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MODULE - 1 
Number Systems 



Understanding Decimal Numbers 
 

 

 

° Decimal numbers are made of decimal digits: (0,1,2,3,4,5,6,7,8,9) 

° Decimal number representation: 

• 8653 = 8x103 + 6x102 + 5x101 + 3x100 

° What about fractions? 

• 97654.35 = 9x104 + 7x103 + 6x102 + 5x101 + 4x100 + 3x10-1 + 5x10-2 

• In formal notation -> (97654.35)10 

° Why do we use 10 digits? 
 

 

 

 
 



Understanding Binary Numbers 
 

 

 

° Binary numbers are made of binary digits (bits): 

• 0 and 1 

° How many items does an binary number represent? 

• (1011)2 = 1x23 + 0x22 + 1x21 + 1x20 = (11)10 

° What about fractions? 

• (110.10)2 = 1x22 + 1x21 + 0x20 + 1x2-1 + 0x2-2 

° Groups of eight bits are called a byte 

• (11001001) 2 

° Groups of four bits are called a nibble. 

• (1101) 2 



Why Use Binary Numbers? 
 

 
 

° Easy to represent 0 and 1 using 
electrical values. 

° Possible to tolerate noise. 

° Easy to transmit data 

° Easy to build binary circuits. 

 

 
AND Gate 

 
 

1 

0 
0 



Conversion Between Number Bases 
 

 

 

 
 

° Conversion demonstrated in next slides 

Octal(base 8) 

Decimal(base 10) Binary(base 2) 

° Learn to convert between bases. 

Hexadecimal 

(base16) 



Convert an Integer from Decimal to Another Base 
 

 
 

For each digit position: 

1. Divide decimal number by the base (e.g. 2) 

2. The remainder is the lowest-order digit 

3. Repeat first two steps until no divisor remains. 
 

 

Example for (13)10: 
 

 

Integer 

Quotient 

 
 

Remainder Coefficient 

 

13/2 = 6 + ½ a0 = 1 
6/2 = 3 + 0 a1 = 0 
3/2 = 1 + ½ a2 = 1 
1/2 = 0 + ½ a3 = 1 

 

Answer (13)10 = (a3 a2 a1 a0)2 = (1101)2 



Convert an Fraction from Decimal to Another Base 
 

 
 

For each digit position: 

1. Multiply decimal number by the base (e.g. 2) 

2. The integer is the highest-order digit 

3. Repeat first two steps until fraction becomes zero. 
 

Example for (0.625)10: 
 

Integer Fraction Coefficient 
 

 

0.625 x 2 = 1 + 0.25 a-1 = 1 
0.250 x 2 = 0 + 0.50 a-2 = 0 
0.500 x 2 = 1 + 0 a-3 = 1 

 
 

 

Answer (0.625)10 = (0.a-1 a-2 a-3 )2 = (0.101)2 



The Growth of Binary Numbers 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mega 

Giga 

Tera 

n 2n 

0 20=1 

1 21=2 

2 22=4 

3 23=8 

4 24=16 

5 25=32 

6 26=64 

7 27=128 

 

n 2n 

8 28=256 

9 29=512 

10 210=1024 

11 211=2048 

12 212=4096 

20 220=1M 

30 230=1G 

40 240=1T 

 



Binary Addition 
 

 
 
 
 

° Binary addition is very simple. 

° This is best shown in an example of adding two binary 
numbers… 

 

 

 

 

 

carries  1 1 1 1 1 1  

 1 1 1 1 0 1 

+   1 0 1 1 1 

 
1 0 1 0 1 0 0 

 



Binary Subtraction 
 

0 

 

 

 

° We can also perform subtraction (with borrows in place of 
carries). 

° Let’s subtract (10111)2 from (1001101)2… 
 

 

 

 

1 10 

0 10 10 0 10 
borrows 

 

 

0 1 1 0 1 

- 1 0 1 1 1 
 

 

1 1 0 1 1 0 

0 1 



Binary Multiplication 
 

 

 

 

 

° Binary multiplication is much the same as decimal 

multiplication, except that the multiplication operations are 

much simpler… 
 

 
 

 1 0 1 1 1 

X   1 0 1 0 

  
0 0 0 0 0 

 1 0 1 1 1  

0 0 0 0 0   

1 0 1 1 1    

1 1 1 0 0 1 1 0 



Convert an Integer from Decimal to Octal 
 

 
 

For each digit position: 

1. Divide decimal number by the base (8) 

2. The remainder is the lowest-order digit 

3. Repeat first two steps until no divisor remains. 
 

 

Example for (175)10: 
 

 Integer  Remainder Coefficient 

 Quotient    

175/8 = 21 + 7/8 a0 = 7 
21/8 = 2 + 5/8 a1 = 5 

2/8 = 0 + 2/8 a2 = 2 
 

 

 

Answer (175)10 = (a2 a1 a0)2 = (257)8 



Understanding Octal Numbers 
 

 

 

° Octal numbers are made of octal digits: (0,1,2,3,4,5,6,7) 

° Octal number representation: 

• (4536)8 = 4x83 + 5x82 + 3x81 + 6x80 = (1362)10 

° What about fractions? 

• (465.27)8 = 4x82 + 6x81 + 5x80 + 2x8-1 + 7x8-2
 

° Octal numbers don’t use digits 8 or 9 



Understanding Hexadecimal Numbers 
 

 

 

° Hexadecimal numbers are made of 16 digits: 

• (0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F) 

° hex number representation: 

• (3A9F)16 = 3x163 + 10x162 + 9x161 + 15x160 = 1499910 

° What about fractions? 

• (2D3.5)16 = 2x162 + 13x161 + 3x160 + 5x16-1 = 723.312510 

° Note that each hexadecimal digit can be represented with four 
bits. 

• (1110) 2 = (E)16 

° Groups of four bits are called a nibble. 

• (1110) 2 



Putting It All Together 
 

 

 

 

 

 

° Binary, octal, and hexadecimal 
similar 

° Easy to build circuits to 
operate on these 
representations 

° Possible to convert between 
the three formats 



Converting Between Base 16 and Base 2 
 

 

 

 
 

 

3A9F16 = 0011 1010 1001 11112 

3 A 9 F 
 
 

 

° Determine 4-bit value for each hex digit 

° Note that there are 24 = 16 different values of four bits 

° Easier to read and write in hexadecimal. 

° Representations are equivalent! 



Converting Between Base 16 and Base 8 
 

 

 

 

 
 

 

352378 = 011 101 010 011 1112 
 

3 5 2 3 7 
 
 
 

1. Convert from Base 16 to Base 2 

2. Regroup bits into groups of three starting from right 

3. Ignore leading zeros 

4. Each group of three bits forms an octal digit. 

3A9F16 = 0011 1010 1001 11112 

3 A 9 F 



How To Represent Signed Numbers 
 

 

 

• Plus and minus sign used for decimal numbers: 25 (or 
+25), -16, etc. 

• For computers, desirable to represent everything as bits. 

• Three types of signed binary number representations: signed 
magnitude, 1’s complement, 2’s complement. 

• In each case: left-most bit indicates sign: positive (0) or 
negative (1). 

 
Consider signed magnitude: 

 
 
 
 

000011002 = 1210 

Sign bit Magnitude 

100011002 = -1210 
 

 
 

Sign bit Magnitude 



One’s Complement Representation 
 

 

 

• The one’s complement of a binary number involves inverting 
all bits. 

• 1’s comp of 00110011 is 11001100 

• 1’s comp of 10101010 is 01010101 

• For an n bit number N the 1’s complement is (2n-1) – N. 

• Called diminished radix complement by Mano since 1’s 
complement for base (radix 2). 

• To find negative of 1’s complement number take the 1’s 
complement. 

 

 

 

000011002 = 1210 

Sign bit Magnitude 

111100112 = -1210 
 

 

 

  

Sign bit Magnitude 



Two’s Complement Representation 
 

 

 

• The two’s complement of a binary number involves inverting 
all bits and adding 1. 

• 2’s comp of 00110011 is 11001101 

• 2’s comp of 10101010 is 01010110 

• For an n bit number N the 2’s complement is (2n-1) – N + 1. 

• Called radix complement by Mano since 2’s complement for 
base (radix 2). 

• To find negative of 2’s complement number take the 2’s 
complement. 

 

 

 

 

000011002 = 1210 111101002 = -1210 

Sign bit Magnitude Sign bit Magnitude 



Two’s Complement Shortcuts 
 

° Algorithm 1 – Simply complement each bit and then add 1 to the 
result. 

• Finding the 2’s complement of (01100101)2 and of its 2’s 
complement… 

 

N = 01100101 [N] = 10011011 

 10011010  01100100 

+ 1 

     - 

10011011 

+ 1 
 
 

 

01100101 

° Algorithm 2 – Starting with the least significant bit, copy all of the bits 
up to and including the first 1 bit and then complementing the 
remaining bits. 

• N = 0 1 1 0 0 1 0 1 

[N] = 1 0 0 1 1 0 1 1 



1’s Complement Addition 
 

 

° Using 1’s complement numbers, adding numbers is easy. 

° For example, suppose we wish to add +(1100)2 and +(0001)2. 

° Let’s compute (12)10 + (1)10. 

• (12)10 = +(1100)2 = 011002 in 1’s comp. 

• (1)10 = +(0001)2 = 000012 in 1’s comp. 
 

