution

° This theorem states:

a’’ = a

° Remember that aa’ = 0 and a+a’=1.

• Therefore, a’ is the complement of a and a is also the complement of
a’.

• As the complement of a’ is unique, it follows that a’’=a.

° Taking the double inverse of a value will give the initial value.

Absorption

° This theorem states:

a + ab = a a(a+b) = a

° To prove the first half of this theorem:

a + ab = a . 1 + ab

= a (1 + b)

= a (b + 1)

= a (1)

a + ab = a

DeMorgan’s Theorem

° A key theorem in simplifying Boolean algebra expression is
DeMorgan’s Theorem. It states:

(a + b)’ = a’b’ (ab)’ = a’ + b’

° Complement the expression

a(b + z(x + a’)) and simplify.

(a(b+z(x + a’)))’ = a’ + (b + z(x + a’))’

= a’ + b’(z(x + a’))’

= a’ + b’(z’ + (x + a’)’)

= a’ + b’(z’ + x’a’’)

= a’ + b’(z’ + x’a)

Summary

° Basic logic functions can be made from AND, OR, and NOT (invert)
functions

° The behavior of digital circuits can be represented with waveforms, truth
tables, or symbols

° Primitive gates can be combined to form larger circuits

° Boolean algebra defines how binary variables can be combined

° Rules for associativity, commutativity, and distribution are similar to
algebra

° DeMorgan’s rules are important.

• Will allow us to reduce circuit sizes.

More Logic Functions: NAND, NOR, XOR

Overview

° More 2-input logic gates (NAND, NOR, XOR)

° Extensions to 3-input gates

° Converting between sum-of-products and NANDs

• SOP to NANDs

• NANDs to SOP

° Converting between sum-of-products and NORs

• SOP to NORs

• NORs to SOP

° Positive and negative logic

• We use primarily positive logic in this course.

Logic functions of N variables

° Each truth table represents one possible function (e.g. AND, OR)
N

° If there are N inputs, there are 22

° For example, is N is 2 then there are 16 possible truth tables.

° So far, we have defined 2 of these functions

• 14 more are possible.

° Why consider new functions?

• Cheaper hardware, more flexibility.
x
0
0
1
1

y
0
1
0
1

G
0
0
0
1

The NAND Gate

A
Y

B

° This is a NAND gate. It is a combination of an AND gate
followed by an inverter. Its truth table shows this…

° NAND gates have several interesting properties…

• NAND(a,a)=(aa)’ = a’ = NOT(a)

• NAND’(a,b)=(ab)’’ = ab = AND(a,b)

• NAND(a’,b’)=(a’b’)’ = a+b = OR(a,b) A B Y

0 0 1

0 1 1

1 0 1

1 1 0

The NAND Gate

° These three properties show that a NAND gate with both of its
inputs driven by the same signal is equivalent to a NOT gate

° A NAND gate whose output is complemented is equivalent to an
AND gate, and a NAND gate with complemented inputs acts as an
OR gate.

° Therefore, we can use a NAND gate to implement all three of the
elementary operators (AND,OR,NOT).

° Therefore, ANY switching function can be constructed using only
NAND gates. Such a gate is said to be primitive or functionally
complete.

NAND Gates into Other Gates

(what are these circuits?)

A
Y

NOT Gate A
B

A

B

Y

AND Gate

Y

OR Gate

The NOR Gate

A
Y

B

° This is a NOR gate. It is a combination of an OR gate followed
by an inverter. It’s truth table shows this…

° NOR gates also have several

interesting properties…

• NOR(a,a)=(a+a)’ = a’ = NOT(a)

• NOR’(a,b)=(a+b)’’ = a+b = OR(a,b)

• NOR(a’,b’)=(a’+b’)’ = ab = AND(a,b)

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

Functionally Complete Gates

° Just like the NAND gate, the NOR gate is functionally

complete…any logic function can be implemented using just

NOR gates.

° Both NAND and NOR gates are very valuable as any design can

be realized using either one.

° It is easier to build an IC chip using all NAND or NOR gates

than to combine AND,OR, and NOT gates.

° NAND/NOR gates are typically faster at switching and cheaper

to produce.

NOR Gates into Other Gates

(what are these circuits?)
A

Y

NOT Gate

A

B

A

B

AND Gate

Y

OR Gate

Y

The XOR Gate (Exclusive-OR)

A

B
Y

° This is a XOR gate.

° XOR gates assert their output

when exactly one of the inputs

is asserted, hence the name.

° The switching algebra symbol

for this operation is , i.e.

1 1 = 0 and 1 0 = 1.

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

The XNOR Gate

A

B
Y

° This is a XNOR gate.

° This functions as an

exclusive-NOR gate, or

simply the complement of

the XOR gate.

° The switching algebra symbol

for this operation is , i.e.

1 1 = 1 and 1 0 = 0.

A B Y

0 0 1

0 1 0

1 0 0

1 1 1

NOR Gate Equivalence

° NOR Symbol, Equivalent Circuit, Truth Table

DeMorgan’s Theorem

° A key theorem in simplifying Boolean algebra expression is DeMorgan’s
Theorem. It states:

(a + b)’ = a’b’ (ab)’ = a’ + b’

° Complement the expression

a(b + z(x + a’)) and simplify.

(a(b+z(x + a’)))’ = a’ + (b + z(x + a’))’

= a’ + b’(z(x + a’))’

= a’ + b’(z’ + (x + a’)’)

= a’ + b’(z’ + x’a’’)

= a’ + b’(z’ + x’a)

Example

° Determine the output expression for the below circuit and
simplify it using DeMorgan’s Theorem

Universality of NAND and NOR gates

Universality of NOR gate

° Equivalent representations of the AND, OR, and
NOT gates

Interpretation of the two NAND gate symbols

Interpretation of the two OR gate symbols

Summary

° Basic logic functions can be made from NAND, and NOR functions

° The behavior of digital circuits can be represented with waveforms, truth
tables, or symbols

° Primitive gates can be combined to form larger circuits

° Boolean algebra defines how binary variables with NAND, NOR can be
combined

° DeMorgan’s rules are important.

