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SIGNALS AND SYSTEMS OVERVIEW - UNIT1 
 
 
 

What is Signal? 

Signal is a time varying physical phenomenon which is intended to convey information. 

OR 

Signal is a function of time. 

OR 

Signal is a function of one or more independent variables, which contain some information. 

Example: voice signal, video signal, signals on telephone wires etc. 

Note: Noise is also a signal, but the information conveyed by noise is unwanted hence it is considered 
as undesirable. 

 
 
 
 
 
 
 
 
 

 

What is System? 

System is a device or combination of devices, which can operate on signals and produces corresponding 
response. Input to a system is called as excitation and output from it is called as response. 

For one or more inputs, the system can have one or more outputs. 

Example: Communication System 



SSIIGGNNAALLSS CCLLAASSSSIIFFIICCAATTIIOONN 

 
 

Signals are classified into the following categories: 

Continuous Time and Discrete Time Signals 

Deterministic and Non-deterministic Signals Even 

and Odd Signals 

Periodic and Aperiodic Signals 

Energy and Power Signals Real 

and Imaginary Signals 

Continuous Time and Discrete Time Signals 

A signal is said to be continuous when it is defined for all instants of time. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A signal is said to be discrete when it is defined at only discrete instants of time/ 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deterministic and Non-deterministic Signals 

A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time. Or, 
signals which can be defined exactly by a mathematical formula are known as deterministic signals. 



 
 

A signal is said to be non-deterministic if there is uncertainty with respect to its value at some instant of time. Non-
deterministic signals are random in nature hence they are called random signals. Random signals cannot be 
described by a mathematical equation. They are modelled in probabilistic terms. 

 

 

Even and Odd Signals 

A signal is said to be even when it satisfies the condition xt = x−t 

Example 1: t2, t4… cost etc. 

Let xt = t2 

x−t = −t2 = t2 = xt 

∴ , t2 is even function 

Example 2: As shown in the following diagram, rectangle function xt = x−t so it is also even function. 
 

A signal is said to be odd when it satisfies the condition xt = -x−t 

Example: t, t3 ... And sin t Let 

xt = sin t 

x−t = sin−t = -sin t = -xt 

∴ , sin t is odd function. 



T 

Any function ƒt can be expressed as the sum of its even function ƒet and odd function ƒot. ƒ(t ) = ƒe(t 

) + ƒ0(t ) 

where 

ƒe(t ) = ½[ƒ(t ) +ƒ(-t )] 

Periodic and Aperiodic Signals 
 

A signal is said to be periodic if it satisfies the condition xt = xt + T Where 

T = fundamental time period, 

1/T = f = fundamental frequency. 

or xn = xn + N . 

 

 
 

The above signal will repeat for every time interval T0 hence it is periodic with period T0. 

Energy and Power Signals 

A signal is said to be energy signal when it has finite energy. 

∞ 

Energy E = ∫ 
−∞ 

x2 (t)dt 

A signal is said to be power signal when it has finite power. 
 

Power P = lim 
1 

∫ x2 (t) dt 
T →∞  2T −T 

NOTE:A signal cannot be both, energy and power simultaneously. Also, a signal may be neither energy nor 
power signal. 

Power of energy signal = 0 

Energy of power signal = ∞ 

Real and Imaginary Signals 

A signal is said to be real when it satisfies the condition xt = x*t A signal 

is said to be odd when it satisfies the condition xt = -x*t Example: 

If xt= 3 then x*t=3*=3 here xt is a real signal. 

If xt= 3j then x*t=3j* = -3j = -xt hence xt is a odd signal. 



 

Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal, real part should be zero. 



SSIIGGNNAALLSS BBAASSIICC TTYYPPEESS 
 
 

 

Here are a few basic signals: 
 

Unit Step Function 

Unit step function is denoted by ut. It is defined as ut = { 
1
 

0 

 

 

 
t ⩾ 0 

t < 0 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

It is used as best test signal. 

Area under unit step function is unity. 
 

Unit Impulse Function 

Impulse function is denoted by δt. and it is defined as δt = { 
1
 

0 

 

 

 

 
 

t = 0 

t ≠ 0 
 

 
 

 

 

 

 

 

 

 

 

 

 
 
 

∞ 

∫ δ(t)dt = u(t) 

 

 

 
Ramp Signal 

−∞ 

 
δ(t) = 

 
du(t) dt 

 

Ramp signal is denoted by rt, and it is defined as rt = { 
t
 

0 

t ⩾ 0 

t < 0 



⎩⎪  

 

 

∫  u(t) = ∫  1 = t = r(t) 
 

 

 

 
Area under unit ramp is unity. 

 

Parabolic Signal 

 

u(t) = 
dr(t) dt 

 

Parabolic signal can be defined as xt = { t2/2 

0 

t ⩾ 0 

t < 0 

 

 
 

t2 

∬  u(t)dt = ∫  r(t)dt = ∫  tdt =   
2

 
 

= parabolicsignal 

 

 
 

 

 

 

 
Signum Function 

 

⇒ u(t) = 
 
 

⇒ r(t) = 

d2x(t) 

dt2 

dx(t) 

dt 

 

 

⎧⎪   1 

 

 

 

 

 

 

 

t > 0 

Signum function is denoted as sgnt. It is defined as sgnt = ⎨  0 
−1 

t = 0 

t < 0 
 

 



 

sgnt = 2ut – 1 

Exponential Signal 

Exponential signal is in the form of xt = eαt . The 

shape of exponential can be defined by α. Case i: if α 

= 0 → xt = e0 = 1 

 
 
 
 
 
 

 
Case ii: if α < 0 i.e. -ve then xt = e−αt . The shape is called decaying exponential. 

 

Case iii: if α > 0 i.e. +ve then xt = eαt . The shape is called raising exponential. 
 

Rectangular Signal 

Let it be denoted as xt and it is defined as 
 



0 

 
 

Triangular Signal 

Let it be denoted as xt 
 

 

Sinusoidal Signal 

Sinusoidal signal is in the form of xt = A cos$w0 

 

± ϕ$ or A sin$w0 

 

 

± ϕ$ 
 

 
 

Where T   = 
2π

 
w0 

 

Sinc Function 

It is denoted as sinct and it is defined as sinc 

(t) = 
sinπt 

πt 

= 0 for t = ±1, ±2, ±3. . . 
 



 
 

 

 

Sampling Function 

It is denoted as sat and it is defined as 

 

 
sa(t) = 

sint
 
t 

= 0 for t = ±π, ±2π, ±3π . . . 
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There are two variable parameters in general: 

1. Amplitude 

2. Time 

The following operation can be performed with amplitude: 
 

Amplitude Scaling 

C xt is a amplitude scaled version of xt whose amplitude is scaled by a factor C. 