 
 

 

 

 

Step 1: Add binary numbers 

Step 2: Add carry to low-order bit 

Add + 

-------------- 

0 0 1 1 0 1 
Add carry 

 
Final 

Result 

0 

 

0 1 1 0 1 

0 1 1 0 0 

0 0 0 0 1 

 



1’s Complement Subtraction 
 

 

° Using 1’s complement numbers, subtracting numbers is also easy. 

° For example, suppose we wish to subtract +(0001)2 from +(1100)2. 

° Let’s compute (12)10 - (1)10. 

• (12)10 = +(1100)2 = 011002 in 1’s comp. 

• (-1)10 = -(0001)2 = 111102 in 1’s comp. - 
 

 

 

1’s comp  
0 1 1 0 0 

Step 1: Take 1’s complement of 2nd operand 

Step 2: Add binary numbers 

Step 3: Add carry to low order bit 

Add 

 
 

Add car 

 
Final 

Result 

+ 1 1 1 1 0 

-------------- 
 

1 0 1 0 1 0 
ry 1 

 
0 1 0 1 1 

0 1 1 0 0 

0 0 0 0 1 

 



2’s Complement Addition 
 

0 1 1 0 1 

 

° Using 2’s complement numbers, adding numbers is easy. 

° For example, suppose we wish to add +(1100)2 and +(0001)2. 

° Let’s compute (12)10 + (1)10. 

• (12)10 = +(1100)2 = 011002 in 2’s comp. 

• (1)10 = +(0001)2 = 000012 in 2’s comp. 
 

 

 

 

Step 1: Add binary numbers 

Step 2: Ignore carry bit 

Add 

 
Final 

Result 

+ 

-------------- 

0 

 

 

 

 

Ignore 

0 1 1 0 0 

0 0 0 0 1 

 



2’s Complement Subtraction 
 

0 1 0 1 1 

 

° Using 2’s complement numbers, follow steps for 
subtraction 

° For example, suppose we wish to subtract +(0001)2 from 
+(1100)2. 

 

° Let’s compute (12)10 - (1)10. 

• (12)10 = +(1100)2 = 011002 in 2’s comp. 

• (-1)10 = -(0001)2 = 111112 in 2’s comp. 

- 

-------------- 

2’s comp 

 
Step 1: Take 2’s complement of 2nd operand 

Step 2: Add binary numbers 

Step 3:  Ignore carry bit 

Add 

Final 

Result 

0 1 1 0 0 

+ 1 1 1 1 1 

-------------- 

1 
 

 
 

Ignore 

Carry 

0 1 1 0 0 

0 0 0 0 1 

 



2’s Complement Subtraction: Example #2 
 

 
 

 

° Let’s compute (13)10 – (5)10. 

• (13)10 = +(1101)2 = (01101)2 

• (-5)10 = -(0101)2 = (11011)2 

° Adding these two 5-bit codes… 

 
carry 

 

 
° Discarding the carry bit, the sign bit is seen to be zero, indicating 

a correct result. Indeed, 

(01000)2 = +(1000)2 = +(8)10. 

 0 1 1 0 1 

+  1 1 0 1 1 

 
1 0 1 0 0 0 

 



2’s Complement Subtraction: Example #3 
 

 
 

° Let’s compute (5)10 – (12)10. 

• (-12)10 = -(1100)2 = (10100)2 

• (5)10 = +(0101)2 = (00101)2 

° Adding these two 5-bit codes… 
0 0 1 0 1 

+ 1 0 1 0 0 

1 1 0 0 1 

 

° Here, there is no carry bit and the sign bit is 1. This 

indicates a negative result, which is what we expect. 

(11001)2 = -(7)10. 



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Boolean Algebra 



Overview 
 

 

 

° Logic functions with 1’s and 0’s 

• Building digital circuitry 

° Truth tables 

° Logic symbols and waveforms 

° Boolean algebra 

° Properties of Boolean Algebra 

• Reducing functions 

• Transforming functions 



Digital Systems 
 

 

 

 

° Analysis problem: 
 

 

 

 
 

 

Inputs . 
. 

 

 

. Outputs 

. 
 

  

 

 

• Determine binary outputs for each combination of inputs 

° Design problem: given a task, develop a circuit that 
accomplishes the task 

• Many possible implementation 

• Try to develop “best” circuit based on some criterion (size, 
power, performance, etc.) 

 
Logic 

Circuit 



Describing Circuit Functionality: Inverter 
 

 

 

A    Y 

Symbol 

Truth Table 
 

A Y 

0 1 

1 0 

 

  

 
° Basic logic functions have symbols. 

Input Output 

 

° The same functionality can be represented with truth tables. 

• Truth table completely specifies outputs for all input combinations. 

° The above circuit is an inverter. 

• An input of 0 is inverted to a 1. 

• An input of 1 is inverted to a 0. 



The AND Gate 
 

 

 
 

A 
Y
 

B 
 

 

° This is an AND gate. 

° So, if the two inputs signals 

are asserted (high) the 

output will also be asserted. 

Otherwise, the output will 

be deasserted (low). 

 

 
Truth Table 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 



The OR Gate 
 

 
 
 

A 
Y
 

B 
 
 
 
 
 
 

° This is an OR gate. 

° So, if either of the two 

input signals are 

asserted, or both of 

them are, the output 

will be asserted. 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 



Describing Circuit Functionality: Waveforms 
 

 

 

 

AND Gate 
 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 
 
 
 

° Waveforms provide another approach for representing functionality. 

° Values are either high (logic 1) or low (logic 0). 

° Can you create a truth table from the waveforms? 



 

Consider three-input gates 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Input OR Gate 



 

Ordering Boolean Functions 
 

 

° How to interpret AB+C? 

• Is it AB ORed with C ? 

• Is it A ANDed with B+C ? 

° Order of precedence for Boolean algebra: AND before OR. 

° Note that parentheses are needed here : 
 

 

 

 

 

 

 

 



 

Boolean Algebra 
 

 

° A Boolean algebra is defined as a closed algebraic system containing a 
set K or two or more elements and the two operators, . and +. 

° Useful for identifying and minimizing circuit functionality 

° Identity elements 

• a + 0 = a 

• a . 1 = a 

° 0 is the identity element for the + operation. 

° 1 is the identity element for the . operation. 



Commutativity and Associativity of the Operators 
 

 

 

° The Commutative Property: 

For every a and b in K, 

• a + b = b + a 

• a . b = b . a 

° The Associative Property: 

For every a, b, and c in K, 

• a + (b + c) = (a + b) + c 

• a . (b . c) = (a . b) . c 



Distributivity of the Operators and Complements 
 

° The Distributive Property: 

For every a, b, and c in K, 

• a + ( b . c ) = ( a + b ) . ( a + c ) 

• a . ( b + c ) = ( a . b ) + ( a . c ) 

° The Existence of the Complement: 

For every a in K there exists a unique element called a’ (complement of 
a) such that, 

• a + a’ = 1 

• a . a’ = 0 

° To simplify notation, the . operator is frequently omitted. When two 
elements are written next to each other, the AND (.) operator is 
implied… 

• a + b . c = ( a + b ) . ( a + c ) 

• a + bc = ( a + b )( a + c ) 



Duality 
 

 

 
 

° The principle of duality is an important concept. This says that if an 

expression is valid in Boolean algebra, the dual of that expression is also 

valid. 

° To form the dual of an expression, replace all + operators with . 

operators, all . operators with + operators, all ones with zeros, and all 

zeros with ones. 

° Form the dual of the expression 

a + (bc) = (a + b)(a + c) 

° Following the replacement rules… 

a(b + c) = ab + ac 

° Take care not to alter the location of the parentheses if they are present. 



Involution 
 

 

 

° This theorem states: 

a’’ = a 

° Remember that aa’ = 0 and a+a’=1. 

• Therefore, a’ is the complement of a and a is also the complement of 
a’. 

• As the complement of a’ is unique, it follows that a’’=a. 

° Taking the double inverse of a value will give the initial value. 



Absorption 
 

 

 

° This theorem states: 

a + ab = a a(a+b) = a 

° To prove the first half of this theorem: 

a + ab = a . 1 + ab 

= a (1 + b) 

= a (b + 1) 

= a (1) 

a + ab = a 



 

DeMorgan’s Theorem 
 

 

° A key theorem in simplifying Boolean algebra expression is 
DeMorgan’s Theorem. It states: 

(a + b)’ = a’b’ (ab)’ = a’ + b’ 

 

° Complement the expression 

a(b + z(x + a’)) and simplify. 

 

(a(b+z(x + a’)))’ = a’ + (b + z(x + a’))’ 

= a’ + b’(z(x + a’))’ 

= a’ + b’(z’ + (x + a’)’) 

= a’ + b’(z’ + x’a’’) 

= a’ + b’(z’ + x’a) 



 

Summary 
 

 

° Basic logic functions can be made from AND, OR, and NOT (invert) 
functions 

° The behavior of digital circuits can be represented with waveforms, truth 
tables, or symbols 

° Primitive gates can be combined to form larger circuits 

° Boolean algebra defines how binary variables can be combined 

° Rules for associativity, commutativity, and distribution are similar to 
algebra 

° DeMorgan’s rules are important. 

• Will allow us to reduce circuit sizes. 