• Allow conversion to NAND/NOR representations

More Boolean Algebra

Overview

° Expressing Boolean functions

° Relationships between algebraic equations, symbols, and truth tables

° Simplification of Boolean expressions

° Minterms and Maxterms

° AND-OR representations

• Product of sums

• Sum of products

Boolean Functions

° Boolean algebra deals with binary variables and logic
operations.

° Function results in binary 0 or 1

x

y

z

F = x(y+z’)

x(y+z’)

F =
z’

y+z’

x y z F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Boolean Functions

° Boolean algebra deals with binary variables and logic
operations.

° Function results in binary 0 or 1

x xy

y

z

yz

G = xy +yz

We will learn how to transition between equation,

symbols, and truth table.

x y z xy yz G
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 1
1 1 1 1 1 1

Representation Conversion

° Need to transition between boolean expression, truth table,
and circuit (symbols).

° Converting between truth table and expression is easy.

° Converting between expression and circuit is easy.

° More difficult to convert to truth table.

Circuit Boolean

Expression

Truth

Table

Truth Table to Expression

° Converting a truth table to an expression

• Each row with output of 1 becomes a product term

• Sum product terms together.

Any Boolean Expression can be

represented in sum of products form!

xyz + xyz’ + x’yz

x y z G
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Equivalent Representations of Circuits

° All three formats are equivalent

° Number of 1’s in truth table output column equals AND terms for
Sum-of-Products (SOP)

G

G = xyz + xyz’ + x’yz

x y z

x x

x
x

x

x
x

x

x

x y z G
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Reducing Boolean Expressions

° Is this the smallest possible implementation of this
expression? No! G = xyz + xyz’ + x’yz

° Use Boolean Algebra rules to reduce complexity while
preserving functionality.

° Step 1: Use Theorum 1 (a + a = a)

• So xyz + xyz’ + x’yz = xyz + xyz + xyz’ + x’yz

° Step 2: Use distributive rule a(b + c) = ab + ac

• So xyz + xyz + xyz’ + x’yz = xy(z + z’) + yz(x + x’)

° Step 3: Use Postulate 3 (a + a’ = 1)

• So xy(z + z’) + yz(x + x’) = xy.1 + yz.1

° Step 4: Use Postulate 2 (a . 1 = a)

• So xy.1 + yz.1 = xy + yz = xyz + xyz’ + x’yz

Reduced Hardware Implementation

° Reduced equation requires less hardware!

° Same function implemented!

G

x y z

G = xyz + xyz’ + x’yz = xy + yz

x x

x
x

x y z G
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Minterms and Maxterms

° Each variable in a Boolean expression is a literal

° Boolean variables can appear in normal (x) or complement
form (x’)

° Each AND combination of terms is a minterm

° Each OR combination of terms is a maxterm

For example:

Minterms
For example:

Maxterms

x y z Maxterm

0 0 0 x+y+z M0

…

…

0 0 1 x+y+z’ M1

1 0 0 x’+y+z M4

1 1 1 x’+y’+z’ M7

x y z Minterm

0 0 0 x’y’z’ m0

0

…

0 1 x’y’z m1

1

…

0 0 xy’z’ m4

1 1 1 xyz m7

Representing Functions with Minterms

° Minterm number same as row position in truth table (starting
from top from 0)

° Shorthand way to represent functions

G = xyz + xyz’ + x’yz

G = m7 + m6 + m3 = Σ(3, 6, 7)

x y z G

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1

1 1 1 1

Complementing Functions

° Minterm number same as row position in truth table (starting from top
from 0)

° Shorthand way to represent functions

G = xyz + xyz’ + x’yz

G’ = (xyz + xyz’ + x’yz)’ =

Can we find a simpler representation?

x y z G G’

0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 1
1 1 0 1 0

1 1 1 1 0

Complementing Functions

° Step 1: assign temporary names

• b + c -> z

• (a + z)’ = G’

° Step 2: Use DeMorgans’ Law

• (a + z)’ = a’ . z’

° Step 3: Resubstitute (b+c) for z

• a’ . z’ = a’ . (b + c)’

° Step 4: Use DeMorgans’ Law

• a’ . (b + c)’ = a’ . (b’. c’)

° Step 5: Associative rule

• a’ . (b’. c’) = a’ . b’ . c’

G = a + b + c

G’ = (a + b + c)’

G = a + b + c

G’ = a’ . b’ . c’ = a’b’c’

Complementation Example

° Find complement of F = x’z + yz

• F’ = (x’z + yz)’

° DeMorgan’s

• F’ = (x’z)’ (yz)’

° DeMorgan’s

• F’ = (x’’+z’)(y’+z’)

° Reduction -> eliminate double negation on x

• F’ = (x+z’)(y’+z’)

This format is called product of sums

Conversion Between Canonical Forms

° Easy to convert between minterm and maxterm
representations

° For maxterm representation, select rows with 0’s

G = xyz + xyz’ + x’yz

G = m7 + m6 + m3 = Σ(3, 6, 7)

G = M0M1M2M4M5 = Π(0,1,2,4,5)

G = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)(x’+y+z’)

x y z G
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1

1 1 1 1

° All logic expressions can be represented in 2-level format

° Circuits can be reduced to minimal 2-level representation

° Sum of products representation most common in industry.

Representation of Circuits

° Truth table, circuit, and boolean expression formats are
equivalent

° Easy to translate truth table to SOP and POS representation

° Boolean algebra rules can be used to reduce circuit size while
maintaining function

° All logic functions can be made from AND, OR, and NOT

° Easiest way to understand: Solve examples!

Summary

Minimization with Karnaugh Maps

° K-maps: an alternate approach to representing Boolean functions

° K-map representation can be used to minimize Boolean functions

° Easy conversion from truth table to K-map to minimized SOP
representation.

° Simple rules (steps) used to perform minimization

° Leads to minimized SOP representation.

• Much faster and more more efficient than previous minimization techniques with
Boolean algebra.