 
 
 
 
 
 
 
 
 
 

 

Addition 

Addition of two signals is nothing but addition of their corresponding amplitudes. This can be best explained by 
using the following example: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As seen from the diagram above, 

-10 < t < -3 amplitude of zt = x1t + x2t = 0 + 2 = 2 

-3 < t < 3 amplitude of zt = x1t + x2t = 1 + 2 = 3 3 < t < 10 

amplitude of zt = x1t + x2t = 0 + 2 = 2 



Subtraction 

subtraction of two signals is nothing but subtraction of their corresponding amplitudes. This can be best 
explained by the following example: 

 

As seen from the diagram above, 

-10 < t < -3 amplitude of z t = x1t - x2t = 0 - 2 = -2 

-3 < t < 3 amplitude of z t = x1t - x2t = 1 - 2 = -1 3 < t < 10 

amplitude of z t = x1t + x2t = 0 - 2 = -2 

Multiplication 

Multiplication of two signals is nothing but multiplication of their corresponding amplitudes. This can be best 
explained by the following example: 

 



As seen from the diagram above, 

-10 < t < -3 amplitude of z t = x1t ×x2t = 0 ×2 = 0 

-3 < t < 3 amplitude of z t = x1t ×x2t = 1 ×2 = 2 3 < t < 10 

amplitude of z t = x1t × x2t = 0 × 2 = 0 

The following operations can be performed with time: 
 

Time Shifting 

x(t $\pm$ t0) is time shifted version of the signal xt. x (t + 

t0) → negative shift 

x (t - t0) → positive shift 
 

Time Scaling 

xAt is time scaled version of the signal xt. where A is always positive. 

|A| > 1 → Compression of the signal 

|A| < 1 → Expansion of the signal 
 

Note: uat = ut time scaling is not applicable for unit step function. 

Time Reversal 

x−t is the time reversal of the signal xt. 
 



 



FFOOUURRIIEERR SSEERRIIEESS 

 
 

Jean Baptiste Joseph Fourier,a French mathematician and a physicist; was born in Auxerre, France. He 
initialized Fourier series, Fourier transforms and their applications to problems of heat transfer and vibrations. The 
Fourier series, Fourier transforms and Fourier's Law are named in his honour. 

 
 
 
 
 
 
 
 
 
 
 
 

Jean Baptiste Joseph Fourier 21March1768– 16May1830 

Fourier series 

To represent any periodic signal xt, Fourier developed an expression called Fourier series. This is in terms of 
an infinite sum of sines and cosines or exponentials. Fourier series uses orthoganality condition. 

 

Fourier Series Representation of Continuous Time Periodic Signals 
 

A signal is said to be periodic if it satisfies the condition x t = x t + T Where T 

= fundamental time period, 

ω0= fundamental frequency = 2π/T 

There are two basic periodic signals: 

or x n = x n + N . 

x(t) = cos ω0t sinusoidal & 
 

x(t) = ejω0t
 complexexponential 

 

These two signals are periodic with period T = 2π/ω0 . 

A set of harmonically related complex exponentials can be represented as {ϕk (t)} 
 

jkω0t jk( 2π )t 

ϕk(t) = {e } = {e T }where k = 0 ± 1, ±2. . n ............... (1) 
 

All these signals are periodic with period T 

According to orthogonal signal space approximation of a function x t with n, mutually orthogonal functions is given 
by 

 

 

x(t) = 

∞ 

∑ 
k=−∞ 

akejkω0t ........... (2) 



k=−∞ 

∞ 

= ∑ 
k=−∞ 

akkejkω0t 

 

Where ak = Fourier coefficient = coefficient of approximation. This 

signal xt is also periodic with period T. 

Equation 2 represents Fourier series representation of periodic signal xt. The term k = 

0 is constant. 

The term k = ±1 having fundamental frequency ω0 , is called as 1st harmonics. 

The term k = ±2 having fundamental frequency 2ω0 , is called as 2nd harmonics, and so on... The term k = 

±n having fundamental frequency nω0, is called as nth harmonics. 

Deriving Fourier Coefficient 
 

We know that x(t) = Σ∞ akejkω0t  ................ (1) 
 

Multiply e−jnω0t
 on both sides. Then 

 

x(t)e−jnω0t 

 

 

∞ 

= ∑ 
k=−∞ 

 

ake
jkω0t . e−jnω0t 

 

Consider integral on both sides. 

T T ∞ 

∫ x(t)ejkω0tdt = ∫ 
0 0 

 
T 

∑ 
k=−∞ 

∞ 

ake
jkω0t . e−jnω0tdt 

= ∫ ∑ 
0 k=−∞ 

ake
j(k−n)ω0t . dt 

T 

∫ x(t)ejkω0tdt = 
0 

∞ 

∑ 
k=−∞ 

T 

ak ∫ 
0 

ej(k−n)ω0t dt ............. (2) 

 

by Euler's formula, 
 

T T 

∫ ej(k−n)ω0tdt. = ∫ 
0 0 

T 

cos(k − n)ω0dt + j ∫ 
0 

 

sin(k − n)ω0t dt 

 

T 

∫ ej(k−n)ω0t 
0 

dt.= { 
T

 
0 

k = n k 

≠ n 

Hence in equation 2, the integral is zero for all values of k except at k = n. Put k = n in equation 2. 



 

T 

⇒ ∫ x(t)e−jnω0tdt = anT 
0 

⇒ an = ∫ 
1 

T 
−jnω t 

T 
e 0 dt 

0 

Replace n by k. 

⇒ ak = ∫ 
1 

T 

e −jkω t 0 

T 

∞ 

dt 
0 

∴  x(t) = 
∑ ake

j(k−n)ω0t 

k=−∞ 

whereak = ∫ 
1 

T 
−jkω t 

T 
e 0 dt 

0 
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These are properties of Fourier series: 
 

Linearity Property 
 

If 
fourier series coefficient fourier series coefficient 

x(t) ←−  − − −− − − → fxn & y(t) ←− − − −− − − → fyn 
 

then linearity property states that 
 

fourier series coefficient 

a x(t) + b y(t) ←−  − − −− − − → a fxn + b fyn 
 

Time Shifting Property 
 

If 
fourier series coefficient 

x(t) ←−  − − −− − − → fxn 
 

then time shifting property states that 
 

fourier series coefficient −jnω0t0 

x(t − t0) ←− − − −− − − → e fxn 

 

Frequency Shifting Property 
 

If 
fourier series coefficient 

x(t) ←−  − − −− − − → fxn 
 

then frequency shifting property states that 
 

ejnω0t0 fourier series coefficient 

. x(t) ←− − − −− − − → fx(n−n0 ) 

 

Time Reversal Property 
 

If 
fourier series coefficient 

x(t) ←−  − − −− − − → fxn 
 

then time reversal property states that 
 

If 
fourier series coefficient 

x(−t) ←−  − − −− − − → f−xn 
 

Time Scaling Property 
 

If 
fourier series coefficient 

x(t) ←−  − − −− − − → fxn 
 

then time scaling property states that 
 

If 
fourier series coefficient 

x(at) ←−  − − −− − − → fxn 
 

Time scaling property changes frequency components from ω0 to aω0 . 