 

 

 

 

 

 

 

 

 

More Logic Functions: NAND, NOR, XOR 



Overview 
 

 

 

° More 2-input logic gates (NAND, NOR, XOR) 

° Extensions to 3-input gates 

° Converting between sum-of-products and NANDs 

• SOP to NANDs 

• NANDs to SOP 

° Converting between sum-of-products and NORs 

• SOP to NORs 

• NORs to SOP 

° Positive and negative logic 

• We use primarily positive logic in this course. 



Logic functions of N variables 
 

 

 

 

° Each truth table represents one possible function (e.g. AND, OR) 
N 

° If there are N inputs, there are 22 

° For example, is N is 2 then there are 16 possible truth tables. 

° So far, we have defined 2 of these functions 

• 14 more are possible. 

° Why consider new functions? 

• Cheaper hardware, more flexibility. 
x 
0 
0 
1 
1 

y 
0 
1 
0 
1 

G 
0 
0 
0 
1 



The NAND Gate 
 

 

A 
Y
 

B 
 

° This is a NAND gate. It is a combination of an AND gate 
followed by an inverter. Its truth table shows this… 

° NAND gates have several interesting properties… 

• NAND(a,a)=(aa)’ = a’ = NOT(a) 

• NAND’(a,b)=(ab)’’ = ab = AND(a,b) 

• NAND(a’,b’)=(a’b’)’ = a+b = OR(a,b) A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 



The NAND Gate 
 

 

 

° These three properties show that a NAND gate with both of its 
inputs driven by the same signal is equivalent to a NOT gate 

° A NAND gate whose output is complemented is equivalent to an 
AND gate, and a NAND gate with complemented inputs acts as an 
OR gate. 

° Therefore, we can use a NAND gate to implement all three of the 
elementary operators (AND,OR,NOT). 

° Therefore, ANY switching function can be constructed using only 
NAND gates. Such a gate is said to be primitive or functionally 
complete. 



NAND Gates into Other Gates 
 

 

 

 

 

(what are these circuits?) 
 

 
 

A 
Y
 

NOT Gate A 
B 

A 

 

B 

 
 
 

Y 

AND Gate 

Y 

 

OR Gate 



The NOR Gate 
 

 
 

 
 
 
 

 

A 
Y
 

B 
 

° This is a NOR gate. It is a combination of an OR gate followed 
by an inverter. It’s truth table shows this… 

° NOR gates also have several 

interesting properties… 

• NOR(a,a)=(a+a)’ = a’ = NOT(a) 

• NOR’(a,b)=(a+b)’’ = a+b = OR(a,b) 

• NOR(a’,b’)=(a’+b’)’ = ab = AND(a,b) 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

 



Functionally Complete Gates 
 

 

 

 

 

° Just like the NAND gate, the NOR gate is functionally 

complete…any logic function can be implemented using just 

NOR gates. 

° Both NAND and NOR gates are very valuable as any design can 

be realized using either one. 

° It is easier to build an IC chip using all NAND or NOR gates 

than to combine AND,OR, and NOT gates. 

° NAND/NOR gates are typically faster at switching and cheaper 

to produce. 



NOR Gates into Other Gates 
 

 

 

 

 

 
 

 

(what are these circuits?) 
A 

Y
 

 

NOT Gate 

A 

B 

A 

B 

 
 
 

 
AND Gate 

 
Y 

OR Gate 

Y 



The XOR Gate (Exclusive-OR) 
 

 
 

 
 
 
 

 

A 

B 
Y 

° This is a XOR gate. 

° XOR gates assert their output 

when exactly one of the inputs 

is asserted, hence the name. 

° The switching algebra symbol 

for this operation is , i.e. 

1  1 = 0 and 1  0 = 1. 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 



The XNOR Gate 
 

 

 

 

 

 
 

 
 

A 

B 
Y 

° This is a XNOR gate. 

° This functions as an 

exclusive-NOR gate, or 

simply the complement of 

the XOR gate. 

° The switching algebra symbol 

for this operation is , i.e. 

1  1 = 1 and 1  0 = 0. 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 



NOR Gate Equivalence 
 

 

 

° NOR Symbol, Equivalent Circuit, Truth Table 
 

 

 

 



 

DeMorgan’s Theorem 
 

 

° A key theorem in simplifying Boolean algebra expression is DeMorgan’s 
Theorem. It states: 

(a + b)’ = a’b’ (ab)’ = a’ + b’ 

 

° Complement the expression 

a(b + z(x + a’)) and simplify. 

 

(a(b+z(x + a’)))’ = a’ + (b + z(x + a’))’ 

= a’ + b’(z(x + a’))’ 

= a’ + b’(z’ + (x + a’)’) 

= a’ + b’(z’ + x’a’’) 

= a’ + b’(z’ + x’a) 



Example 
 

 

 

° Determine the output expression for the below circuit and 
simplify it using DeMorgan’s Theorem 

 

 

 

 

 

 

 

 

 
 

 
 



Universality of NAND and NOR gates 
 

 

 

 

 
 

 



 

Universality of NOR gate 
 

 

 

 

 

 

 

 

° Equivalent representations of the AND, OR, and 
NOT gates 



Interpretation of the two NAND gate symbols 
 

 
 
 
 

 

 



Interpretation of the two OR gate symbols 
 

 
 
 
 

 



 

Summary 
 

 

° Basic logic functions can be made from NAND, and NOR functions 

° The behavior of digital circuits can be represented with waveforms, truth 
tables, or symbols 

° Primitive gates can be combined to form larger circuits 

° Boolean algebra defines how binary variables with NAND, NOR can be 
combined 

° DeMorgan’s rules are important. 

• Allow conversion to NAND/NOR representations 



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

More Boolean Algebra 



Overview 
 

 

 

° Expressing Boolean functions 

° Relationships between algebraic equations, symbols, and truth tables 

° Simplification of Boolean expressions 

° Minterms and Maxterms 

° AND-OR representations 

• Product of sums 

• Sum of products 



Boolean Functions 
 

 

 

 

° Boolean algebra deals with binary variables and logic 
operations. 

° Function results in binary 0 or 1 
 

 

 

 

 

 

 

 

x 

y 

z 

 

 
F = x(y+z’) 

 

 
x(y+z’) 

   

F = 
z’ 

y+z’ 

x y z F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 



Boolean Functions 
 

 
 

 

° Boolean algebra deals with binary variables and logic 
operations. 

° Function results in binary 0 or 1 
 

 

 

 

 

 

 

x xy 

y 

 
z 

yz 

 

 
G = xy +yz 

 

 

We will learn how to transition between equation, 

symbols, and truth table. 

x y z xy yz G 
0 0 0 0 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
0 1 1 0 1 1 
1 0 0 0 0 0 
1 0 1 0 0 0 
1 1 0 1 0 1 
1 1 1 1 1 1 

 



Representation Conversion 
 

 

° Need to transition between boolean expression, truth table, 
and circuit (symbols). 

° Converting between truth table and expression is easy. 

° Converting between expression and circuit is easy. 

° More difficult to convert to truth table. 
 

 

 

 

 

 

Circuit Boolean 

Expression 

Truth 

Table 



Truth Table to Expression 
 

 

 

 

° Converting a truth table to an expression 

• Each row with output of 1 becomes a product term 

• Sum product terms together. 
 

 

 

Any Boolean Expression can be 

represented in sum of products form! 
 

 
 

 

 

xyz + xyz’ + x’yz 

x y z G 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 



 

Equivalent Representations of Circuits 

° All three formats are equivalent 

° Number of 1’s in truth table output column equals AND terms for 
Sum-of-Products (SOP) 

 

 

 

G 
 
 
 
 
 
 
 
 
 
 
 
 

 
G = xyz + xyz’ + x’yz 

x y z 

x x 

x 
x 

x    

x 
x 

x 

x 

x y z G 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 



 

Reducing Boolean Expressions 

° Is this the smallest possible implementation of this 
expression? No! G = xyz + xyz’ + x’yz 

° Use Boolean Algebra rules to reduce complexity while 
preserving functionality. 

° Step 1: Use Theorum 1 (a + a = a) 

• So xyz + xyz’ + x’yz = xyz + xyz + xyz’ + x’yz 

° Step 2: Use distributive rule a(b + c) = ab + ac 

• So xyz + xyz + xyz’ + x’yz = xy(z + z’) + yz(x + x’) 

° Step 3: Use Postulate 3 (a + a’ = 1) 

• So xy(z + z’) + yz(x + x’) = xy.1 + yz.1 

° Step 4: Use Postulate 2 (a . 1 = a) 

• So xy.1 + yz.1 = xy + yz = xyz + xyz’ + x’yz 



 

Reduced Hardware Implementation 

° Reduced equation requires less hardware! 

° Same function implemented! 