Overview

y

° Alternate way of representing Boolean function

• All rows of truth table represented with a square

• Each square represents a minterm

° Easy to convert between truth table, K-map, and SOP

• Unoptimized form: number of 1’s in K-map equals number of minterms
(products) in SOP

• Optimized form: reduced number of minterms

y F = Σ(m0,m1) = x’y + x’y’

x 0 1
0

x
y

0 1

x 1 0

1

Karnaugh maps

x

0

0

1

1

y

0

1

0

1

F

1

1

0

0

x’y’ x’y

xy’ xy

1 1

0 0

° A Karnaugh map is a graphical tool for assisting in the general

simplification procedure.

° Two variable maps.

A
B 0 1

0
1

F=AB +A’B

A
B 0 1

+AB

° Three variable maps.

BC

A
00 01

0
1

11 10

+

F=AB’C’ +AB C +ABC +ABC + A’B’C + A’BC’

 Karnaugh Maps

0 1
1 0

0 1
1 1

0 1 0 1
1 1 1 1

0 F=AB +A B
1

 A B C F

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

 We can reduce functions by circling 1’s in the K-map

 Each circle represents minterm reduction

 Following circling, we can deduce minimized and-or form.

Rules to consider

ÊEvery cell containing a 1 must be included at least once.

ËThe largest possible “power of 2 rectangle” must be enclosed.

Ì The 1’s must be enclosed in the smallest possible number of

rectangles.

Example

Rules for K-Maps

A
00 01 11 10

0

1 1 1 1 1
1 0 1 0

1 1
1 0

° A Karnaugh map is a graphical tool for assisting in the general
simplification procedure.

° Two variable maps.

A
B 0 1

0

F=AB +A’B
A

B 0 1

0

F=AB +AB +AB

1

° Three variable maps.

BC

1 F=A+B

F=A+B C +BC

F=AB’C’ +AB C +ABC +ABC + A’B’C + A’BC’

 Karnaugh Maps

0 1
1 0

C 1 1 0 0

1 0 0 1

° Numbering scheme based on Gray–code

• e.g., 00, 01, 11, 10

• Only a single bit changes in code for adjacent map cells

• This is necessary to observe the variable transitions

A

G(A,B,C) = A
C

B

A

C
AB

00 01

0

C 1

B

A
11 10

F(A,B,C) = m(0,4,5,7) = AC + B’C’

B

Karnaugh maps

0 0 1 1

0 0 1 1

0

1 1 1 0

0 1 0

° Examples

a

b 0 1

0

1

f = a

a

b 0 1

0

1

g = b'

ab
c 00 01 11 10

0

1

cout = ab + bc + ac

ab
c 00 01 11 10

0

1

f = a

1. Circle the largest groups possible.

2. Group dimensions must be a power of 2.

3. Remember what circling means!

More Karnaugh Map Examples

0 1

0 1

1 1

0 0

0 0 1 1

0 0 1 1

Application of Karnaugh Maps: The One-bit Adder

Cin

A
S

B

Cout
+

How to use a Karnaugh

Map instead of the

Algebraic simplification?

S = A’B’Cin + A’BCin’ + A’BCin + ABCin

Cout = A’BCin + A B’Cin + ABCin’ + ABCin

= A’BCin + ABCin + AB’Cin + ABCin + ABCin’ + ABCin

= (A’ + A)BCin + (B’ + B)ACin + (Cin’ + Cin)AB

= 1·BCin + 1· ACin + 1· AB

= BCin + ACin + AB

Adder

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Application of Karnaugh Maps: The One-bit Adder

Cin

A
S

B

Cout

B

A
+

Now we have to cover all the 1s in the

Karnaugh Map using the largest

rectangles and as few rectangles

Cin

Karnaugh Map for Cout

as we can.

Adder

0 0 1 0

0 1 1 1

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1

1 1 1 1 1

Application of Karnaugh Maps: The One-bit Adder

Cin

A
S

B

Cout

B

A

Cin

+

Now we have to cover all the 1s in the

Karnaugh Map using the largest

rectangles and as few rectangles

as we can.

Cout = ACin

Karnaugh Map for Cout

Adder

0 0 1 0

0 1 1 1

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1

1 1 1 1 1

Application of Karnaugh Maps: The One-bit Adder

Cin

A
S

B

Cout

B

A

Cin

+

Now we have to cover all the 1s in the

Karnaugh Map using the largest

rectangles and as few rectangles

as we can.

Cout = Acin + AB

Karnaugh Map for Cout

Adder

0 0 1 0

0 1 1 1

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1

1 1 1 1 1

Application of Karnaugh Maps: The One-bit Adder

Cin

A
S

B

Cout

B

A

Cin

+

Now we have to cover all the 1s in the

Karnaugh Map using the largest

rectangles and as few rectangles

as we can.

Cout = ACin + AB + BCin

Karnaugh Map for Cout

1 1 1 0

0 1 0 0

Adder

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1

1 1 1 1 1

Application of Karnaugh Maps: The One-bit Adder

Cin

A
S

B

Cout
A

+

B

Cin

Karnaugh Map for S

S = A’BCin’

Adder

0 1 0 1

1 0 1 0

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1

1 1 1 1 1

Application of Karnaugh Maps: The One-bit Adder

Cin

A
S

B

Cout
A

+

B

Cin

Karnaugh Map for S

S = A’BCin’ + A’B’Cin

Adder

0 1 0 1

1 0 1 0

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1

1 1 1 1 1

Application of Karnaugh Maps: The One-bit Adder

Cin

A
S

B

Cout
A

+

B

Cin

Karnaugh Map for S

S = A’BCin’ + A’B’Cin + ABCin

Adder

0 1 0 1

1 0 1 0

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1

1 1 1 1 1

Application of Karnaugh Maps: The One-bit Adder

Can you draw the circuit diagrams?

Cin

A
S

B

Cout
A

+

B

Cin

Karnaugh Map for S

S = A’BCin’ + A’B’Cin + ABCin + AB’Cin’

No Possible Reduction!

Adder

0 1 0 1

1 0 1 0

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1

1 1 1 1 1

° Karnaugh map allows us to represent functions with new
notation

° Representation allows for logic reduction.