Differentiation and Integration Properties 
 

If 
fourier series coefficient 

x(t) ←−  − − −− − − → fxn 



then differentiation property states that 
 

If 
dx(t) fourier series coefficient 

dt 
←− − − −− − − → jnω0. fxn 

 

& integration property states that 
 

If 
fourier series   coefficient fxn 

∫ x(t)dt ←−  − − −− − − → jnω0 
 

Multiplication and Convolution Properties 
 

If 
fourier series coefficient fourier series coefficient 

x(t) ←−  − − −− − − → fxn & y(t) ←− − − −− − − → fyn 
 

then multiplication property states that 
 

fourier series coefficient 

x(t). y(t) ←− − − −− − − → Tfxn ∗  fyn 
 

& convolution property states that 
 

fourier series coefficient 

x(t) ∗  y(t) ←− − − −− − − → Tfxn. fyn 
 

Conjugate and Conjugate Symmetry Properties 
 

If 
fourier series coefficient 

x(t) ←−  − − −− − − → fxn 
 

Then conjugate property states that 
 

fourier series coefficient 

x ∗  (t) ←− − − −− − − → f ∗ xn 
 

Conjugate symmetry property for real valued time signal states that 

f ∗ xn  = f−xn 

& Conjugate symmetry property for imaginary valued time signal states that 

f ∗ xn  = −f−xn 
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Trigonometric Fourier Series TFS 

sin nω0 t and sin mω0 t are orthogonal over the interval (t0 , t0 + 2π ) . So sin ω0 t, sin 2ω0 t forms 
ω0 

an orthogonal set. This set is not complete without {cos nω0 t } because this cosine set is also 
orthogonal to sine set. So to complete this set we must include both cosine and sine terms. Now the complete 

orthogonal set contains all cosine and sine terms i.e. {sin nω0 t, cos nω0 t } where n=0, 1, 2... 

∴  Any function xt in the interval (t0 , t0 + 2π ) can be represented as 
ω0 

x(t) = a0 cos 0ω0t + a1 cos 1ω0t + a2 cos 2ω0t+. . . +an cos nω0t+. . . 

+b0 sin 0ω0t + b1 sin 1ω0t+. . . +bn sin nω0t+. . . 

= a0 + a1 cos 1ω0t + a2 cos 2ω0t+. . . +an cos nω0t+. . . 

+b1 sin 1ω0t+. . . +bn sin nω0t+. . . 

∞ 

∴  x(t) = a0 + ∑(an cos nω0t + bn sin nω0t) (t0 < t < t0 + T ) 
n=1 

The above equation represents trigonometric Fourier series representation of xt. 

∫ t0 +T  
x(t) ⋅  1dt 1 t0 +T    t0  

Where a0 =   
t +T 

= ⋅  ∫ x(t)dt 
∫ 0            12dt T t0 

t0 

∫ t0 +T  
x(t) ⋅  cos nω0 t dt 

   t0  

an = 
∫ t0 +T  

cos2 nω0 t dt 
t0 

∫ t0 +T  
x(t) ⋅  sin nω0 t dt 

   t0  

bn = 
∫ t0 +T  

sin2 nω0t dt 
t0 

t0 +T t0 +T 

Here ∫ cos2 nω  t dt = ∫ sin2 nω  t dt = 
T

 0 0 
2

 
t0 t0 

2 t0 +T 
∴  an =  ⋅  ∫  x(t) ⋅  cos 

nω0t dt T  t0 

2 t0 +T 
bn =  ⋅  ∫ x(t)  ⋅   sin   nω0t   

dt T  t0 

Exponential Fourier Series EFS 

Consider a set of complex exponential functions {ejnω0t } (n = 0, ±1, ±2...)  which is orthogonal over the 

interval (t0 , t0 + T ) . Where T = 2π 
. This is a complete set so it is possible to represent 

ω0 

any function ft as shown below 

f(t) = F0 + F1ejω0 t  + F2ej2ω0 t +. . . +Fnejnω0 t +. . . 

F−1e−jω0 t + F−2e−j2ω0 t+. . . +F−ne−jnω0 t +. . . 

∞ 

∴  f(t) =  ∑  Fnejnω0 t (t0 < t < t0 + T)  ............... (1) 
n=−∞ 

Equation 1 represents exponential Fourier series representation of a signal ft over the interval (t0, t0+T). The 

Fourier coefficient is given as 

∫ t0 +T  
f(t)(ejnω0 t )∗ dt 

  t0  Fn = 
t +T 

∫ 0 ejnω0t (ejnω0t )∗  dt 
t0 

∫ 
t0 +T  

f(t)e−jnω0 tdt 
=

  t0  

∫ t0 +T  e−jnω0tejnω0tdt 
t0 

∫ 
t0 +T  

f(t)e−jnω0 tdt 1 t0 +T 

=   t0    = ∫ f(t)e−jnω0 tdt 
∫ t0 +T  

1 dt T    t 
t0 

0
 

1 t0 +T 
−jnω t 

∴  Fn =  ∫ f(t)e 0 dt 
T    t0 

Relation Between Trigonometric and Exponential Fourier Series 

Consider a periodic signal xt, the TFS & EFS representations are given below respectively  

x(t) = a0 + Σ∞  (an cos nω0t + bn sin nω0t)................... (1) 
n=1 

x(t) = Σ∞ F  ejnω0 t 
n=−∞ n 

 

= F0 + F1ejω0 t  + F2ej2 ω0 t +. . . +Fnejnω0 t +. . . 

F−1e−jω0 t + F−2e−j2ω0 t+. . . +F−ne−jnω0 t +. . . 

= F0 + F1(cos ω0t + j sin ω0t) + F2(cos2ω0t + j sin 2ω0t)+. . . +Fn (cos nω0t + j sin nω0t)+. . 

