
Stacks

Gurpreet Singh Lehal

Punjabi University, Patiala

Stack
A stack is a limited access linear list of

homogeneous items in which access is

allowed only at one point of the structure

The last element to be inserted into the stack

is the first to be removed. This strategy of

removal and retrieval is referred as,

LIFO(last in, first out).

Stack of cafeteria plates

CDs in CD Container

Vegetable Stack

Shuttlecocks in their container

Push

Pop

A Sequence of Push and Pop

operations

Array Implementation of Stack

typedef char StackItemType;

class Stack{

public:

Stack(int size) {

items = new StackItemType[size];

MaxStack = size;

top = -1;

}

~Stack(){

delete [] items;

}

bool isEmpty();

bool isFull();

bool push(StackItemType newItem);

bool pop(StackItemType *stackTop);

private:

StackItemType *items;

int top, MaxStack;

};

Array Implementation of Stack
bool Stack::isEmpty() {

return top < 0;

}

bool Stack::isFull() {

return top >= MaxStack-1;

}

bool Stack::push(StackItemType newItem){

if (isFull())

return false;

else{

items[++top] = newItem;

return true;

}

}

Array Implementation of Stack

bool Stack::pop(StackItemType *stackTop){

if (isEmpty())

return false;

else {

*stackTop = items[top--];

return true;

}

}

A Sample Program for Stacks
int main(){

StackItemType c;

Stack stack(5);

stack.push('a');

stack.push('b');

stack.push('c');

stack.pop(&c);

printf("%c\n",c);

stack.pop(&c);

printf("%c\n",c);

stack.push('d');

stack.pop(&c);

printf("%c\n",c);

stack.pop(&c);

printf("%c\n",c);

}

Items Top

4

-13

2

1

0

Stack stack(5)

Stack Struct Stack

a

Items Top

4

03

2

1

0 a

stack.push(‘a’)

b

a

Items Top

4

13

2

1 b

0 a

stack.push(‘b’)

a

c

Items Top

4

23

2 c

1 b

0 a

b

stack.push(‘c’)

a

Items Top

4

13

2 c

1 b

0 a

b

stack.pop(&c)->’c’

a

Items Top

4

03

2 c

1 b

0 a

stack.pop(&c)->’b’

a

Items Top

4

13

2 c

1 d

0 a

d

stack.push(‘d’)

a

Items Top

4

03

2 c

1 d

0 a

stack.pop(&c)->’d’

Items Top

4

-13

2 c

1 d

0 a

stack.pop(&c)->’a’

Strengths and Limitations of

Stacks
The main strengths of stacks are:

very simple data type

very fast

direct access to last (first) element added

Limitation of stacks:

the set of operations is very restricted (no

access to elements other than last (first),

no searching, no iterating).

Stacks in daily conversation
 "I'm afraid I've got real work to do, so this'll have to be

pushed way down on my stack." Here stack refers to the
set of things a person has to do in the future

 "I haven't done it yet because every time I pop my stack
something new gets pushed." If a person says he has
popped something from his stack, that means he has
finally finished working on it and can now remove it from
the list of things hanging overhead.

 If you are interrupted several times in the middle of a
conversation one may say, "My stack overflowed" means
"I forget what we were talking about." The implication is
that more items were pushed onto the stack than could
be remembered, so the least recent items were lost.

Applications of Stacks

Stacks are a very common data structure

– compilers

• parsing data between delimiters (brackets)

– operating systems

• program stack

– virtual machines

• manipulating numbers

– pop 2 numbers off stack, do work (such as add)

– push result back on stack and repeat

– artificial intelligence

• finding a path

Applications of Stacks
Checking matching brackets

Page-visited history in a Web browser

Base Conversion

Undo sequence in a text editor

Store the function arguments, the local

variables/objects and the return address of

the calling function

Evaluating algebric expressions

Converting Infix to Postfix

Balanced Symbol Checking
In processing programs and working with

computer languages there are many

instances when symbols must be balanced

{ } , [] , ()

Balancing Bracket Pairs

A string is balanced if:

– all the opening and closing brackets in the

string are paired

• opening brackets: ([{

• closing symbols:)] }

– each closing bracket in the string must

correspond to the previous unmatched

opening bracket of the same kind:

• e.g. "([])" -- correct

• e.g. "([)]" -- wrong

Algorithm for Balanced Bracket

Checking

Any algorithm for bracket matching has to

keep in mind the following rules:
1. The number of opening and closing brackets must be

same

2. The order of brackets is also important. The opening

bracket must come before matching closing bracket.

Thus () is valid, while)(is invalid.