• Implement same function with less logic

° Each square represents one minterm

° Each circle leads to one product term

° Not all functions can be reduced

° Each circle represents an application of:

• Distributive rule -- x(y + z) = xy + xz

• Complement rule – x + x’ = 1

Summary

More Karnaugh Maps and Don’t Cares

° Karnaugh maps with four inputs

• Same basic rules as three input K-maps

° Understanding prime implicants

• Related to minterms

° Covering all implicants

° Using Don’t Cares to simplify functions

• Don’t care outputs are undefined

° Summarizing Karnaugh maps

Overview

° Represent functions of 4 inputs with 16 minterms

° Use same rules developed for 3-input functions

° Note bracketed sections shown in example.

Karnaugh Maps for Four Input Functions

° F(A,B,C,D) = m(0,2,3,5,6,7,8,10,11,14,15)

F =C+A’BD+B’D’

A

D

C

B

Karnaugh map: 4-variable example

1 0 0 1

0 1 0 0

1 1 1 1

1 1 1 1

A A

K-map

D

B

for LT

C

K-map

D

B

for EQ

C

K-map

D

B

for GT

LT =

EQ =

GT =

A' B' D + A' C + B' C D

A'B'C'D' + A'BC'D + ABCD + AB'CD’

B C' D' + A C' + A B D'

Can you draw the truth table for these examples?

C

Design examples

A

0 0 0 0

1 0 0 0

1 1 0 1

1 1 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 1

0 0 1 1

0 0 0 0

0 0 1 0

A B C D

° Step 1: Truth table

° Step 2: K-map

° Step 3: Minimized sum-of-products

° Step 4: Physical implementation with gates

EQ
A

C

K-map

D

B

for EQ

Physical Implementation

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

00

01

11

10 1 1 0 1
1 1 1 1
1 0 1 1
1 0 0 0

° Four variable maps.

CD

AB
00 01 11 10

F=ABC +ACD +ABC
+AB CD +ABC +AB C

F=BC +CD + AC+ AD

° Need to make sure all 1’s are covered

° Try to minimize total product terms.

° Design could be implemented using NANDs and NORs

Karnaugh Maps

° In some cases, outputs are undefined

° We “don’t care” if the logic produces a 0 or a 1

° This knowledge can be used to simplify functions.

AB
A

CD

00

01

11

C
10

00 01 11 10

D

B

- Treat X’s like either 1’s or 0’s

- Very useful

- OK to leave some X’s uncovered

Karnaugh maps: Don’t cares

0 0 X 0

1 1 X 1

1 1 0 0

0 X 0 0

° f(A,B,C,D) = m(1,3,5,7,9) + d(6,12,13)

• without don't cares

- f =

A’D + C’D

AB
A

CD 00 01 11 10

00

+ +

01
D

11

C
10

B

Karnaugh maps: Don’t cares

0 0 X 0

 1 1 X 1

1 1 0 0

0 X 0 0

A B C D f

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 X
0 1 1 1 1
1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 X

1 1 0 1 X

1 1 1 0 0

1 1 1 1 0

° In some situations, we don’t care about the value of a function for

certain combinations of the variables.

• these combinations may be impossible in certain contexts

• or the value of the function may not matter in when the combinations
occur

° In such situations we say the function is incompletely specified and

there are multiple (completely specified) logic functions that can be

used in the design.

• so we can select a function that gives the simplest circuit

° When constructing the terms in the simplification procedure, we can

choose to either cover or not cover the don’t care conditions.

Don’t Care Conditions

AB
00 01 11 10

00 0 1 0 0
01 x x x 1
11 1 1 1 x
10 x 0 1 1

AB
00 01 11 10

00 0 1 0 0
01 x x x 1
11 1 1 1 x
10 x 0 1 1

CD

F=ACD+B+AC

° Alternative covering.

CD

F=ABCD+ABC+BC+AC

Map Simplification with Don’t Cares

° f(A,B,C,D) = m(1,3,5,7,9) + d(6,12,13)

• f = A'D + B'C'D without don't cares

• f = with don't cares

A'D + C'D

A
by using don't care as a "1"

a 2-cube can be formed
rather than a 1-cube to cover

D this node

C don't cares can be treated as
1s or 0s

B depending on which is more
advantageous

Karnaugh maps: don’t cares (cont’d)

0 0 X 0

1 1 X 1

1 1 0 0

0 X 0 0

° Implicant

• Single product term of the ON-set (terms that create a logic 1)

° Prime implicant

• Implicant that can't be combined with another to form an implicant with fewer
literals.

° Essential prime implicant

• Prime implicant is essential if it alone covers a minterm in the K-map

• Remember that all squares marked with 1 must be covered

° Objective:

• Grow implicant into prime implicants (minimize literals per term)

• Cover the K-map with as few prime implicants as possible
(minimize number of product terms)

Definition of terms for two-level simplification

B

0 0 1 0

1 1 1 0

0 1 1 1

0 1 0 0

A

6 prime implicants:

A'B'D, BC', AC, A'C'D, AB, B'CD

D
essential

minimum cover: AC + BC' + A'B'D
B

A

5 prime implicants:

BD, ABC', ACD, A'BC, A'C'D
D

essential
C

minimum cover: 4 essential implicants

Examples to illustrate terms

C

0 X 1 0

1 1 1 0

1 0 1 1

0 0 1 1

Any single 1 or group of 1s in the Karnaugh map of a function F is an

implicant of f.

A product term is called a prime implicant of F if it cannot be combined

with another term to eliminate a variable.

Example:

If a function F is represented by
A this Karnaugh Map. Which of the

following terms are implicants of

F, and which ones are prime

implicants of F?

D (a) AC’D’
(b) BD

C
(c) A’B’C’D’

(d) AC’

B
(e) B’C’D’

Implicants:

(a),(c),(d),(e)

Prime Implicants:

(d),(e)

PRIME IMPLICANTS

1 1 1

 1 1

1

1 1

A product term is an essential prime implicant if there is a minterm that is

only covered by that prime implicant.

- The minimal sum-of-products form of F must include

all the essential prime implicants of F.