 

 

 
G 

 
 
 
 
 

 
x y z 

G = xyz + xyz’ + x’yz = xy + yz 

x x 

x 
x 

x y z G 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 



 

Minterms and Maxterms 
 

 

° Each variable in a Boolean expression is a literal 

° Boolean variables can appear in normal (x) or complement 
form (x’) 

° Each AND combination of terms is a minterm 

° Each OR combination of terms is a maxterm 
 

For example: 

Minterms 
For example: 

Maxterms 

 
x y z Maxterm 

0 0 0 x+y+z M0 

 
… 

 
… 

0 0 1 x+y+z’ M1 

1 0 0 x’+y+z M4 

1 1 1 x’+y’+z’ M7 

 

x y z Minterm 

0 0 0 x’y’z’ m0 

0 

… 

0 1 x’y’z m1 

1 

… 

0 0 xy’z’ m4 

1 1 1 xyz m7 

 



 

Representing Functions with Minterms 

° Minterm number same as row position in truth table (starting 
from top from 0) 

° Shorthand way to represent functions 
 

 

 

 

 

G = xyz + xyz’ + x’yz 
 

G = m7 + m6 + m3 = Σ(3, 6, 7) 

x y z G 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 

1 1 1 1 
 



 

Complementing Functions 

° Minterm number same as row position in truth table (starting from top 
from 0) 

° Shorthand way to represent functions 
 

 

 

 

 

 

G = xyz + xyz’ + x’yz 

 
G’ = (xyz + xyz’ + x’yz)’ = 

 

Can we find a simpler representation? 

x y z G G’ 

0 0 0 0 1 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 0 1 
1 1 0 1 0 

1 1 1 1 0 
 



Complementing Functions 
 

 

 
 

° Step 1: assign temporary names 

• b + c -> z 

• (a + z)’ = G’ 

° Step 2: Use DeMorgans’ Law 

• (a + z)’ = a’ . z’ 

° Step 3: Resubstitute (b+c) for z 

• a’ . z’ = a’ . (b + c)’ 

° Step 4: Use DeMorgans’ Law 

• a’ . (b + c)’ = a’ . (b’. c’) 

° Step 5: Associative rule 

• a’ . (b’. c’) = a’ . b’ . c’ 

 

G = a + b + c 

G’ = (a + b + c)’ 

 
 
 
 
 

G = a + b + c 

G’ = a’ . b’ . c’ = a’b’c’ 



Complementation Example 
 

 

 

° Find complement of F = x’z + yz 

• F’ = (x’z + yz)’ 

° DeMorgan’s 

• F’ = (x’z)’ (yz)’ 

° DeMorgan’s 

• F’ = (x’’+z’)(y’+z’) 

° Reduction -> eliminate double negation on x 

• F’ = (x+z’)(y’+z’) 

 

 

This format is called product of sums 



Conversion Between Canonical Forms 
 

 

 

° Easy to convert between minterm and maxterm 
representations 

° For maxterm representation, select rows with 0’s 

 
G = xyz + xyz’ + x’yz 

 

 

G = m7 + m6 + m3 = Σ(3, 6, 7) 

 
 

 

G = M0M1M2M4M5 = Π(0,1,2,4,5) 

 

G = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)(x’+y+z’) 

x y z G 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 

1 1 1 1 
 



 

 
 

° All logic expressions can be represented in 2-level format 

° Circuits can be reduced to minimal 2-level representation 

° Sum of products representation most common in industry. 
 

 

 

 

 

 

 

 

Representation of Circuits 



 

 
 
 

° Truth table, circuit, and boolean expression formats are 
equivalent 

° Easy to translate truth table to SOP and POS representation 

° Boolean algebra rules can be used to reduce circuit size while 
maintaining function 

° All logic functions can be made from AND, OR, and NOT 

° Easiest way to understand: Solve examples! 

Summary 



 

 

 

 

 

 

 

 

 

 

 
Minimization with Karnaugh Maps 



 

 
 
 

° K-maps: an alternate approach to representing Boolean functions 

° K-map representation can be used to minimize Boolean functions 

° Easy conversion from truth table to K-map to minimized SOP 
representation. 

° Simple rules (steps) used to perform minimization 

° Leads to minimized SOP representation. 

• Much faster and more more efficient than previous minimization techniques with 
Boolean algebra. 

Overview 



 

y 

 
 
 

° Alternate way of representing Boolean function 

• All rows of truth table represented with a square 

• Each square represents a minterm 

° Easy to convert between truth table, K-map, and SOP 

• Unoptimized form: number of 1’s in K-map equals number of minterms 
(products) in SOP 

• Optimized form: reduced number of minterms 
 

 
 

 

y F = Σ(m0,m1) = x’y + x’y’ 
 

x 0 1 
0 

x 
y 

0 1 

x 1 0 

1 

Karnaugh maps 

x 

0 

0 

1 

1 

y 

0 

1 

0 

1 

F 

1 

1 

0 

0 

x’y’ x’y 

xy’ xy 

 

1 1 

0 0 

 



 

 
 

 

° A Karnaugh map is a graphical tool for assisting in the general 

simplification procedure. 

° Two variable maps. 
 

A
B 0 1 

0 
1 

 

F=AB +A’B 

A
B 0 1  

+AB 



° Three variable maps. 

BC 

A 
00 01 

0 
1 

11 10 

 

 
 

 

 
 
 

 

+  

 

 

 

 

 

 

 

 

 

 

 

F=AB’C’ +AB C +ABC +ABC  + A’B’C + A’BC’ 

  Karnaugh Maps 

0 1 
1 0 

 

0 1 
1 1 

 

0 1 0 1 
1 1 1 1 

 

0  F=AB +A B 
1       

 A B C F 

0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 



 

 
 

 We can reduce functions by circling 1’s in the K-map 

 Each circle represents minterm reduction 

 Following circling, we can deduce minimized and-or form. 

Rules to consider 

ÊEvery cell containing a 1 must be included at least once. 

ËThe largest possible “power of 2 rectangle” must be enclosed. 

Ì The 1’s must be enclosed in the smallest possible number of 

rectangles. 
 

Example 

Rules for K-Maps 



 

A 
00 01 11 10 

0 

1 1 1 1 1 
1 0 1 0 

1 1 
1 0 

 

 

° A Karnaugh map is a graphical tool for assisting in the general 
simplification procedure. 

° Two variable maps. 
 

 

A
B 0 1 

0 

 

F=AB +A’B 
A

B 0 1 

0 

 
F=AB +AB +AB 

1 

° Three variable maps. 

BC 

1 F=A+B 

 
 
 

F=A+B C +BC 

F=AB’C’ +AB C +ABC +ABC  + A’B’C + A’BC’ 

  Karnaugh Maps 

0 1 
1 0 

 



 

C 1 1 0 0 

1 0 0 1 

 
 
 

° Numbering scheme based on Gray–code 

• e.g., 00, 01, 11, 10 

• Only a single bit changes in code for adjacent map cells 

• This is necessary to observe the variable transitions 
 

 

 
A 

G(A,B,C) = A 
C 

B 

A 

C 
AB

00 01 

0 

C 1 

B 

A 
11 10 

 

F(A,B,C) = m(0,4,5,7) = AC + B’C’ 
 

B 

Karnaugh maps 

    

    

 

0 0 1 1 

0 0 1 1 

 



 

0 

1 1 1 0 

0 1 0 

 
 

° Examples 
 

a 

b 0 1 

0 

1 

f = a 

 

a 

b 0 1 

0 

1 

g = b' 

ab 
c 00 01 11 10 

0 

1 

cout = ab + bc + ac 

ab 
c 00 01 11 10 

0 

1 

f = a 
 

 

1. Circle the largest groups possible. 

2. Group dimensions must be a power of 2. 

3. Remember what circling means! 

More Karnaugh Map Examples 

0 1 

0 1 

 

1 1 

0 0 

 

0 0 1 1 

0 0 1 1 

 



Application of Karnaugh Maps: The One-bit Adder 

 

 

 

 

 

 
 

Cin 

  
 

A 
S 

B 
 

Cout 
+ 

 

 
How to use a Karnaugh 

Map instead of the 

Algebraic simplification? 

 

S = A’B’Cin + A’BCin’ + A’BCin + ABCin 

Cout = A’BCin + A B’Cin + ABCin’ + ABCin 

= A’BCin + ABCin + AB’Cin + ABCin + ABCin’ + ABCin 

= (A’ + A)BCin + (B’ + B)ACin + (Cin’ + Cin)AB 

= 1·BCin + 1· ACin + 1· AB 

= BCin + ACin + AB 

 
Adder 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 



Application of Karnaugh Maps: The One-bit Adder 

 

 

 

 

 

 
 

Cin 

  
 

A 
S 

B 
 

 

 

Cout 

 
 
 

B 

 

 

A 
+ 

 

Now we have to cover all the 1s in the 

Karnaugh Map using the largest 

rectangles and as few rectangles 

Cin 

Karnaugh Map for Cout 

as we can. 

 
Adder 

0 0 1 0 

0 1 1 1 

 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 

1 1 1 1 1 

 



Application of Karnaugh Maps: The One-bit Adder 

 

 

 

 

 

 
 

Cin 

 
 

A 
S 

B 
 
 

 

Cout 

 
 
 

B 

A 
 

 

Cin 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

+  

 

 

 

 

 

 

 

 

 

 

Now we have to cover all the 1s in the 

Karnaugh Map using the largest 

rectangles and as few rectangles 

as we can. 

 
Cout = ACin 

Karnaugh Map for Cout 

 
Adder 

0 0 1 0 

0 1 1 1 

 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 

1 1 1 1 1 

 



Application of Karnaugh Maps: The One-bit Adder 

 

 
 
 
 
 
 

Cin 

 
 

A 
S 

B 
 
 

 

Cout 

 
 
 

B 

A 

 
 
 

 
Cin 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

+  

 

 

 

 

 

 

 

 

 

 

Now we have to cover all the 1s in the 

Karnaugh Map using the largest 

rectangles and as few rectangles 

as we can. 