3. Two pairs of matched brackets must either nested or

be disjoint. We can have [()] or [](), but not ([)]

All the above rules can easily be checked by using a stack

Algorithm for Matching

Bracket Checking
Read symbols until end of expression

– if the symbol is an opening bracket push it onto

the stack

– if it is a closing bracket do the following

• if the stack is empty report an error

• otherwise pop the stack. If the symbol popped does

not match the closing bracket report an error

At the end of the expression if the stack is

not empty report an error

({ ([]) })

Expression

Operation

Stack

Matching Brackets Using Stacks

({ ([]) })

(

Push (

Expression

Operation

Stack

Matching Brackets Using Stacks

({ ([]) })

(

Push {

Expression

Operation

Stack

Matching Brackets Using Stacks

{

({ ([]) })

(

Push (

Expression

Operation

Stack

Matching Brackets Using Stacks

{

(

({ ([]) })

(

Push [

Expression

Operation

Stack

Matching Brackets Using Stacks

{

(

[

({ ([]) })

(

Pop [

Expression

Operation

Stack

Matching Brackets Using Stacks

{

(

[] match

({ ([]) })

(

Pop (

Expression

Operation

Stack

Matching Brackets Using Stacks

{

() match

({ ([]) })

(

Pop {

Expression

Operation

Stack

Matching Brackets Using Stacks

{ } match

({ ([]) })

Pop (

Expression

Operation

Stack

Matching Brackets Using Stacks

() match

({ ([]) })

End of Expression

Expression

Operation

Stack

Matching Brackets Using Stacks

Stack empty

Braces match!!!

([)])

(

Push (

Expression

Operation

Stack

Matching Brackets Using Stacks

([)])

(

Push [

Expression

Operation

Stack

Matching Brackets Using Stacks

[

([)])

(

Pop [

Expression

Operation

Stack

Matching Brackets Using Stacks

[) do not match

Thus brackets do not match!!

bool CheckBraces(char *c){

char c1;

int i=-1;

Stack stack(strlen(c));

while(c[++i]){

if(c[i]=='(' || c[i]=='{' || c[i] == '[')

stack.push(c[i]);

if(c[i]==')' || c[i]=='}' || c[i] == ']'){

if(!stack.pop(&c1)) return false;

if(c1=='(' && c[i] !=')')return false;

if(c1=='[' && c[i] !=']')return false;

if(c1=='{' && c[i] !='}')return false;

}

}

if(!stack.isEmpty())return false;

return true;

}

Page-visited history in a Web browser

Page-visited history in a Web browser

Google.com

Page-visited history in a Web browser

Learnpunjabi.org

Google.com

Page-visited history in a Web browser

Uh.learnpunjabi.org

Learnpunjabi.org

Google.com

Page-visited history in a Web browser

Learnpunjabi.org

Google.com

Page-visited history in a Web browser

Google.com

Page-visited history in a Web browser

Learnpunjabi.org

Google.com

Back and Forward Buttons in a Web

browser

To allow the user to move both forward and backward two

stacks are employed.

When the user presses the back button, the link to the

current web page is stored on a separate stack for the

forward button.

As the user moved backward through previous pages, the

link to each page is moved in turn from the back to the

forward stack.

When the user pushes the forward button, the action is the

reverse of the back button. Now the item from the forward

stack is popped, and becomes the current web page. The

previous web page is pushed on the back stack.

Undo sequence in a text editor

Using a Stack to Create a Hex

Number

'1'

'A'

'F'

'A'

'F''F'

431 % 16 = 15

431 / 16 = 26
26 % 16 = 10

26 / 16 = 1

1 % 16 = 1

1 / 16 = 0

 Push Digit Characters

'1'

'A'

'F'

'A'

'F' 'F'

Pop '1'

numStr = "1"

 Pop Digit Characters

Pop 'A'

numStr = "1A"
Pop 'F'

numStr = "1AF"

void DecToHex(int dec, char *hex){

int rem;

Stack stack(8);

while(dec){

rem = dec % 16;

if(rem<10)

stack.push(rem + '0');

else

stack.push(rem-10 + 'a');

dec/=16;

}

while(!stack.isEmpty())

stack.pop(hex++);

*hex = 0;

}

Algebric Expression

An Operand is the quantity (unit of data) on

which a mathematical operation is

performed. Operand may be a variable like x,

y, z or a constant like 5, 4,0,9.7,-1 etc.

An Operator is a symbol which signifies a

mathematical or logical operation between

the operands. Example of familiar operators

include +,-,*, /, ^

An Algebraic Expression is a legal

combination of operands and the operators.

An example of algebric expression is 3+5

Infix, Postfix and Prefix Notations

Depending on where we place this operator and
the operands, we have three different notations

INFIX: Expressions in which operands surround the
operator are called Infix expressions, e.g. A+B, 8*4
etc.