Essential Prime Implicants

° K-maps of four literals considered

• Larger examples exist

° Don’t care conditions help minimize functions

• Output for don’t cares are undefined

° Result of minimization is minimal sum-of-products

° Result contains prime implicants

° Essential prime implicants are required in the implementation

Summary

DIGITAL ELECTRONIC CIRCUITS

CMOS LOGIC CIRCUITS

° VOH:- maximum output voltage when the output level is logic “1”

° VOL:- minimum output voltage when the output level is logic “0”

VOLTAGE AS LOGIC VARIABLE

° Inverter propagation delay: time delay between input and output signals.

° Typical propagation delays: < 1 ns.

° Estimation of tp: use of square-wave at input side.

LOGIC DELAY TIMES

° Average propagation delay: tp = (tPHL
+ tPLH

)

° Where tp = propagation delay

° tPHL = time taken to drive output from high to low

° tPLH = time taken to drive output from low to high

LOGIC DELAY TIMES--continued

PROPAGATION DELAY HIGH-TO-LOW:

PROPAGATION DELAY LOW-TO-HIGH:

FAN-IN AND FAN-OUT

° Fan-in is the number of inputs of an electronic logic gate which it can drive at

a time. For instance the 'fan-in' for the AND gate shown below is 3. Logic

gates with a large fan-in tend to be slower than those with a small fan-in,

because the complexity of the input circuitry increases the input capacitance

of the device.

° Fan-out is a measure of the ability of a logic gate output, implemented

electronically, to drive a number of inputs of other logic gates of the same

type. In most designs, logic gates are connected together to form more

complex circuits, and it is common for one logic gate output to be connected

to several logic gate inputs.

C-MOS ELECTRONICS

 SiO
2

n+ diffusion

p+ diffusion

 polysilicon

metal1

nMOS transistor pMOS transistor

° It is basically combination of a n-mosfet and a p-mosfet as shown in above
figure.

A

GND
Y

V
DD

p substrate
n well

p+ p+ n+ n+

° MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are four terminal
voltage-controlled switches.

° Current flows between the diffusion terminals if the voltage on the gate terminal is large
enough to create a conducting “channel”, otherwise the diffusion terminals are not
connected.

MOSFET

VDD

A Y

GND

A Y

NOT IN C-MOS

A Y

0 1

1 0

C-MOS INVERTER

° Typically use p-type substrate for nMOS transistors

° Requires n-well for body of pMOS transistors

 SiO
2

n+ diffusion

p+ diffusion

 polysilicon

metal1

nMOS transistor pMOS transistor

A

GND
Y

V
DD

p substrate
n well

p+ p+ n+ n+

° C-MOS NAND GATE

Y

A

B

LOGIC FORMATION USING C-MOS

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

° C-MOS NOR GATE

A

B
Y

LOGIC FORMATION USING C-MOS

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

° 3-input NAND gate

° Y pulls low if ALL inputs are 1

° Y pulls high if ANY input is 0

Y
A

B

C

COMPLEX LOGIC GATES USING C-MOS

° 4-input NAND gate

° O/P pulls low if ALL inputs are 1

° O/P pulls high if ANY input is 0

COMPLEX LOGIC GATES USING C-MOS

° A series and/or parallel network combinations of logic gates
such as and,or,nor,nand,not gates etc to form a specific logic, is
known to be cascade structure.

° Example

LOGIC CASCADES

Digital electronics circuits

CONCEPT OF DIGITAL
COMPONENTS

DIGITAL COMPONENTS

° Digital components are mainly the

devices in which inputs are digital data and the outputs are

also in digital format

° It is mainly categorized into 2 types i.e.

1.combinational components(circuits)

2.sequential components(circuits)

COMBINATIONAL COMPONENTS

⚫ A combinational circuit consists of logic gates whose
outputs at any time is determined from only the present
combination of inputs. It can be specified logically by a
set of Boolean functions.

SEQUENTIAL COMPONENTS

⚫ A sequential circuit is a combination of combinational
logic circuit with a memory component. Here the output
at one stage is the function of present state input and
previous outputs.

BINARY ADDERS

° Binary adders are the digital devices which add binary
numbers

° Its of two types i.e.

1.Half adder

2.Full adder

HALF ADDER

° A half adder can add two bits. It has two inputs, generally

labeled A and B, and two outputs, the sum S and carry C

A

B
HALF ADDER

SUM=S

CARRY=C

° Sum=S=A (XOR) B

° Carry=C=A (AND) B

HALF ADDER CIRCUIT DIAGRAM

Following is the logic table for a half adder:

A B C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

FULL ADDER

° A full adder is capable of adding three bits: two bits and one carry bit. It

has three inputs - A, B, and carry C, such that multiple full adders can be

used to add larger numbers. To remove ambiguity between the input and

output carry lines, the carry in is labelled Ci or Cin while the carry out is

labelled Co or Cout.

Inputs: {A, B, CarryIn} → Outputs: {Sum, CarryOut}

FULL ADDER CIRCUIT DIAGRAM

Input Output

A B Ci Co S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The expression for the sum and the output carry can be

obtained by drawing the K map.

FULL ADDER USING HALF ADDER

° A full adder can be constructed from two half adders by connecting X

and Y to the input of one half adder, connecting the sum from that to an

input to the second adder, connecting Z (Ci) to the other input and OR

the two carry outputs. Equivalently, S could be made the three-bit XOR

of X, Y, and Z (Ci,) and Co could be made the three-bit majority function

of X, Y, and Z (Ci.)

MULTIPLE BIT ADDER

(4bit adder using fulladder)

Here two binary numbers

A3 A2 A1 A0 and B3 B2 B1 B0 are added to get S3 S2 S1 S0 with a

final carry C4..

BINARY SUBTRACTION

HALF SUBTRACTOR

° The half-subtractor is a combinational circuit which is used to
perform subtraction of two bits. It has two inputs, X (minuend)
and Y (subtrahend) and two outputs D (difference) and B
(borrow).

The truth table for the half subtractor is

given below.

X Y D B

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

From the above table one can draw the

Karnaugh map or "difference" and

"borrow".

FULL SUBTRACTOR

BINARY MULTIPLIER

° A binary multiplier is a electronic circuit used in digital electronics

to multiply two binary numbers. It is built using binary adders.

The partial products can be trivially computed from the fact that ai

× bj = ai AND bj. The complexity of the multiplier is in adding the
partial products.