= F0 + (F1 + F−1) cos ω0t + (F2 + F−2) cos 2ω0t+ ...............+j(F1 − F−1) sin ω0t + j(F2 − F−2) sin 

∴  x(t) = F0 + Σ∞   ((Fn + F−n ) cos nω0t + j(Fn − F−n ) sin nω0t) ........................ (2) 
n=1 

Compare equation 1 and 2. 

a0 = F0 

an = Fn + F−n 

bn = j(Fn − F−n ) 

Similarly, 

 

http://www.tutorialspoint.com/signals_and_systems/fourier_series_types.htm


 

 

 

 

 

 
. +F−1(cos ω0t − j sin ω0t) + F−2(cos 2ω0t − j sin 2ω0t)+. . . +F−n (cos nω0t − j sin nω0t)+. . . 2ω0t+. . . 



2 

2 

Fn = 1 (an − jbn ) 

F−n = 1 (an + jbn ) 



k=−∞ 

k=−∞ 

T 

T 

2 

[∫ 

∫ [ 

UNIT 2 - FOURIER TRANSFORMS 
 
 

 

The main drawback of Fourier series is, it is only applicable to periodic signals. There are some naturally 
produced signals such as nonperiodic or aperiodic, which we cannot represent using Fourier series. To 
overcome this shortcoming, Fourier developed a mathematical model to transform signals between time 

orspatial domain to frequency domain & vice versa, which is called 'Fourier transform'. 

Fourier transform has many applications in physics and engineering such as analysis of LTI systems, 
RADAR, astronomy, signal processing etc. 

Deriving Fourier transform from Fourier series 

Consider a periodic signal ft with period T. The complex Fourier series representation of ft is given as 
 

∞ 

f(t) = ∑ 
k=−∞ 

∞ 

ake
jkω0t 

 

j 2π kt 

 

 

 
Let 

 1
 

T0 

= 
 

= Δf , then equation 1 becomes 

∑ 
k=−∞ 

ake T0 . . . . . . (1) 

 

f(t) = ∑∞ 

but you know that 

akej2πkΔft ............. (2) 

 

ak =
 1 

0 

t0+T 

t0 f(t)e−jkω0t dt 
 

Substitute in equation 2. 

 

2 ⇒ f(t) = Σ∞  1 
0 

 

t0+T 

t0 

 
f(t)e−jkω0t dtej2πkΔft 

Let t0 = T 

 

T 
∞ 2 

k=−∞ −T 
2 

f(t)e−j2πkΔft dt] ej2πkΔft . Δf 

 

In the limit as T → ∞, Δf approaches differential df, kΔf becomes a continuous variable f, 
and summation becomes integration 

 

 
f(t) = limT→∞ 

T 
2 

∞ 
k=−∞ −T 

2 

f(t)e−j2πkΔft dt] ej2πkΔft . Δf} 

∞ 

= ∫ [∫ 

∞ 

f(t)e−j2πft dt]ej2πft df 

−∞ −∞ 

∫ 

∫ 

= Σ 

{Σ 



∞ 

f(t) = ∫ F [ω]ejωt dω 
−∞ 

Where F [ω] = [∫ ∞ f(t)e−j2πft dt] 
−∞ 

Fourier transform of a signal 

∞ 

f(t) = F [ω] = [∫ f(t)e−jωt dt] 
−∞ 

Inverse Fourier Transform is 

∞ 

f(t) = ∫ F [ω]ejωt dω 
−∞ 

Fourier Transform of Basic Functions 

Let us go through Fourier Transform of basic functions: 
 

FT of GATE Function 

 

 

 

 

 

 
 

 

 

 

 

F[ω] = ATSa( 
ωT 

) 
2 

 
FT of Impulse Function 

FT [ω(t)] = [∫ ∞ δ(t)e−jωt dt] 
−∞ 

= e−jωt | t = 0 

= e0 = 1 

∴  δ(ω) = 1  

FT of Unit Step Function: 

U(ω) = πδ(ω) + 1/jω 

 



⟷ 

−∞ 

FT of Exponentials 
 

e−at 

 
e−at 

F.T 

u(t) ⟷ 1/(a + jω) 

F.T 

u(t) ⟷ 1/(a + jω) 
 

e−a | t | F.T 2a  

 

ejω0t 

 

 
F.T 

a2 +ω2 

⟷ δ(ω − ω0) 

FT of Signum Function 

F.T  2 

sgn(t) ⟷ 
jω

 

 

Conditions for Existence of Fourier Transform 

Any function ft can be represented by using Fourier transform only when the function satisfies Dirichlet’s 
conditions. i.e. 

The function ft has finite number of maxima and minima. 

There must be finite number of discontinuities in the signal ft,in the given interval of time. It must be 

absolutely integrable in the given interval of time i.e. 

∞ | f(t)| dt < ∞ ∫ 



 



X 
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Here are the properties of Fourier Transform: 
 

Linearity Property 
 

F.T 

If x(t) ⟷ X(ω) 
 

F.T 

& y(t) ⟷ Y (ω) 

Then linearity property states that 
 

F.T 

ax(t) + by(t) ⟷ aX(ω) + bY (ω) 
 

Time Shifting Property 
 

F.T 

If x(t) ⟷ X(ω) 

Then Time shifting property states that 
 

F.T −jωt0 

x(t − t0) ⟷ e X(ω) 
 

Frequency Shifting Property 
 

F.T 

If x(t) ⟷ X(ω) 

Then frequency shifting property states that 
 

ejω0t 
F.T 

. x(t) ⟷ X(ω − ω0) 
 

Time Reversal Property 
 

F.T 

If x(t) ⟷ X(ω) 

Then Time reversal property states that 
 

F.T 

x(−t) ⟷ X(−ω) 
 

Time Scaling Property 
 

F.T 

If x(t) ⟷ X(ω) 

Then Time scaling property states that 

x(at)  1 ω 
| a | a 

 

Differentiation and Integration Properties 
 

F.T 

If x(t) ⟷ X(ω) 

Then Differentiation property states that 



 

dx(t) 

dt 

F.T 

⟷ jω. X(ω) 

dn x(t) 

dtn 
⟷ (jω) . X(ω) 
F.T 

n 

and integration property states that 

∫ x(t) dt ⟷ 
jω 

F.T 
1 X(ω) 

F.T 

∭. . . ∫ x(t) dt ⟷ 
1 

(jω) n X(ω) 

Multiplication and Convolution Properties 

F.T 

If x(t) ⟷ X(ω) 

F.T 

& y(t) ⟷ Y (ω) 

Then multiplication property states that 

F.T 

x(t). y(t) ⟷ X(ω) ∗  Y (ω) 

and convolution property states that 

x(t) ∗  y(t) ⟷ 
2π 

F.T 
1 X(ω). Y (ω) 



n=1 

s 

∫ 

∫ 

SSIIGGNNAALLSS SSAAMMPPLLIINNGG TTHHEEOORREEMM 

 
 

Statement: A continuous time signal can be represented in its samples and can be recovered back when 
sampling frequency fs is greater than or equal to the twice the highest frequency component of message 

signal. i. e. 
 

fs ≤ 2fm. 