PREFIX:: In Prefix notation operator comes before
the operands, e.g. +AB, *+xyz etc.

POSTFIX: In Postfix notation the operator comes
after the operands, e.g. AB+, xyz+* etc.

Need for Prefix and Postfix
For human beings, infix expressions are easy to

read and understand as compared to Prefix and
Postfix notations, but they are difficult to parse for
the computers.

To evaluate an infix expression we need to
consider Operators’ Priority, Associative property
and brackets ()
– Thus for example, an expression such as A*(B+C) / D will

mean: "First add B and C together, then multiply the
result by A, then divide by D to give the final answer."

As the expression has to be scanned multiple times

and intermediate results have to be stored, it

makes computer evaluation of infix expressions

more difficult and time consuming than is

necessary.

Need for Prefix and Postfix
 In contrast postfix and prefix expression forms do not rely on

operator priorities or brackets and so are much easier to

evaluate.

 In case of postfix expression, one does not have to worry

about operator precedence as the order of evaluation of

operators is always left-to-right, and brackets cannot be

used to change this order. As for example, for the infix

expression A * (B + C) / D, the equivalent postfix

expression is A B C + * D / and since the "+" is to the left of

the "*" in the example above, the addition must be

performed before the multiplication. .

Examples of infix to prefix and

postfix

Note : Operand order remains the same in

all three notations

Need for Prefix and Postfix
Prefix and postfix expressions

– Never need

• Precedence rules

• Association rules

• Parentheses

– Have

• Simple grammar expressions

• Straightforward recognition and evaluation algorithms

• Are very easy to evaluate

Fully Parenthesized

Expression

A Fully Parenthesized Expression has

exactly one set of Parentheses enclosing

each operator and its operands.

– ((A + B) * C)

– ((A + B) * (C + (D ^ E)))

Infix to Prefix Conversion
 Convert the infix expression to Fully

Parenthesized Expression (FPE)

 Move each operator to the left of its operands &
remove the parentheses:

 Infix : A + B * C + D

 FPE : ((A + (B * C)) + D)

 Prefix conversion steps:
1. ((A + * B C) + D)

2. (+ A * B C) + D)

3. + + A * B C D

Some exercises to try

Convert to prefix and postfix

3+4*5/6

3 4 5 * 6 / +

(300+23)*(43-21)/(84+7)

300 23 + 43 21 - * 84 7 + /

(4+8)*(6-5)/((3-2)*(2+2))

4 8 + 6 5 - * 3 2 – 2 2 + * /

Evaluation of Infix Expression

To evaluate an infix expression we need to
consider Operators’ Priority, Associative
property and brackets ()
– Thus for example, an expression such as

A*(B+C) / D will mean: "First add B and C
together, then multiply the result by A, then divide
by D to give the final answer.“

As the expression has to be scanned
multiple times and intermediate results have
to be stored, it makes computer evaluation
of infix expressions more difficult and time
consuming than is necessary.

Evaluation of Infix Expression

 The problem of evaluating infix

expression can be broken in to 2 stages:

1. Infix to Postfix Conversion

5+6*7 -> 567*+

2. Evaluating a Postfix expression

567*+ = 47

Precedence Table

Set the Postfix String to Empty String

Scan the Infix expression left to right

 If the character x is an operand

– Append the character to the Postfix String

 If the character x is a left or right bracket

– If the character is (

• Push it into the stack

– if the character is)

• Repeatedly pop and append to the Postfix
String all the operators/characters until (is
popped from the stack.

• Do not append the brackets to the Postfix
String

Algorithm for Infix to Postfix

 If the character x is an operator
• Check the character y currently at the top of the

stack.

• If Stack is empty or y=(or y is an operator of lower
precedence than x, then push x into stack.

• If y is an operator of higher or equal precedence
than x, then pop and output y and push x into the
stack.

When all characters in infix expression are processed
repeatedly pop the character(s) from the stack and
append them to the Postfix String until the stack is
empty.

Algorithm for Infix to Postfix

contd..

Infix Expression

Postfix Expression

(a + b - c) * d – (e + f)

Stack

Infix to postfix conversion

(a + b - c) * d – (e + f)

(

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

(is pushed onto the operator

stack

Comments

(a + b - c) * d – (e + f)

(

a

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

a is an operand and it is

appended to postfix

expression.

Comments

(a + b - c) * d – (e + f)

(

a

+

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

The precedence of + is

greater than (and so it

pushed on the stack

(a + b - c) * d – (e + f)

(

a b

+

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

b is an operand and it is

appended to postfix

expression.

(a + b - c) * d – (e + f)

(

a b

+

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

The precedence of - is same

as + and so we pop + and

append it to postfix string.