×

A3

B3

a2

b2

a1

b1

a0

b0

 a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

 a3b2 A2b2 a1b2 a0b2

a3b3 a2b3 A1b3 a0b3

p7 p6 p5 P4 p3 p2 p1 p0

DECODERS

° Decoder is a combinational circuit that converts binary

information from n input lines to a maximum of 2n unique output

lines.

° If the n-bit coded information has unused combinations then

decoder may have fewer than 2n outputs.

° The decoders present here are called n-to-m line decoders, where

m is less than equal to 2n .their purpose is to to generate 2n (or

fewer) minterms of n input variables.

2 to 4 LINE DECODER

D0
A0

2 to 4 line D1

A1 decoder D2

D3

3 to 4 LINE DECODER

° It has three inputs and eight outputs.

3 to 8

decoder

Contd…..

(implementation of 3-8 decoder using logic gates)

ENCODER

• An encoder is a digital circuit that performs the

inverse operation of a decoder.

• An encoder has 2n (or fewer) input lines and n output

lines.

• Example:

1. octal to binary encoder (8 to 3 binary encoder)

2. priority encoder

8 TO 3 BINARY ENCODER

(octal to binary encoder)

Here there are 8 inputs (Do to D7)
and 3 outputs (X , Y, Z).

AMBIGUITY IN ENCODER

There are two ambiguities associated with the design of a simple encoder:

⚫ 1. Only one input can be active at any given time. If two inputs are

active simultaneously, the output

produces an undefined combination

for example,

If D3 and D6 are 1 simultaneously, the output of the encoder will be

111.To avoid this we go for priority encoder

⚫ 2. An output with all 0's can be generated when all the

inputs are 0's,or when D0 is equal to 1.

PRIORITY ENCODER

⚫ Apriority encoder is an enccder circuit that includes the

priority function. The operation of the priority encoder is such

that if two or more inputs are equal to 1 at the same time,then

the input having the highest priority will take precedence.

In addition to the two outputs x and y ,

the circuit has a third output designated

by V ; this is a valid bit indicator that is

set to one when one or more inputs are

equal to one. If all th e inputs are 0 there

is no valid input hence V is equal to 0.

K-map of 4 to 2 PRIORITY ENCODER

LOGIC DIAGRAM

MULTIPLEXER

⚫ A multiplexer is a combinational circuit that selects

binary information from one of many input lines and

directs it to a single output line. The selection of a

particular input line is controlled by a set of selection

lines.

⚫ Normally there are 2n input lines and n selection lines

whose bit combinations determine which input is to be

selected

2 to 1 line multiplexer:

4 TO 1 MULTIPLEXER

I0

I1 MUX
I2 4-1 Y

I3

S1 S0

DEMULTIPLEXER

• Decoder with an enable line is called demultiplexer.

• It has a single input and the output is obtained as per the
selection lines.

• There are 2n no of outputs having n selection lines.

1 : 4 demultiplexer

Q0

Q1

A

Q2

Q3

S1
S0

Overall operation of
MULTIPLEXER AND DEMULTIPLEXER

MAGNITUDE COMPARATOR

⚫ the comparison of two numbers is an operation that determines
whether one nubmer is greater than, less than or equal to the other
number i.e. if A and B are two numbers then this circuit determines
whether A>B or A=B or A<B.

Suppose

A=A3 A2 A1 A0

B=B3 B2 B1 B0

1 only if the pair of bits in i are equal

LOGIC DIAGRAM OF
MAGNITUDE COMPARATOR

MEMORY ELEMENTS

AND

SEQUENTIAL NETWORKS

SEQUENTIAL NETWORK

⚫ Sequential circuit is a combinational circuit along with a
memory element which is capable of storing a memory
element.

BLOCK DIAGRAM

SYNCHRONOUS SEQUENTIAL LOGIC

Synchronous sequential circuits:

This circuit employs signals that affect the storage element only at

discrete instant of time.here synchronization is achieved by a timing

device called a clock generator,which provides a clock signal having

the form of a periodic train of clock pulses.

STORAGE ELEMENTS:

 A storage element in a digital circuit can store a binary state

indefinitely, until directed by an input signal to switch states.

 The major differences among various types of storage elements

are in the number of inputs they possess and in the manner in

which the inputs affect the binary state.

 Storage elements that operate with signal levels (rather than

signal transitions) are referred to as latches.

 Storage elements that operate with a clock transition are referred

to as flip-flops.

LATCHES

⚫ Latches are bistable device and level sensitive. These are the basic
building blocks of flip-flops.

SR Latch

When using static gates as building blocks, the most

fundamental latch is the simple SR latch, where S and R

stand for set and reset. It can be constructed from a pair

of cross-coupled NOR or NAND logic gates. The stored

bit is present on the output marked Q

Block diagram of SR Latch

SR LATCH USING NOR AND NAND GATES

SR LATCH WITH CONTROL INPUT

• Occasionally, desirable to avoid latch changes
• C= 0 disables all latch state changes
• Control signal enables data change when C = 1

• Right side of circuit same as ordinary S-R latch.

D LATCH

° D latch is also called transparent latch.

GRAPHICAL SYMBOL OF LATCHES

FLIP-FLOPS

° A flip-flops is a device which changes its state at the times when

a change is taking place in the clock signal.

° The flip-flops are generally edge triggered i.e. they are either +ve

edge edge triggered or –ve edge triggered.

MASTER SLAVE D FLIP-FLOP

• Consider two latches combined together

• Only one Clk value is active at a time

• Output changes of falling edge of the clock

D FLIP FLOP

• Stores a value on the positive edge of C

• Input changes at other times have no effect on

output

Positive edge triggered

C Q’

Q D

D

0

1

X

C

0

Q Q’

0 1

1 0

Q0 Q0’

CLOCKED D FLIP-FLOP

• Stores a value on the positive edge of C

• Input changes at other times have no effect on output

+VE AND –VE EDGE TRIGGERED D FLIP-FLOP

• D flops can be triggered on positive or negative edge

• Bubble before Clock (C) input indicates negative edge trigger

Lo-Hi edge Hi-Lo edge

POSITIVE EDGE-TRIGGERED J-K FLIP-FLOP

CLOCKED J-K FLIP FLOP

POSITIVE EDGE-TRIGGERED T FLIP-FLOP

ASYNCHRONOUS INPUTS

⚫ Some of the flip flops have asynchronous inputs that are used to

force the flip flop to a particular state independent of the clock.