Proof: Consider a continuous time signal xt. The spectrum of xt is a band limited to fm Hz i.e. the spectrum of 

xt is zero for |ω|>ωm. 

Sampling of input signal xt can be obtained by multiplying xt with an impulse train δt of period Ts. The output of 

multiplier is a discrete signal called sampled signal which is represented with yt in the following diagrams: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Here, you can observe that the sampled signal takes the period of impulse. The process of sampling 
can be explained by the following mathematical expression: 

Sampled signal y(t) = x(t). δ(t) .................. (1) 

The trigonometric Fourier series representation of δt is given by 

δ(t) = a0 + Σ∞ (an cos nωs t + bn sin nωs t) ................. (2) 
 

Where a0 = 
T 

1 2 

Ts 
−T 

2 

δ(t)dt = 1  δ(0) = 1 
Ts Ts 

 

an = 
T 

2 2 

Ts 
−T 

2 

δ(t) cos nωs dt = 
2 δ(0) cos nω  0 = 2 

T2 T 



s 

T 

T 

∫ 

( 

( 

bn = 
T 

 
 

2 2 

Ts 
−T 

2 

δ(t) sin nωs t dt = 2 δ(0) sin nω 0 = 0 
Ts 

Substitute above values in equation 2. 
 

δ(t) =  1 
Ts 

∞ 2 
n=1   Ts 

cos nωs t + 0) 

Substitute δt in equation 1. 

→ y(t) = x(t). δ(t) 
 

= x(t)[ 1 
Ts 

∞ 2 
n=1   Ts 

cos nωs t)] 

= 1 [x(t) + 2Σ∞ (cos nωs t)x(t)] 
Ts n=1 

 

y(t) = 1 [x(t) + 2 cos ωs t. x(t) + 2 cos 2ωs t. x(t) + 2 cos 3ωs t. x(t) .......................] 
s 

Take Fourier transform on both sides. 
 

Y (ω) = 1 [X(ω) + X(ω − ωs ) + X(ω + ωs ) + X(ω − 2ωs ) + X(ω + 2ωs )+ . . . ] 
s 

∴  Y (ω) = 1 Σ∞ X(ω − nω ) where n = 0, ±1, ±2, . . . 
Ts 

n=−∞ s 

To reconstruct xt, you must recover input signal spectrum Xω from sampled signal spectrum Yω, which is 

possible when there is no overlapping between the cycles of Yω. 

Possibility of sampled frequency spectrum with different conditions is given by the following diagrams: 
 

Aliasing Effect 

The overlapped region in case of under sampling represents aliasing effect, which can be 

+ Σ 

+ Σ 

∴  



 

removed by 

considering fs >2fm 

By using anti aliasing filters. 



n=−∞ 

n=−∞ 

n=−∞ 

SSIIGGNNAALLSS SSAAMMPPLLIINNGG TTEECCHHNNIIQQUUEESS 

 
 

There are three types of sampling techniques: Impulse 

sampling. 

Natural sampling. 

Flat Top sampling. 

Impulse Sampling 

Impulse sampling can be performed by multiplying input signal xt with impulse train 
∞ 
n=−∞ δ(t − nT ) of period 'T'. Here, the amplitude of impulse changes with respect to amplitude 

of input signal xt. The output of sampler is given by 

 
 
 
 
 
 
 
 
 
 

 

y(t) = x(t) × impulse train 
 

= x(t) × Σ∞ δ(t − nT ) 

y(t) = yδ(t) = Σ∞ x(nt)δ(t − nT ) ............... 1 
n=−∞ 

To get the spectrum of sampled signal, consider Fourier transform of equation 1 on both sides 

Y (ω) = 1 Σ∞ X(ω − nω ) 
T n=−∞ s 

This is called ideal sampling or impulse sampling. You cannot use this practically because pulse width cannot be 
zero and the generation of impulse train is not possible practically. 

Natural Sampling 

Natural sampling is similar to impulse sampling, except the impulse train is replaced by pulse train 

of period T. i.e. you multiply input signal xt to pulse train Σ∞
 P (t − nT ) as shown below 

 
 
 
 
 
 
 
 
 

 
The output of sampler is 

y(t) = x(t) × pulse train 

= x(t) × p(t) 
 

= x(t) × Σ∞ P (t − nT ).............. (1) 

Σ 



T −T 

TP 

The exponential Fourier series representation of pt can be given as 
 

p(t) = Σ∞ F  ejnωs t  ................ (2) 
n=−∞ n 

 

= Σ∞ F  ej2πnfs t 
n=−∞ n 

 

Where Fn = 1
 

T 

2 p(t)e−jnωs tdt 
2 

  1 (nωs ) 
 

Substitute Fn value in equation 2 
 

∴  p(t) = Σ∞ 1 P(nω )ejnωst 
n=−∞ T 

= 1 Σ∞ 
 
P(nω 

s 

 
)ejnωst 

T n=−∞ s 
 

Substitute pt in equation 1 

y(t) = x(t) × p(t) 
 

= x(t) × 1 Σ∞ P(nω ) ejnωst 

T n=−∞ s 
 

y(t) = 1 Σ∞ P(nω ) x(t) ejnωs t 

T n=−∞ s 
 

To get the spectrum of sampled signal, consider the Fourier transform on both sides. 
 

F . T [y(t)] = F . T[ 1 Σ∞ P(nω ) x(t) ejnωs t ] 
T 

 
= 1 Σ∞ 

n=−∞ 
 

P(nω 

s 

 
) F . T [x(t) ejnωs t ] 

T n=−∞ s 
 

According to frequency shifting property 
 

F . T [x(t) ejnωs t ] = X[ω − nωs ] 
 

∴  Y [ω] = 1 Σ∞ P(nω ) X[ω − nω ] 
T n=−∞ s s 

 

Flat Top Sampling 

During transmission, noise is introduced at top of the transmission pulse which can be easily removed if the pulse 
is in the form of flat top. Here, the top of the samples are flat i.e. they have constant amplitude. Hence, it is called 
as flat top sampling or practical sampling. Flat top sampling makes use of sample and hold circuit. 