 
Cout = Acin + AB 

Karnaugh Map for Cout 

 
Adder 

0 0 1 0 

0 1 1 1 

 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 

1 1 1 1 1 

 



Application of Karnaugh Maps: The One-bit Adder 

 

 
 
 
 
 
 

Cin 

 
 

A 
S 

B 
 
 

 

Cout 

 
 
 

B 

A 

 
 
 

 
Cin 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

+  

 

 

 

 

 

 

 

 

 

 

Now we have to cover all the 1s in the 

Karnaugh Map using the largest 

rectangles and as few rectangles 

as we can. 

 
Cout = ACin + AB + BCin 

Karnaugh Map for Cout 

1 1 1 0 

0 1 0 0 

 
Adder 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 

1 1 1 1 1 

 



Application of Karnaugh Maps: The One-bit Adder 

 

 
 
 
 
 
 

Cin 

 
 

A 
S 

B 
 
 

 

Cout 
A 

+ 

 
 
 

 

B 
 

 

Cin 

Karnaugh Map for S 

S = A’BCin’ 

 
Adder 

0 1 0 1 

1 0 1 0 

 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 

1 1 1 1 1 

 



Application of Karnaugh Maps: The One-bit Adder 

 

 
 
 
 
 
 

Cin 

 
 

A 
S 

B 
 
 

 

Cout 
A 

+ 

 
 
 

 

B 
 

 

Cin 

Karnaugh Map for S 

S = A’BCin’ + A’B’Cin 

 
Adder 

0 1 0 1 

1 0 1 0 

 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 

1 1 1 1 1 

 



Application of Karnaugh Maps: The One-bit Adder 

 

 
 
 
 
 
 

Cin 

 
 

A 
S 

B 
 
 

 

Cout 
A 

+ 

 
 
 

 

B 
 

 

Cin 

Karnaugh Map for S 

S = A’BCin’ + A’B’Cin + ABCin 

 
Adder 

0 1 0 1 

1 0 1 0 

 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 

1 1 1 1 1 

 



Application of Karnaugh Maps: The One-bit Adder 

 

 

Can you draw the circuit diagrams? 
 

 

Cin 

 
 

A 
S 

B 
 
 

 

Cout 
A 

+ 

 
 
 

 

B 
 

 

Cin 

Karnaugh Map for S 

S = A’BCin’ + A’B’Cin + ABCin + AB’Cin’ 

No Possible Reduction! 

 
Adder 

0 1 0 1 

1 0 1 0 

 

A B Cin S Cout 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 

1 1 1 1 1 

 



 

 
 
 

° Karnaugh map allows us to represent functions with new 
notation 

° Representation allows for logic reduction. 

• Implement same function with less logic 

° Each square represents one minterm 

° Each circle leads to one product term 

° Not all functions can be reduced 

° Each circle represents an application of: 

• Distributive rule -- x(y + z) = xy + xz 

• Complement rule – x + x’ = 1 

Summary 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
More Karnaugh Maps and Don’t Cares 



 

 
 
 

° Karnaugh maps with four inputs 

• Same basic rules as three input K-maps 

° Understanding prime implicants 

• Related to minterms 

° Covering all implicants 

° Using Don’t Cares to simplify functions 

• Don’t care outputs are undefined 

° Summarizing Karnaugh maps 

Overview 



 

 
 
 

° Represent functions of 4 inputs with 16 minterms 

° Use same rules developed for 3-input functions 

° Note bracketed sections shown in example. 
 
 

Karnaugh Maps for Four Input Functions 



 

 
 

 

° F(A,B,C,D) = m(0,2,3,5,6,7,8,10,11,14,15) 

F =C+A’BD+B’D’ 
 

 

 

 

 
 

A 
 

 

 

D 
 

C 

B 

Karnaugh map: 4-variable example 

1 0 0 1 

0 1 0 0 

1 1 1 1 

1 1 1 1 

 



 

 
 

 

 

 
 

A A 

 
 
 

 

 
K-map 

D 

 

 
B 

for LT 

 

C 

 

K-map 

D 
 

 
 

B 

for EQ 

 

C 

 

K-map 

D 

 

 
B 

for GT 
 

 

LT = 

EQ = 

GT = 

A' B' D + A' C + B' C D 

A'B'C'D' + A'BC'D + ABCD + AB'CD’ 

B C' D' + A C' + A B D' 

Can you draw the truth table for these examples? 

 
C 

Design examples 

A 

0 0 0 0 

1 0 0 0 

1 1 0 1 

1 1 0 0 

 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

 

0 1 1 1 

0 0 1 1 

0 0 0 0 

0 0 1 0 

 



 

 
 

 
 

A B C D 

° Step 1: Truth table 

° Step 2: K-map 

° Step 3: Minimized sum-of-products 

° Step 4: Physical implementation with gates 
 

 

 

 

EQ 
A 

 

 

 

 

C 

 

K-map 

D 

 

 
B 

for EQ 

Physical Implementation 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

 



 

00 

01 

11 

10 1 1 0 1 
1 1 1 1 
1 0 1 1 
1 0 0 0 

 
 

° Four variable maps. 

CD 

AB 
00 01 11 10 

F=ABC +ACD +ABC 
+AB CD +ABC +AB C 

F=BC +CD + AC+ AD 










° Need to make sure all 1’s are covered 

° Try to minimize total product terms. 

° Design could be implemented using NANDs and NORs 

Karnaugh Maps 



 

 
 

° In some cases, outputs are undefined 

° We “don’t care” if the logic produces a 0 or a 1 

° This knowledge can be used to simplify functions. 
 
 

AB 
A

 

CD 

00 

01 

11 

C 
10 

00 01 11 10 

 

 
D 

 

 
B 

 
- Treat X’s like either 1’s or 0’s 

- Very useful 

- OK to leave some X’s uncovered 

Karnaugh maps: Don’t cares 

0 0 X 0 

1 1 X 1 

1 1 0 0 

0 X 0 0 

 



 

 
 

° f(A,B,C,D) = m(1,3,5,7,9) + d(6,12,13) 

• without don't cares 

- f = 
 

 

A’D + C’D 

AB 
A

 

CD 00 01 11 10 

00 
 

 

 

 
 

 

 
 

+ + 

 

01 
D 

11 

C 
10 

B 

Karnaugh maps: Don’t cares 

0 0 X 0 
    

 1 1 X 1  
    

1 1 0 0 

0 X 0 0 

 

A B C D f 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 0 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 X 
0 1 1 1 1 
1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 X 

1 1 0 1 X 

1 1 1 0 0 

1 1 1 1 0 

 



 

 

 

° In some situations, we don’t care about the value of a function for 

certain combinations of the variables. 

• these combinations may be impossible in certain contexts 

• or the value of the function may not matter in when the combinations 
occur 

° In such situations we say the function is incompletely specified and 

there are multiple (completely specified) logic functions that can be 

used in the design. 

• so we can select a function that gives the simplest circuit 

° When constructing the terms in the simplification procedure, we can 

choose to either cover or not cover the don’t care conditions. 

Don’t Care Conditions 



 

AB 
00 01 11 10 

00 0 1 0 0 
01 x x x 1 
11 1 1 1 x 
10 x 0 1 1 

AB 
00 01 11 10 

00 0 1 0 0 
01 x x x 1 
11 1 1 1 x 
10 x 0 1 1 

 
 

 

 

CD 

 
F=ACD+B+AC 

 
 
 
 
 
 
 

° Alternative covering. 

CD 
 
 
 

F=ABCD+ABC+BC+AC 

Map Simplification with Don’t Cares 



 

 
 
 

° f(A,B,C,D) =  m(1,3,5,7,9) + d(6,12,13) 

• f = A'D + B'C'D without don't cares 

• f = with don't cares 

A'D + C'D 
 
 
 
 

A 
by using don't care as a "1" 

a 2-cube can be formed 
rather than a 1-cube to cover 

D this node 

C don't cares can be treated as 
1s or 0s 

B depending on which is more 
advantageous 

Karnaugh maps: don’t cares (cont’d) 

0 0 X 0 

1 1 X 1 

1 1 0 0 

0 X 0 0 

 



 

 
 

° Implicant 

• Single product term of the ON-set (terms that create a logic 1) 

° Prime implicant 

• Implicant that can't be combined with another to form an implicant with fewer 
literals. 

° Essential prime implicant 

• Prime implicant is essential if it alone covers a minterm in the K-map 

• Remember that all squares marked with 1 must be covered 

° Objective: 

• Grow implicant into prime implicants (minimize literals per term) 

• Cover the K-map with as few prime implicants as possible 
(minimize number of product terms) 

Definition of terms for two-level simplification 



 

B 

0 0 1 0 

1 1 1 0 

0 1 1 1 

0 1 0 0 

 
 

 

 

 

A 

6 prime implicants: 

A'B'D, BC', AC, A'C'D, AB, B'CD 

D 
essential 

minimum cover: AC + BC' + A'B'D 
B 

A 

5 prime implicants: 

BD, ABC', ACD, A'BC, A'C'D 
D 

essential 
C 

minimum cover: 4 essential implicants 

Examples to illustrate terms 

 
C 

0 X 1 0 

1 1 1 0 

1 0 1 1 

0 0 1 1 

 



 

 
 

 

Any single 1 or group of 1s in the Karnaugh map of a function F is an 

implicant of f. 

A product term is called a prime implicant of F if it cannot be combined 

with another term to eliminate a variable. 
 

 

 
Example: 

If a function F is represented by 
A this Karnaugh Map. Which of the 

following terms are implicants of 

F, and which ones are prime 

implicants of F? 