⚫ The input that sets the flip flop to 1 is called PRESET or

DIRECT SET.

⚫ When a power is turned on in a digital system, the state of the

flip flop is unknown. the direct inputs are useful for bringing the

flip flop to a known starting state prior to the clocked operation.

⚫ Similarly there is a RESET that sets the flip flop to 0.

EXAMPLE :

Positive edge triggered d flip-flop with active low

asynchronous reset is shown in the figure below.

REGISTERS
AND

COUNTERS

REGISTERS

⚫ Register is a group of flip-flops which stores several bits of binary
data.

⚫ A n-bit register has n flip-flops

⚫ It can hold n bits of binary data

⚫ Register may also contain combinational

logic

Registers are classified as

1. Serial in serial out 2.parallel in serial out

3. Serial in parallel out 4.parallel in parallel out

 Serial-In, Serial-Out Unidirectional Shift Register

Serial-In, Parallel-Out Unidirectional Shift

Register

PARALLEL IN PARALLEL OUT SHIFT REGISTER

⚫ The common clock input triggers all

flip-flops and the binary data

available at the four inputs are

transferred into the register.

⚫ The clear input is useful for

clearing the register to all 0’s

output.

REGISTER WITH PARALLEL LOAD

° If all the bits in a register are loaded
at the same time, the loading is done
in parallel.

° A 4-bit register with a load control
input is shown here.

° The Load input determines the action
to be taken with each clock pulse.

° The feedback connection

from output to input is necessary
because the D flip-flop does not have
a “no change” condition.

SERIAL TRANSFER

⚫ Serial transfer of information from register A to register
B is done with shift registers:

Suppose the shift registers have four bits each.

The control unit that supervises the transfer must

be designed such that it enables the shift registers,

via the shift control signal, for a fixed time of four

clock pulses:

Contd..

Assume that the binary content of A before the

shift is 1011 and that of B is 0010. The serial

transfer occurs in four steps as shown in the table

below:

COUNTERS

 Counter is a register which counts the sequence in binary form.

 The state of counter changes with application of clock pulse.

 The total no. of states in counter is called as modulus.

 If counter is modulus-n, then it has n different states.\

 Counters are available in two categories:

ripple counters and synchronous counters.

 State diagram of counter is a pictorial representation of counter

states directed by arrows in graph.

111

110

000
001

010

Fig. State diagram of

mod-8 counter

101
100

011

RIPPLE (ASYNCHRONOUS COUNTER)

° In a ripple counter, the flip-
flop output transition serves
as a source for triggering
other flip-flops.

° A 4-bit binary ripple
counter (mod-16) is given
here.

BCD RIPPLE COUNTER (MOD-10)

° A decimal counter follows a pattern of 10 states:

The logic diagram of

a BCD counter using

JK flip-flops

is shown here

Contd…

⚫ A multiple decade counter can be constructed by connecting

BCD counters in cascade. A three decade counter is shown

below:

SETTLING TIME OF RIPPLE COUNTERS

⚫ A ripple counter is also known as an asynchronous

counter. The rippling behaviour affects the overall

settling time.

⚫ The worst-case delay occurs when the counter

goes from its 11….1-state to its 00…0-state.

⚫ For an n-stage binary ripple counter, the worst case

⚫ setting time is n x Tpd, where Tpd is the

propagation delay associated with each flip-flop.

SYNCHRONOUS BINARY COUNTERS

° The settling time problem associated with ripple counters is avoided in

synchronous counters. In these counters, the count pulses are applied

directly to the control inputs C of all flip-flops.

° The state diagram and state table of a 3-bit binary counter are

Contd…

The flip-flop input equations are specified by the

Kmaps:

Contd…

° The input equations listed under the K-maps specify the

combinational part of the counter. Including these

functions with the three T flip-flops, the logic diagram of

the counter is:

Contd…

° Synchronous counters have a

regular pattern and can be

constructed with

complementing flip-flops and

gates. The complementing flip-

flops can be either of the JK-

type or the T-type or the D-

type with X-OR gates.

° A 4-bit binary synchronous

counter (count-down) with

count enable function can be

realized like this:

UP-DOWN BINARY COUNTER

⚫ The circuit of a 4-bit up-down binary counter withT flip-
flops is:

Up = 1; the circuit

counts up.

• Down = 1, Up = 0;

the circuit counts

down.

• Up = 0, Down = 0;

the circuit doesn’t

change state.

• Up = 1, Down = 1,

the circuit counts up.

COUNTER WITH UNUSED STATES

⚫ A circuit with n flip-flops has 2n binary states. There are

occasions when a sequential circuit uses less than 2n states.

The unused states maybe treated as don’t care conditions or

may be assigned specific next states. Once the circuit is

designed and realized, outside interference may cause it to

enter one of the unused states. In that case it is important to

ensure that the circuit can resume normal operation.

Contd….

° The flip-flop input equations (after simplification) are:

RING COUNTER

° It is a circular shift register with only one flip-flop being set at any

particular time, all others are cleared. The single bit is shifted from one

flip-flop to the next to produce the sequence of timing signals. A 4-bit

shift register connected as a ring counter is shown below:

Contd…

° Timing diagram

JOHNSON COUNTER

° An interesting variation of the ring counter is obtained if,

instead of the Q output we take the Q′ of the last stage and feed

it back to the first stage. A four-stage switch-tail counter is

shown below:

Contd…..

° Starting from a cleared state, the switch-tail counter goes
through a sequence of eight states as listed below:

STATE MACHINES

STATE MACHINE

° A finite state machine (FSM) or finite state automaton (plural:

automata), or simply a state machine, is a model of behavior

composed of a finite number of states, transitions between those

states, and actions. It is similar to a "flow graph" where we can

inspect the way in which the logic runs when certain conditions

are met. A finite state machine is an abstract model of a

machine with a primitive internal memory.