 

Theoretically, the sampled signal can be obtained by convolution of rectangular pulse pt with ideally 

sampled signal say yδt as shown in the diagram: 

∫ 

= 



2 

i.e. y(t) = p(t) × yδ(t) ................. (1) 
 

 
 

 

 

 

 

 

 

 

To get the sampled spectrum, consider Fourier transform on both sides for equation 1 

Y [ω] = F. T [P (t) × yδ(t)] 

By the knowledge of convolution property, 

Y [ω] = P (ω) Yδ (ω) 

Here P (ω) = TSa( ωT ) = 2 sin ωT /ω 
 

Nyquist Rate 

It is the minimum sampling rate at which signal can be converted into samples and can be recovered 
back without distortion. 

Nyquist rate fN = 2fm hz 
 

Nyquist interval =  
1
 

fN 
= 

1 

2fm 
seconds. 

 

Samplings of Band Pass Signals 

In case of band pass signals, the spectrum of band pass signal X[ω] = 0 for the frequencies outside the range f1 ≤ 

f ≤ f2. The frequency f1 is always greater than zero. Plus, there is no aliasing effect when fs > 2f2. But it has two 

disadvantages: 

The sampling rate is large in proportion with f2. This has practical limitations. The sampled 

signal spectrum has spectral gaps. 

To overcome this, the band pass theorem states that the input signal xt can be converted into its samples and can 

be recovered back without distortion when sampling frequency fs < 2f2. 

Also, 
 

 

 
Where m is the largest integer < 

f2
 

B 

1 
fs = 

T 
= 

2f2 

m 

and B is the bandwidth of the signal. If f2=KB, then 
 

1 
fs = 

T 
= 

2KB 

m 

For band pass signals of bandwidth 2fm and the minimum sampling rate fs= 2 B = 4fm, 
 

the spectrum of sampled signal is given by Y [ω] = 1 Σ∞ X[ω − 2nB] 
T n=−∞ 



UNIT 3 - SIGNAL TRANSMISSION THROUGH LTI SYSTEM 
 
 
 

Systems are classified into the following categories: Liner 

and Non-liner Systems 

Time Variant and Time Invariant Systems 

Liner Time variant and Liner Time invariant systems Static and 

Dynamic Systems 

Causal and Non-causal Systems Invertible 

and Non-Invertible Systems Stable and 

Unstable Systems 

Liner and Non-liner Systems 

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two systems 

with inputs as x1t, x2t, and outputs as y1t, y2t respectively. Then, according to the superposition and 

homogenate principles, 

T [a1 x1t + a2 x2t] = a1 T[x1t] + a2 T[x2t] 

∴ , T [a1 x1t + a2 x2t] = a1 y1t + a2 y2t 

From the above expression, is clear that response of overall system is equal to response of individual 
system. 

Example: 
 

t = x2t 

Solution: 

y1 t = T[x1t] = x1
2t y2 

t = T[x2t] = x2
2t 

T [a1 x1t + a2 x2t] = [ a1 x1t + a2 x2t]2 

Which is not equal to a1 y1t + a2 y2t. Hence the system is said to be non linear. 

Time Variant and Time Invariant Systems 

A system is said to be time variant if its input and output characteristics vary with time. Otherwise, the system is 
considered as time invariant. 

The condition for time invariant system is: y n, t 

= yn − t 

The condition for time variant system is: y n, t 

≠ yn − t 

Where y n, t = T[xn − t] = input change 

y n − t = output change 

Example: 



yn = x−n 

yn, t = T[xn − t] = x−n − t yn − t 

= x−(n − t) = x−n + t 

∴  yn, t ≠ yn − t. Hence, the system is time variant. 

Liner Time variant LTV and Liner Time Invariant LTI Systems 
 

If a system is both liner and time variant, then it is called liner time variant LTV system. 

If a system is both liner and time Invariant then that system is called liner time invariant LTI system. 

 

Static and Dynamic Systems 

Static system is memory-less whereas dynamic system is a memory system. 

Example 1: yt = 2 xt 

For present value t=0, the system output is y0 = 2x0. Here, the output is only dependent upon present input. 
Hence the system is memory less or static. 

Example 2: yt = 2 xt + 3 xt − 3 

For present value t=0, the system output is y0 = 2x0 + 3x−3. 

Here x−3 is past value for the present input for which the system requires memory to get this output. Hence, the 
system is a dynamic system. 

 

Causal and Non-Causal Systems 

A system is said to be causal if its output depends upon present and past inputs, and does not depend 
upon future input. 

For non causal system, the output depends upon future inputs also. 

Example 1: yn = 2 xt + 3 xt − 3 

For present value t=1, the system output is y1 = 2x1 + 3x−2. 

Here, the system output only depends upon present and past inputs. Hence, the system is causal. 

Example 2: yn = 2 xt + 3 xt − 3 + 6xt + 3 

For present value t=1, the system output is y1 = 2x1 + 3x−2 + 6x4 Here, the system output depends upon future 
input. Hence the system is non-causal system. 

 

Invertible and Non-Invertible systems 

A system is said to invertible if the input of the system appears at the output. 
 

 

YS = XS H1S H2S 

= XS H1S ·  1 
 

(H1(S)) 

 

Since H2S = 1/H1(S ) 

 

∴ , YS = XS 



→ yt = xt 

Hence, the system is invertible. 

If yt ≠ xt, then the system is said to be non-invertible. 

Stable and Unstable Systems 

The system is said to be stable only when the output is bounded for bounded input. For a bounded input, if the 
output is unbounded in the system then it is said to be unstable. 

Note: For a bounded signal, amplitude is finite. 
 

Example 1: y t = x2t 
 

Let the input is ut unitstepboundedinput 

Hence, the system is stable. 

Example 2: y t = ∫ x(t) dt 

then the output yt = u2t = ut = bounded output. 

 

Let the input is u t unitstepboundedinput then the output yt = ∫ u(t) dt = ramp signal 

unboundedbecauseamplitudeoframpisnotfiniteitgoestoinfinitewhent$ → $infinite . 

Hence, the system is unstable. 



−∞ 

−∞ 

UNIT 4 - CONVOLUTION AND CORRELATION OF SIGNALS 
 
 

 

Convolution 

Convolution is a mathematical operation used to express the relation between input and output of an LTI 
system. It relates input, output and impulse response of an LTI system as 

y(t) = x(t) ∗  h(t) 
 

Where y t = output of LTI 

x t = input of LTI 

h t = impulse response of LTI There 

are two types of convolutions: 

Continuous convolution 

Discrete convolution 

Continuous Convolution 
 
 
 
 
 

y(t) = x(t) ∗  h(t) 

∞ x(τ)h(t − τ)dτ 
 

or 

∞ x(t − τ)h(τ)dτ 
 

Discrete Convolution 
 
 
 
 
 
 

y(n) = x(n) ∗  h(n) 
 

∞ 
k=−∞ 

x(k)h(n − k) 

or 

∞ 
k=−∞ 

 
 

x(n − k)h(k) 

By using convolution we can find zero state response of the system. 