D (a) AC’D’ 
(b) BD 

C 
(c) A’B’C’D’ 

(d) AC’ 

B 
(e) B’C’D’ 

Implicants: 

(a),(c),(d),(e) 

 
Prime Implicants: 

(d),(e) 

PRIME IMPLICANTS 

1  1 1 

  1 1 

1    

1 1   

 



 

 

 

A product term is an essential prime implicant if there is a minterm that is 

only covered by that prime implicant. 
 

- The minimal sum-of-products form of F must include 

all the essential prime implicants of F. 
 

Essential Prime Implicants 



 

 
 

 

 

 

 

° K-maps of four literals considered 

• Larger examples exist 

° Don’t care conditions help minimize functions 

• Output for don’t cares are undefined 

° Result of minimization is minimal sum-of-products 

° Result contains prime implicants 

° Essential prime implicants are required in the implementation 

Summary 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

DIGITAL ELECTRONIC CIRCUITS 

CMOS LOGIC CIRCUITS 



 

 
 
 

° VOH:- maximum output voltage when the output level is logic “1” 

° VOL:- minimum output voltage when the output level is logic “0” 

VOLTAGE AS LOGIC VARIABLE 



 

 
 

 
 

° Inverter propagation delay: time delay between input and output signals. 

° Typical propagation delays: < 1 ns. 

° Estimation of tp: use of square-wave at input side. 
 
 

LOGIC DELAY TIMES 



 

 
 

 

 

 
 

 

 

 

° Average propagation delay: tp = (tPHL 
+ tPLH 

) 

° Where tp = propagation delay 

° tPHL = time taken to drive output from high to low 

° tPLH = time taken to drive output from low to high 

LOGIC DELAY TIMES--continued 



 

 
 

 

 

 

 
 

PROPAGATION DELAY HIGH-TO-LOW: 



 

 
 

 

 

 

 
 

PROPAGATION DELAY LOW-TO-HIGH: 



FAN-IN AND FAN-OUT 

 

 

 

° Fan-in is the number of inputs of an electronic logic gate which it can drive at 

a time. For instance the 'fan-in' for the AND gate shown below is 3. Logic 

gates with a large fan-in tend to be slower than those with a small fan-in, 

because the complexity of the input circuitry increases the input capacitance 

of the device. 

° Fan-out is a measure of the ability of a logic gate output, implemented 

electronically, to drive a number of inputs of other logic gates of the same 

type. In most designs, logic gates are connected together to form more 

complex circuits, and it is common for one logic gate output to be connected 

to several logic gate inputs. 



C-MOS ELECTRONICS 

 

 

 

 

 

 

 

 

         SiO
2
 

n+ diffusion 

p+ diffusion 

         polysilicon 

metal1 

 

nMOS transistor pMOS transistor 
 
 

° It is basically combination of a n-mosfet and a p-mosfet as shown in above 
figure. 

A 

GND 
Y 

V
DD 

p substrate 
n well 

p+ p+ n+ n+ 



 

 
 
 

 

° MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are four terminal 
voltage-controlled switches. 

° Current flows between the diffusion terminals if the voltage on the gate terminal is large 
enough to create a conducting “channel”, otherwise the diffusion terminals are not 
connected. 

MOSFET 



 

 
 

 

 

 
 

VDD 
 
 
 
 
 

A Y 
 
 
 
 
 
 

 

GND 

A Y 

NOT IN C-MOS 

A Y 

0 1 

1 0 

 



 

C-MOS INVERTER 
 

 

 

 

 

° Typically use p-type substrate for nMOS transistors 

° Requires n-well for body of pMOS transistors 
 

 

 

 
 

        SiO
2
 

n+ diffusion 

p+ diffusion 

        polysilicon 

metal1 

 

nMOS transistor pMOS transistor 

A 

GND 
Y 

V
DD 

p substrate 
n well 

p+ p+ n+ n+ 



 

 
 
 
 

° C-MOS NAND GATE 
 

 

 

 

 

 

 

Y 

A 

B 
 

 

LOGIC FORMATION USING C-MOS 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 



 

 
 
 
 

° C-MOS NOR GATE 

A 

B 
Y 

 
 
 

 

LOGIC FORMATION USING C-MOS 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

 



 

 
 
 
 

 

° 3-input NAND gate 

° Y pulls low if ALL inputs are 1 

° Y pulls high if ANY input is 0 
 

 

 

 

Y 
A 

B 

C 

COMPLEX LOGIC GATES USING C-MOS 



 

 
 
 

° 4-input NAND gate 

° O/P pulls low if ALL inputs are 1 

° O/P pulls high if ANY input is 0 

COMPLEX LOGIC GATES USING C-MOS 



 

 
 
 

 

 

° A series and/or parallel network combinations of logic gates 
such as and,or,nor,nand,not gates etc to form a specific logic, is 
known to be cascade structure. 

° Example

LOGIC CASCADES  



 

Digital electronics circuits 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCEPT OF DIGITAL 
COMPONENTS 



 

DIGITAL COMPONENTS 
 

 

 

 

 
 

° Digital components are mainly the 

devices in which inputs are digital data and the outputs are 

also in digital format 

° It is mainly categorized into 2 types i.e. 

1.combinational components(circuits) 

2.sequential components(circuits) 



 

COMBINATIONAL COMPONENTS 
 
 

⚫ A combinational circuit consists of logic gates whose 
outputs at any time is determined from only the present 
combination of inputs. It can be specified logically by a 
set of Boolean functions. 

 

 
SEQUENTIAL COMPONENTS 

⚫ A sequential circuit is a combination of combinational 
logic circuit with a memory component. Here the output 
at one stage is the function of present state input and 
previous outputs. 



BINARY ADDERS 
 

 

 

° Binary adders are the digital devices which add binary 
numbers 

° Its of two types i.e. 

1.Half adder 

2.Full adder 



HALF ADDER 
 

 

 

 

 

 
 

 

° A half adder can add two bits. It has two inputs, generally 

labeled A and B, and two outputs, the sum S and carry C 
 

 

 

 

 
A 

B 
HALF ADDER 

SUM=S 

CARRY=C 

 
 
 

 

° Sum=S=A (XOR) B 

° Carry=C=A (AND) B 



HALF ADDER CIRCUIT DIAGRAM 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Following is the logic table for a half adder: 
 
 
 

 

A B C S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 



FULL ADDER 
 

 
 
 

° A full adder is capable of adding three bits: two bits and one carry bit. It 

has three inputs - A, B, and carry C, such that multiple full adders can be 

used to add larger numbers. To remove ambiguity between the input and 

output carry lines, the carry in is labelled Ci or Cin while the carry out is 

labelled Co or Cout. 

Inputs: {A, B, CarryIn} → Outputs: {Sum, CarryOut} 



FULL ADDER CIRCUIT DIAGRAM 
 

 

 

 

Input Output 

A B Ci Co S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
 

 

The expression for the sum and the output carry can be 

obtained by drawing the K map. 



FULL ADDER USING HALF ADDER 
 

 

 
 

° A full adder can be constructed from two half adders by connecting X 

and Y to the input of one half adder, connecting the sum from that to an 

input to the second adder, connecting Z (Ci ) to the other input and OR 

the two carry outputs. Equivalently, S could be made the three-bit XOR 

of X, Y, and Z (Ci,) and Co could be made the three-bit majority function 

of X, Y, and Z (Ci.) 
 

 

 

 

 



MULTIPLE BIT ADDER 
 

(4bit adder using fulladder) 
 

Here two binary numbers 

 

A3 A2 A1 A0 and B3  B2   B1  B0 are added to get S3 S2 S1 S0 with a 

final carry C4.. 



BINARY SUBTRACTION 
 

 

 

HALF SUBTRACTOR 

° The half-subtractor is a combinational circuit which is used to 
perform subtraction of two bits. It has two inputs, X (minuend) 
and Y (subtrahend) and two outputs D (difference) and B 
(borrow). 

The truth table for the half subtractor is 

given below. 
 

 
 

 
 

X Y D B 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

 
 

From the above table one can draw the 

Karnaugh map or "difference" and 

"borrow". 



FULL SUBTRACTOR 
 

 

 

 

 

 

 

 



BINARY MULTIPLIER 
 

 

 
 

° A binary multiplier is a electronic circuit used in digital electronics 

to multiply two binary numbers. It is built using binary adders. 

The partial products can be trivially computed from the fact that ai 

× bj = ai AND bj. The complexity of the multiplier is in adding the 
partial products. 

 

 

 

 
 

  

× 

A3 

B3 

a2 

b2 

a1 

b1 

a0 

b0 

 a3b0 a2b0 a1b0 a0b0 

a3b1 a2b1 a1b1 a0b1  

 a3b2 A2b2 a1b2 a0b2   

a3b3 a2b3 A1b3 a0b3    

p7 p6 p5 P4 p3 p2 p1 p0 



DECODERS 
 

 

 
 

°  Decoder is a combinational circuit that converts binary 

information from n input lines to a maximum of 2n unique output 

lines. 

° If the n-bit coded information has unused combinations then 

decoder may have fewer than 2n outputs. 

° The decoders present here are called n-to-m line decoders, where 

m is less than equal to 2n .their purpose is to to generate 2n (or 

fewer) minterms of n input variables. 



2 to 4 LINE DECODER 
 

 

 

 

 

D0 
A0 

2 to 4 line D1 

A1 decoder D2
 

D3 

 
 
 

 



3 to 4 LINE DECODER 
 

 

 

° It has three inputs and eight outputs. 
 