° Two types of “ STATE machines”

• Mealy machine

• Moore machine

Contd…

° EXAMPLE

state machine tells

about how the states of a particular

system or machine changes .Before

designing a circuit we have to

analyze how the states are changing

in that system. That can be done

using a state machine.

DATA STORING DEVICES
RANDOM ACCESS MEMORY (RAM)

RANDOM ACCESS MEMORY (RAM)

⚫ Memory is a collection of storage cells with associated input and

output circuitry

⚫ Possible to read and write cells

⚫ Random access memory (RAM) contains words of information

⚫ Data accessed using a sequence of signals

◦ Leads to timing waveforms

⚫ Decoders are an important part of memories

◦ Selects specific data in the RAM

⚫ Static RAM loses values when circuit power is removed.

PRELIMINARIES

° RAMs contain a collection of data bytes

• A collection of bytes is called a word

• A sixteen bit word contains two bytes

• Capacity of RAM device is usually described in bytes (e.g. 16
MB)

° Write operations write data to specific words

° Read operations read data from specific words

° Note: new notation for OR gate

RAM INTERFACE SIGNALS

⚫ Data input and output lines

carry data

⚫ Memory contains 2k words

⚫ k address lines select one

word out of 2k

⚫ Read asserted when data to

be transferred to output

⚫ Write asserted when data

input to be stored

TYPES OF RANDOM ACCESS MEMORIES

⚫ Static random access memory (SRAM)

◦ Operates like a collection of latches

◦ Once value is written, it is guaranteed to remain in the

memory as long as power is applied

◦ Generally expensive

◦ Used inside processors (like the Pentium)

⚫ Dynamic random access memory (DRAM)

◦ Generally, simpler internal design than SRAM

◦ Requires data to be rewritten (refreshed), otherwise data is

lost

◦ Often hold larger amount of data than SRAM

◦ Longer access times than SRAM

◦ Used as main memory in computer systems

Inside the RAM Device

⚫ Address inputs go into

decoder

⚫ Word line selects a row of

bits (word)

⚫ Data passes through OR

gate

⚫ Each binary cell (BC)

stores one bit

⚫ Input data stored if

Read/Write is 0

⚫ Output data driven if

Read/Write is 1

Read Only Memory (ROM)

° ROM holds programs and data permanently even when computer is
switched off

° Data can be read by the CPU in any order so ROM is also direct access

° The contents of ROM are fixed at the time of manufacture

° Stores a program called the bootstrap loader that helps start up the
computer

° Access time of between 10 and 50 nanoseconds

Types of ROM

⚫ 1. Programmable Read Only Memory (PROM)

• Empty of data when manufactured

• May be permanently programmed by the user

⚫ 2. Erasable Programmable Read Only Memory(EPROM)

• Can be programmed, erased and reprogrammed

• The EPROM chip has a small window on top allowing it to be erased by
shining ultra-violet light on it

• After reprogramming the window is covered to prevent new contents
being erased

• Access time is around 45 – 90 nanoseconds

3. Electrically Erasable Programmable Read

Only Memory

• Reprogrammed electrically without using ultraviolet light

• Must be removed from the computer and placed in a special machine
to do this

• Access times between 45 and 200 nanoseconds

⚫ 4. Flash ROM
• Similar to EEPROM

• However, can be reprogrammed while still in the computer

• Easier to upgrade programs stored in Flash ROM

• Used to store programs in devices e.g. modems

• Access time is around 45 – 90 nanoseconds

⚫ 5. ROM cartridges
• Commonly used in games machines

• Prevents software from being easily copied

ROM Internal Structure

INTERNAL LOGIC OF 32X8 ROM

	LECTURE NOTES ON
	GGS COLLEGE OF MODERN TECHNOLOGY
	KHARAR
	MODULE - 1
	carries
	Using 2’s complement numbers, adding numbers is easy.
	Let’s compute (12)10 + (1)10.
	• (1)10 = +(0001)2 = 000012 in 2’s comp.

	Boolean Algebra
	Ordering Boolean Functions
	Summary

	More Logic Functions: NAND, NOR, XOR
	(what are these circuits?)
	Summary
	Reducing Boolean Expressions
	Reduced Hardware Implementation
	Minterms and Maxterms
	Representing Functions with Minterms
	F=AB +A’B
	BC
	F=AB +A’B (1)
	BC (1)
	Numbering scheme based on Gray–code
	Examples
	Karnaugh map allows us to represent functions with new notation
	Each square represents one minterm
	Not all functions can be reduced
	Karnaugh maps with four inputs
	Understanding prime implicants
	Covering all implicants
	Summarizing Karnaugh maps
	CD

	In some cases, outputs are undefined
	This knowledge can be used to simplify functions.
	f(A,B,C,D) = m(1,3,5,7,9) + d(6,12,13)
	Alternative covering.
	CD

	f(A,B,C,D) = m(1,3,5,7,9) + d(6,12,13)
	Implicant
	Prime implicant
	Essential prime implicant
	Objective:

	C-MOS INVERTER

	B C
	DIGITAL COMPONENTS
	SEQUENTIAL COMPONENTS
	1.Half adder 2.Full adder

	DEMULTIPLEXER
	• Decoder with an enable line is called demultiplexer.
	• There are 2n no of outputs having n selection lines.

	Overall operation of
	MAGNITUDE COMPARATOR
	POSITIVE EDGE-TRIGGERED T FLIP-FLOP
	EXAMPLE :
	REGISTERS AND COUNTERS
	REGISTERS
	Serial-In, Serial-Out Unidirectional Shift Register
	PARALLEL IN PARALLEL OUT SHIFT REGISTER
	RIPPLE (ASYNCHRONOUS COUNTER)
	BCD RIPPLE COUNTER (MOD-10)
	SETTLING TIME OF RIPPLE COUNTERS
	Synchronous counters have a regular pattern and can be constructed with complementing flip-flops and gates. The complementing flip- flops can be either of the JK- type or the T-type or the D- type with X-OR gates.

	COUNTER WITH UNUSED STATES
	Timing diagram
	⚫ Dynamic random access memory (DRAM)