Deconvolution 

Deconvolution is reverse process to convolution widely used in signal and image processing. 

Properties of Convolution Commutative 

Property 

= ∫ 

= ∫ 

= Σ 

= Σ 



x1(t) ∗  x2(t) = x2(t) ∗  x1(t) 

Distributive Property 

x1(t) ∗  [x2(t) + x3(t)] = [x1(t) ∗  x2(t)] + [x1(t) ∗  x3(t)] 

Associative Property 

x1(t) ∗  [x2(t) ∗  x3(t)] = [x1(t) ∗  x2(t)] ∗  x3(t) 

Shifting Property 

x1(t) ∗  x2(t) = y(t) 

x1(t) ∗  x2(t − t0) = y(t − t0) 

x1(t − t0) ∗  x2(t) = y(t − t0) 

x1(t − t0) ∗  x2(t − t1) = y(t − t0 − t1) 

Convolution with Impulse 

x1(t) ∗  δ(t) = x(t) 

x1(t) ∗  δ(t − t0) = x(t − t0) 

Convolution of Unit Steps 

u(t) ∗  u(t) = r(t) 

u(t − T1) ∗  u(t − T2) = r(t − T1 − T2) 

u(n) ∗  u(n) = [n + 1]u(n) 
 

Scaling Property 

If x(t) ∗  h(t) = y(t) 

then x(at) ∗  h(at) = 
  1 y(at) 
|a| 

 

Differentiation of Output 

if y(t) = x(t) ∗  h(t) 
 

then 
dy(t) 

dt 
= 

dx(t) 

dt 
∗  h(t) 

or 

dy(t) 

dt 

 

= x(t) ∗  
dh(t)

 
dt 

Note: 

Convolution of two causal sequences is causal. Convolution of 

two anti causal sequences is anti causal. 

Convolution of two unequal length rectangles results a trapezium. Convolution 

of two equal length rectangles results a triangle. 



−∞ 

−∞ 
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A function convoluted itself is equal to integration of that function. 

Example: You know that u(t) ∗  u(t) = r(t) 

According to above note, u(t) ∗  u(t) = ∫ u(t)dt = ∫ 1dt = t = r(t) 

Here, you get the result just by integrating u(t). 

Limits of Convoluted Signal 

If two signals are convoluted then the resulting convoluted signal has following range: 

Sum of lower limits < t < sum of upper limits 

Ex: find the range of convolution of signals given below 
 

Here, we have two rectangles of unequal length to convolute, which results a trapezium. The range 

of convoluted signal is: 

Sum of lower limits < t < sum of upper limits 

−1 + −2 < t < 2 + 2 

−3 < t < 4 

Hence the result is trapezium with period 7. 

Area of Convoluted Signal 

The area under convoluted signal is given by Ay = Ax Ah 

Where Ax = area under input signal 

Ah = area under impulse response Ay = 

area under output signal 

Proof: y(t) = ∫ 
∞

 x(τ)h(t − τ)dτ 
 

Take integration on both sides 

∫ y(t)dt = ∫ ∫ ∞ x(τ)h(t − τ)dτdt 
 

= ∫ x(τ)dτ ∫ ∞ h(t − τ)dt 
 

We know that area of any signal is the integration of that signal itself. 

∴  Ay = Ax Ah 

DC Component 



DC component of any signal is given by 

DC component =
 area of the signal  

period of the signal 
 

Ex: what is the dc component of the resultant convoluted signal given below? 
 

Here area of x1t = length × breadth = 1 × 3 = 3 area of 

x2t = length × breadth = 1 × 4 = 4 

area of convoluted signal = area of x1t × area of x2t 

= 3 × 4 = 12 

Duration of the convoluted signal = sum of lower limits < t < sum of upper limits 

= -1 + -2 < t < 2+2 

= -3 < t < 4 

Period=7 
 

∴  Dc component of the convoluted signal = 
area of the signal period 

of the signal 

Dc component = 
12
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Discrete Convolution 

Let us see how to calculate discrete convolution: 

i. To calculate discrete linear convolution: 

Convolute two sequences x[n] = {a,b,c} & h[n] = [e,f,g] 
 

Convoluted output = [ ea, eb+fa, ec+fb+ga, fc+gb, gc] 

Note: if any two sequences have m, n number of samples respectively, then the resulting convoluted sequence 
will have [m+n-1] samples. 

Example: Convolute two sequences x[n] = {1,2,3} & h[n] = {-1,2,2} 
 



 
 

Convoluted output y[n] = [ -1, -2+2, -3+4+2, 6+4, 6] 

= [-1, 0, 3, 10, 6] 

Here x[n] contains 3 samples and h[n] is also having 3 samples so the resulting sequence having 3+3-1 = 5 
samples. 

ii. To calculate periodic or circular convolution: 

Periodic convolution is valid for discrete Fourier transform. To calculate periodic convolution all the samples 
must be real. Periodic or circular convolution is also called as fast convolution. 

If two sequences of length m, n respectively are convoluted using circular convolution then resulting 
sequence having max [m,n] samples. 

Ex: convolute two sequences x[n] = {1,2,3} & h[n] = {-1,2,2} using circular convolution 
 

Normal Convoluted output y[n] = [ -1, -2+2, -3+4+2, 6+4, 6]. 

= [-1, 0, 3, 10, 6] 

Here x[n] contains 3 samples and h[n] also has 3 samples. Hence the resulting sequence obtained by circular 
convolution must have max[3,3]= 3 samples. 

Now to get periodic convolution result, 1st 3 samples [as the period is 3] of normal convolution is same next two 
samples are added to 1st samples as shown below: 

 

∴  Circular convolution result y[n] = [9 6 3] 

Correlation 

Correlation is a measure of similarity between two signals. The general formula for correlation is 



0 ∫ 

∞ 

−∞ 

∞ 

∫ x1(t)x2(t − τ)dt 
−∞ 

There are two types of correlation: 

Auto correlation 

Cros correlation 

Auto Correlation Function 
 

It is defined as correlation of a signal with itself. Auto correlation function is a measure of similarity between a 

signal & its time delayed version. It is represented with R$τ$. 