 

 

 

 

 

 

 

 

 

 

3 to 8 

decoder 



Contd….. 
 

(implementation of 3-8 decoder using logic gates) 
 

 

 
 



ENCODER 
 

 

 

 

 
 

• An encoder is a digital circuit that performs the 

inverse operation of a decoder. 

• An encoder has 2n (or fewer) input lines and n output 

lines. 

• Example: 

1. octal to binary encoder ( 8 to 3 binary encoder) 

2. priority encoder 



8 TO 3 BINARY ENCODER 
 

(octal to binary encoder) 
 

 

 

 

Here there are 8 inputs (Do to D7 ) 
and 3 outputs ( X , Y, Z ). 

 

 

 

 

 
 



AMBIGUITY IN ENCODER 
 

 

 
 

There are two ambiguities associated with the design of a simple encoder: 

⚫ 1. Only one input can be active at any given time. If two inputs are 

active simultaneously, the output 

produces an undefined combination 

for example, 

If D3 and D6 are 1 simultaneously, the output of the encoder will be 

111.To avoid this we go for priority encoder 

⚫ 2. An output with all 0's can be generated when all the 

inputs are 0's,or when D0 is equal to 1. 



PRIORITY ENCODER 
 

 

 

 

 

 

⚫ Apriority encoder is an enccder circuit that includes the 

priority function. The operation of the priority encoder is such 

that if two or more inputs are equal to 1 at the same time,then 

the input having the highest priority will take precedence. 
 

 

 

 

 

 
 

In addition to the two outputs x and y , 

the circuit has a third output designated 

by V ; this is a valid bit indicator that is 

set to one when one or more inputs are 

equal to one. If all th e inputs are 0 there 

is no valid input hence V is equal to 0. 



K-map of 4 to 2 PRIORITY ENCODER 
 

 
 

 

 

 

LOGIC DIAGRAM 



MULTIPLEXER 
 

 

 

 

⚫ A multiplexer is a combinational circuit that selects 

binary information from one of many input lines and 

directs it to a single output line. The selection of a 

particular input line is controlled by a set of selection 

lines. 

⚫  Normally there are 2n input lines and n selection lines 

whose bit combinations determine which input is to be 

selected 

2 to 1 line multiplexer: 



 

4 TO 1 MULTIPLEXER 
 

 

 

 

I0 

I1 MUX 
I2 4-1   Y 

I3 
 

 

S1 S0 

 
 
 

 



 

DEMULTIPLEXER 
 

 

 

 

• Decoder with an enable line is called demultiplexer. 

• It has a single input and the output is obtained as per the 
selection lines. 

• There are 2n no of outputs having n selection lines. 

1 : 4 demultiplexer 
 

 
 

Q0 

Q1 

A 

Q2 

Q3 

 
 

S1 
S0 



 

Overall operation of 
MULTIPLEXER AND DEMULTIPLEXER 

 

 

 

 

 

 
 



 

MAGNITUDE COMPARATOR 
 

 

 

 
 

⚫ the comparison of two numbers is an operation that determines 
whether one nubmer is greater than, less than or equal to the other 
number i.e. if A and B are two numbers then this circuit determines 
whether A>B or A=B or A<B. 

Suppose 

A=A3 A2 A1 A0 

B=B3 B2 B1 B0 

1 only if the pair of bits in i are equal 
 
 



 

LOGIC DIAGRAM OF 
MAGNITUDE COMPARATOR 

 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

MEMORY ELEMENTS 

AND 

SEQUENTIAL NETWORKS 



SEQUENTIAL NETWORK 
 

 

 

 

 

⚫ Sequential circuit is a combinational circuit along with a 
memory element which is capable of storing a memory 
element. 

 
 

BLOCK DIAGRAM 
 

 

 

 

 
 



SYNCHRONOUS SEQUENTIAL LOGIC 
 

 

 

 

 

Synchronous sequential circuits: 
 

This circuit employs signals that affect the storage element only at 

discrete instant of time.here synchronization is achieved by a timing 

device called a clock generator,which provides a clock signal having 

the form of a periodic train of clock pulses. 
 

 

 

 



STORAGE ELEMENTS: 
 

 

 
 

 A storage element in a digital circuit can store a binary state 

indefinitely, until directed by an input signal to switch states. 

 The major differences among various types of storage elements 

are in the number of inputs they possess and in the manner in 

which the inputs affect the binary state. 

 Storage elements that operate with signal levels (rather than 

signal transitions) are referred to as latches. 

 Storage elements that operate with a clock transition are referred 

to as flip-flops. 



 

LATCHES 
 

 

 

 
 

⚫ Latches are bistable device and level sensitive. These are the basic 
building blocks of flip-flops. 

SR Latch 

When using static gates as building blocks, the most 

fundamental latch is the simple SR latch, where S and R 

stand for set and reset. It can be constructed from a pair 

of cross-coupled NOR or NAND logic gates. The stored 

bit is present on the output marked Q 

Block diagram of SR Latch 
 

 



SR LATCH USING NOR AND NAND GATES 
 

 

 

 

 

 

 
 

 
 

 

 
 



SR LATCH WITH CONTROL INPUT 
 

 

 

 

 

 

 

 

 

 
 

 
 

• Occasionally, desirable to avoid latch changes 
• C= 0 disables all latch state changes 
• Control signal enables data change when C = 1 

• Right side of circuit same as ordinary S-R latch. 



D LATCH 
 

 

 

 

 

° D latch is also called transparent latch. 
 

 

 
 



 

GRAPHICAL SYMBOL OF LATCHES 
 

 

 

 

 

 

 

 

 

 



 

FLIP-FLOPS 

° A flip-flops is a device which changes its state at the times when 

a change is taking place in the clock signal. 

° The flip-flops are generally edge triggered i.e. they are either +ve 

edge edge triggered or –ve edge triggered. 
 

 



MASTER SLAVE D FLIP-FLOP 
 

 

 

 

 

 
 

 

 
 

 
 

 

 

 
 

• Consider two latches combined together 

• Only one Clk value is active at a time 

• Output changes of falling edge of the clock 



D FLIP FLOP 
 

 

 

 

• Stores a value on the positive edge of C 

• Input changes at other times have no effect on 

output 
 

 

Positive edge triggered 
 

 

 

 

 

 
 

 

C Q’ 

Q D 
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0 1 

1 0 
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CLOCKED D FLIP-FLOP 
 

 
 
 
 

• Stores a value on the positive edge of C 

• Input changes at other times have no effect on output 
 

 
 



+VE AND –VE EDGE TRIGGERED D FLIP-FLOP 
 

 

 

• D flops can be triggered on positive or negative edge 

• Bubble before Clock (C) input indicates negative edge trigger 
 

 

 

 

 

 

 

 

Lo-Hi edge Hi-Lo edge 



POSITIVE EDGE-TRIGGERED J-K FLIP-FLOP 
 

 
 
 
 
 

 

 
 



CLOCKED J-K FLIP FLOP 
 

 
 
 
 
 
 

 

 



 

POSITIVE EDGE-TRIGGERED T FLIP-FLOP 
 

 

 

 

 
 

 



 

ASYNCHRONOUS INPUTS 
 

 

 

 

⚫ Some of the flip flops have asynchronous inputs that are used to 

force the flip flop to a particular state independent of the clock. 

⚫ The input that sets the flip flop to 1 is called PRESET or 

DIRECT SET. 

⚫ When a power is turned on in a digital system, the state of the 

flip flop is unknown. the direct inputs are useful for bringing the 

flip flop to a known starting state prior to the clocked operation. 

⚫ Similarly there is a RESET that sets the flip flop to 0. 



 

EXAMPLE : 

Positive edge triggered d flip-flop with active low 

asynchronous reset is shown in the figure below. 

 



 

 

 

 

 

 

 

 

 

 
 

 

REGISTERS 
AND 

COUNTERS 



 

REGISTERS 

⚫ Register is a group of flip-flops which stores several bits of binary 
data. 

⚫ A n-bit register has n flip-flops 

⚫ It can hold n bits of binary data 

⚫  Register may also contain combinational 

logic 

Registers are classified as 

1. Serial in serial out 2.parallel in serial out 

3. Serial in parallel out 4.parallel in parallel out 



 

  Serial-In, Serial-Out Unidirectional Shift Register 
 

 

 

 
 

 

Serial-In, Parallel-Out Unidirectional Shift 

Register 
 
 



 

PARALLEL IN PARALLEL OUT SHIFT REGISTER 
 

 

 

 

 

 

 

⚫ The common clock input triggers all 

flip-flops and the binary data 

available at the four inputs are 

transferred into the register. 

⚫  The clear input is useful for 

clearing the register to all 0’s 

output. 



REGISTER WITH PARALLEL LOAD 
 

 

 

 

 

° If all the bits in a register are loaded 
at the same time, the loading is done 
in parallel. 

° A 4-bit register with a load control 
input is shown here. 

° The Load input determines the action 
to be taken with each clock pulse. 

° The feedback connection 

from output to input is necessary 
because the D flip-flop does not have 
a “no change” condition. 



SERIAL TRANSFER 
 

 

 

 

 

⚫ Serial transfer of information from register A to register 
B is done with shift registers: 

 

 

 

 

Suppose the shift registers have four bits each. 