(a + b - c) * d – (e + f)

(

a b +

-

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

Then operator – is next

pushed onto the stack

(a + b - c) * d – (e + f)

(

a b + c

-

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

c is an operand and it is

appended to postfix

expression.

(a + b - c) * d – (e + f)

a b + c

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

) causes all the stack

elements to be popped till (

is encountered.

Comments-

(

(a + b - c) * d – (e + f)

a b + c -

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

The popped elements,

except (are appended to

postfix expression.

Comments

(a + b - c) * d – (e + f)

a b + c -

*

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

The operator * is pushed

onto the stack as the stack is

empty.

(a + b - c) * d – (e + f)

a b + c - d

*

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

The operand d is appended

to postfix expression.

(a + b - c) * d – (e + f)

a b + c – d *

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

The precedence of - is lesser

than * and so we pop * and

append it to postfix string.

(a + b - c) * d – (e + f)

a b + c – d *

-

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

Then operator – is next

pushed onto the stack

(a + b - c) * d – (e + f)

a b + c – d *

-

(

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

(is pushed onto the operator

stack, as it has highest

offstack precedence

(a + b - c) * d – (e + f)

a b + c – d * e

-

(

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

The operand e is appended

to postfix expression.

(a + b - c) * d – (e + f)

a b + c – d * e

-

(

+

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

The precedence of + is

greater than (and so it

pushed on the stack

(a + b - c) * d – (e + f)

a b + c – d * e f

-

(

+

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

The operand f is appended

to postfix expression.

(a + b - c) * d – (e + f)

a b + c – d * e f +

-

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

Comments

) causes all the stack

elements to be popped till (

is encountered.

+

(

(a + b - c) * d – (e + f)

a b + c – d * e f +

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

The popped elements,

except (are appended to

postfix expression.

Comments

-

(a + b - c) * d – (e + f)

a b + c – d * e f + -

Infix Expression

Postfix Expression

Stack

Infix to postfix conversion

On reaching end of string. All

elements are popped and

appended to expression.

Comments

Example
1 - 2 * 3 ^ 3 - (4 + 5 * 6) * 7

Show algorithm in action on above equation

Some exercises to try

Convert to prefix and postfix

3+4*5/6

3 4 5 * 6 / +

(300+23)*(43-21)/(84+7)

300 23 + 43 21 - * 84 7 + /

(4+8)*(6-5)/((3-2)*(2+2))

4 8 + 6 5 - * 3 2 – 2 2 + * /

4 5 + 7 2 - *

Expression

Operation

Stack

Evaluation of Postfix expression

4 5 + 7 2 - *

4

Push 4

Expression

Operation

Stack

Evaluation of Postfix expression

4 5 + 7 2 - *

4

Push 5

Expression

Operation

Stack

Evaluation of Postfix expression

5

4 5 + 7 2 - *

9

Pop 5 and 4. Add

Expression

Operation

Stack

Evaluation of Postfix expression

Push the result (9)

4 5 + 7 2 - *

9

Push 7

Expression

Operation

Stack

Evaluation of Postfix expression

7

4 5 + 7 2 - *

9

Push 2

Expression

Operation

Stack

Evaluation of Postfix expression

7

2

4 5 + 7 2 - *

9

Pop 2 and 7. Subtract

Expression

Operation

Stack

Evaluation of Postfix expression

Push the result (5)5

4 5 + 7 2 - *

45

Pop 5 and 9. Multiply

Expression

Operation

Stack

Evaluation of Postfix expression

Push the result (45)

4 5 + 7 2 - *

Pop 45

Expression

Operation

Stack

Evaluation of Postfix expression

Result : 45

An Exercise

Convert the following to postfix and
evaluate

2*3+16/2-(8-4+3*4^2/2)+12-3*32/2^4-5*3

2 3 * 16 2 / + 8 4 - 3 4 2 ^ * 2 / + - 12 + 3 32 *
2 4 ^ / - 5 3 * -

Stacks in Function Calls

The C++ run-time system
keeps track of the chain of
active functions with a stack

When a function is called, the
run-time system pushes on the
stack a frame containing

– Local variables and return
value

– Program counter, keeping
track of the statement being
executed

When a function returns, its
frame is popped from the stack
and control is passed to the
method on top of the stack

main() {

int i = 5;

f(i);

}

f(int j) {

int k;

k = j+1;

bar(k);

}

bar(int m) {

…

}

bar
PC = 1
m = 6

f
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

Stacks in Function Calls

To eliminate the need for direct

implementation of recursion

As recursive function calls require a lot
of overhead, it is often the case that
recursive algorithms are “unrolled” into
non-recursive ones. Since recursive
calls are entered/exited in LIFO order
the use of stacks to mimic recursion is
a natural choice.