The control unit that supervises the transfer must 

be designed such that it enables the shift registers, 

via the shift control signal, for a fixed time of four 

clock pulses: 



Contd.. 
 

 

 

 

 

 
 

Assume that the binary content of A before the 

shift is 1011 and that of B is 0010. The serial 

transfer occurs in four steps as shown in the table 

below: 
 
 



 

COUNTERS 
 

 

 Counter is a register which counts the sequence in binary form. 

 The state of counter changes with application of clock pulse. 

 The total no. of states in counter is called as modulus. 

 If counter is modulus-n, then it has n different states.\ 

 Counters are available in two categories: 

ripple counters and synchronous counters. 

 State diagram of counter is a pictorial representation of counter 

states directed by arrows in graph. 
 

 
 

 
111 

 
110 

000  
001 

 
010 

 
Fig. State diagram of 

mod-8 counter 
 

 

101  
100 

011 



 

RIPPLE (ASYNCHRONOUS COUNTER) 
 

 
 

° In a ripple counter, the flip- 
flop output transition serves 
as a source for triggering 
other flip-flops. 

° A 4-bit binary ripple 
counter (mod-16) is given 
here. 



 

BCD RIPPLE COUNTER (MOD-10) 
 

 

 

 

° A decimal counter follows a pattern of 10 states: 
 

 

 

The logic diagram of 

a BCD counter using 

JK flip-flops 

is shown here 



 

Contd… 

 

⚫ A multiple decade counter can be constructed by connecting 

BCD counters in cascade. A three decade counter is shown 

below: 
 

 
 



 

SETTLING TIME OF RIPPLE COUNTERS 
 

 

 

 

⚫  A ripple counter is also known as an asynchronous 

counter. The rippling behaviour affects the overall 

settling time. 

⚫ The worst-case delay occurs when the counter 

goes from its 11….1-state to its 00…0-state. 

⚫ For an n-stage binary ripple counter, the worst case 

⚫ setting time is n x Tpd, where Tpd is the 

propagation delay associated with each flip-flop. 



SYNCHRONOUS BINARY COUNTERS 
 

 

 
 

° The settling time problem associated with ripple counters is avoided in 

synchronous counters. In these counters, the count pulses are applied 

directly to the control inputs C of all flip-flops. 

 

 
° The state diagram and state table of a 3-bit binary counter are 

 

 

 

 

 

 

 

 



Contd… 
 

 

 

 

 

 

 

 

The flip-flop input equations are specified by the 

Kmaps: 

 
 

 



Contd… 
 

 

 

 

 

 

° The input equations listed under the K-maps specify the 

combinational part of the counter. Including these 

functions with the three T flip-flops, the logic diagram of 

the counter is: 
 



Contd… 
 

 

 

 

 

 

° Synchronous counters have a 

regular pattern and can be 

constructed with 

complementing flip-flops and 

gates. The complementing flip- 

flops can be either of the JK- 

type or the T-type or the D- 

type with X-OR gates. 

° A 4-bit binary synchronous 

counter (count-down) with 

count enable function can be 

realized like this: 



UP-DOWN BINARY COUNTER 
 

 

 

 

 

⚫ The circuit of a 4-bit up-down binary counter withT flip- 
flops is: 

 

 
 

 

Up = 1; the circuit 

counts up. 

• Down = 1, Up = 0; 

the circuit counts 

down. 

• Up = 0, Down = 0; 

the circuit doesn’t 

change state. 

• Up = 1, Down = 1, 

the circuit counts up. 



 

COUNTER WITH UNUSED STATES 
 

 

 

⚫ A circuit with n flip-flops has 2n binary states. There are 

occasions when a sequential circuit uses less than 2n states. 

The unused states maybe treated as don’t care conditions or 

may be assigned specific next states. Once the circuit is 

designed and realized, outside interference may cause it to 

enter one of the unused states. In that case it is important to 

ensure that the circuit can resume normal operation. 
 

 

 
 



Contd…. 
 

 

 

 

 

° The flip-flop input equations (after simplification) are: 
 

 
 

 

 



RING COUNTER 
 

 

 
 

° It is a circular shift register with only one flip-flop being set at any 

particular time, all others are cleared. The single bit is shifted from one 

flip-flop to the next to produce the sequence of timing signals. A 4-bit 

shift register connected as a ring counter is shown below: 
 

 

 

 

 

 

 



Contd… 
 

 

 

 

 

° Timing diagram 
 

 



JOHNSON COUNTER 
 

 

 

 

 

 

° An interesting variation of the ring counter is obtained if, 

instead of the Q output we take the Q′ of the last stage and feed 

it back to the first stage. A four-stage switch-tail counter is 

shown below: 
 

 
 

 
 



Contd….. 
 

 

 

 

 

° Starting from a cleared state, the switch-tail counter goes 
through a sequence of eight states as listed below: 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
 

 

 
 

STATE MACHINES 



STATE MACHINE 
 

 

 

 

 

 

° A finite state machine (FSM) or finite state automaton (plural: 

automata), or simply a state machine, is a model of behavior 

composed of a finite number of states, transitions between those 

states, and actions. It is similar to a "flow graph" where we can 

inspect the way in which the logic runs when certain conditions 

are met. A finite state machine is an abstract model of a 

machine with a primitive internal memory. 

° Two types of “ STATE machines” 

• Mealy machine 

• Moore machine 



Contd… 
 

 

 

 

 

° EXAMPLE 
 

 

 

 

state machine tells 

about how the states of a particular 

system or machine changes .Before 

designing a circuit we have to 

analyze how the states are changing 

in that system. That can be done 

using a state machine. 



 

 

 

 

 

 

 

 

 

 
 

 

DATA STORING DEVICES 
RANDOM ACCESS MEMORY (RAM) 



RANDOM ACCESS MEMORY (RAM) 
 

 

 

⚫ Memory is a collection of storage cells with associated input and 

output circuitry 

⚫ Possible to read and write cells 

⚫ Random access memory (RAM) contains words of information 

⚫ Data accessed using a sequence of signals 

◦ Leads to timing waveforms 

⚫ Decoders are an important part of memories 

◦ Selects specific data in the RAM 

⚫ Static RAM loses values when circuit power is removed. 



PRELIMINARIES 
 

 
 
 

° RAMs contain a collection of data bytes 

• A collection of bytes is called a word 

• A sixteen bit word contains two bytes 

• Capacity of RAM device is usually described in bytes (e.g. 16 
MB) 

° Write operations write data to specific words 

° Read operations read data from specific words 

° Note: new notation for OR gate 
 

 

 

 

 
 



RAM INTERFACE SIGNALS 
 

 

 

 

 

 

⚫ Data input and output lines 

carry data 

⚫ Memory contains 2k words 

⚫ k address lines select one 

word out of 2k 

⚫ Read asserted when data to 

be transferred to output 

⚫ Write asserted when data 

input to be stored 



TYPES OF RANDOM ACCESS MEMORIES 
 

 

 

 

⚫ Static random access memory (SRAM) 

◦ Operates like a collection of latches 

◦ Once value is written, it is guaranteed to remain in the 

memory as long as power is applied 

◦ Generally expensive 

◦ Used inside processors (like the Pentium) 

⚫ Dynamic random access memory (DRAM) 

◦ Generally, simpler internal design than SRAM 

◦ Requires data to be rewritten (refreshed), otherwise data is 

lost 

◦ Often hold larger amount of data than SRAM 

◦ Longer access times than SRAM 

◦ Used as main memory in computer systems 



Inside the RAM Device 
 

 

 

 

 

 

  

⚫ Address inputs go into 

decoder 

⚫ Word line selects a row of 

bits (word) 

⚫ Data passes through OR 

gate 

⚫ Each binary cell (BC) 

stores one bit 

⚫ Input data stored if 

Read/Write is 0 

⚫ Output data driven if 

Read/Write is 1 



Read Only Memory (ROM) 
 

 

 

 
 

° ROM holds programs and data permanently even when computer is 
switched off 

° Data can be read by the CPU in any order so ROM is also direct access 

° The contents of ROM are fixed at the time of manufacture 

° Stores a program called the bootstrap loader that helps start up the 
computer 

° Access time of between 10 and 50 nanoseconds 



Types of ROM 
 

 

 

⚫ 1. Programmable Read Only Memory (PROM) 

• Empty of data when manufactured 

• May be permanently programmed by the user 

 
⚫ 2. Erasable Programmable Read Only Memory(EPROM) 

• Can be programmed, erased and reprogrammed 

• The EPROM chip has a small window on top allowing it to be erased by 
shining ultra-violet light on it 

• After reprogramming the window is covered to prevent new contents 
being erased 

• Access time is around 45 – 90 nanoseconds 



 

3. Electrically Erasable Programmable Read 

Only Memory 
 

 

• Reprogrammed electrically without using ultraviolet light 

• Must be removed from the computer and placed in a special machine 
to do this 

• Access times between 45 and 200 nanoseconds 

⚫  4. Flash ROM 
• Similar to EEPROM 

• However, can be reprogrammed while still in the computer 

• Easier to upgrade programs stored in Flash ROM 

• Used to store programs in devices e.g. modems 

• Access time is around 45 – 90 nanoseconds 

⚫  5. ROM cartridges 
• Commonly used in games machines 

• Prevents software from being easily copied 



ROM Internal Structure 
 

 

 

 

 

 
 

 

 

 

 



INTERNAL LOGIC OF 32X8 ROM 
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