Consider a signals xt. The auto correlation function of xt with its time delayed version is given by 

∞ 

R11(τ) = R(τ) = ∫ 
−∞ 

∞ 

x(t)x(t − τ)dt [+ve shift] 

= ∫ x(t)x(t + τ)dt [-ve shift] 
−∞ 

Where τ = searching or scanning or delay parameter. 

If the signal is complex then auto correlation function is given by 

∞ 

R11(τ) = R(τ) = ∫ 
−∞ 

∞ 

x(t)x ∗  (t − τ)dt [+ve shift] 

= ∫ x(t + τ)x ∗  (t)dt [-ve shift] 
−∞ 

Properties of Auto-correlation Function of Energy Signal 

Auto correlation exhibits conjugate symmetry i.e. R $τ$ = R*−$τ$ 

Auto correlation function of energy signal at origin i.e. at τ =0 is equal to total energy of that signal, which is 

given as: 
 

R = E = 
∞

 
−∞ 

| x(t) |2 dt 

Auto correlation function 
1 

, 
τ 

Auto correlation function is maximum at τ =0 i.e |R $τ$ | ≤ R 0 ∀  τ 

Auto correlation function and energy spectral densities are Fourier transform pairs. i.e. 

F. T [R(τ)] = Ψ(ω) 

Ψ(ω) = ∫ ∞ R(τ)e−jωτ dτ 
 

R(τ) = x(τ) ∗  x(−τ) 
 

Auto Correlation Function of Power Signals 

The auto correlation function of periodic power signal with period T is given by 
 

 
R(τ) = 

 
lim 

T 

1 2 

∫ x(t)x ∗  (t − τ)dt 
T →∞ T −T 

2 



∞ 

−∞ 

2 

2 

Properties 

Auto correlation of power signal exhibits conjugate symmetry i.e. R(τ) = R ∗  (−τ) 

Auto correlation function of power signal at τ = 0 atoriginis equal to total power of that signal. i.e. 

R(0) = ρ 

Auto correlation function of power signal 
1 

, 
τ 

Auto correlation function of power signal is maximum at τ = 0 i.e., 

|R(τ)| ≤ R(0) ∀  τ 

Auto correlation function and power spectral densities are Fourier transform pairs. i.e., 

F. T [R(τ)] = s(ω) 

s(ω) = ∫ ∞ R(τ)e−jωτ dτ 
 

R(τ) = x(τ) ∗  x(−τ) 

Density Spectrum 

Let us see density spectrums: 
 

Energy Density Spectrum 

Energy density spectrum can be calculated using the formula: 

∞ 

 

 
Power Density Spectrum 

E = ∫ 
−∞ 

| x(f) |2df 

 

Power density spectrum can be calculated by using the formula: 
 

 
 

Cross Correlation Function 

∞ 
n=−∞ | Cn|2 

 

Cross correlation is the measure of similarity between two different signals. 

Consider two signals x1t and x2t. The cross correlation of these two signals R12(τ) is given by 

∞ 

R12(τ) = ∫ 
−∞ 

∞ 

x1(t)x2(t − τ) dt [+ve shift] 

 

 

If signals are complex then 

= ∫ x1(t + τ)x2(t) dt [-ve shift] 
−∞ 

∞ 

R12(τ) = ∫ x1(t)x∗ (t − τ) dt [+ve shift] 
−∞ 

∞ 

= ∫ x1(t + τ)x∗ (t) dt [-ve shift] 
−∞ 

P = Σ 



1 

1 

21 

−∞ 2 

T 

2 

∫ 

∫ −T 

∞ 

R21(τ) = ∫ x2(t)x∗ (t − τ) dt [+ve shift] 
−∞ 

∞ 

= ∫ x2(t + τ)x∗ (t) dt [-ve shift] 
−∞ 

 

Properties of Cross Correlation Function of Energy and Power Signals 
 

Auto correlation exhibits conjugate symmetry i.e. R12(τ) = R∗  (−τ) . 

Cross correlation is not commutative like convolution i.e. 

R12(τ) ≠ R21(−τ) 

If R120 = 0 means, if ∫ 
∞

 x1 (t)x∗ (t)dt = 0 , then the two signals are said to be orthogonal. 
 

T 

For power signal if limT →∞  
1 2

 

2 

x(t)x∗ (t) dt 
 
then two signals are said to be orthogonal. 

Cross correlation function corresponds to the multiplication of spectrums of one signal to the complex 
conjugate of spectrum of another signal. i.e. 

R12(τ) ←→ X1(ω)X∗ (ω) 
 

This also called as correlation theorem. 

Parsvel's Theorem 

Parsvel's theorem for energy signals states that the total energy in a signal can be obtained by the spectrum of the 
signal as 

 

1 ∞ 

2π −∞ 
|X(ω)|2dω 

Note: If a signal has energy E then time scaled version of that signal xat has energy E/a. 

E = 



DDIISSTTOORRTTIIOONN  LLEESSSS TTRRAANNSSMMIISSSSIIOONN 

 
 

Transmission is said to be distortion-less if the input and output have identical wave shapes. i.e., in distortion-less 

transmission, the input xt and output yt satisfy the condition: 

y t = Kx(t - td) 

Where td = delay time and k = 

constant. 

Take Fourier transform on both sides FT[ 

y t] = FT[Kx(t - td)] 

= K FT[x(t - td)] 

According to time shifting property, 

= KXwe−jωtd
 

∴  Y (w) = KX(w)e−jωtd
 

Thus, distortionless transmission of a signal xt through a system with impulse response ht is achieved when 

|H(ω)| = K and amplituderesponse 

Φ(ω) = −ωtd = −2πftd phaseresponse 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
A physical transmission system may have amplitude and phase responses as shown below: 
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−∞ 

−∞ 

−∞ 
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2 

∫ 

−∞ 
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UNIT 5 - LAPLACE TRANSFORM 
 
 

 

Complex Fourier transform is also called as Bilateral Laplace Transform. This is used to solve differential 

equations. Consider an LTI system exited by a complex exponential signal of the form x t = Gest. 

Where s = any complex number = σ + jω , σ = 

real of s, and 

ω = imaginary of s 

The response of LTI can be obtained by the convolution of input with its impulse response i.e. 

y(t) = x(t) × h(t) = ∫ ∞ h(τ) x(t − τ)dτ 
 

∞ h(τ) Ges(t−τ) dτ 
 

= Gest. ∫ ∞ h(τ) e(−sτ) dτ 
 

y(t) = Gest. H(S) = x(t). H(S) 

Where HS = Laplace transform of h(τ) = ∫ 
∞

 

 
 

h(τ)e−sτ dτ 
 

Similarly, Laplace transform of x(t) = X(S) = ∫ 
∞

 x(t)e−st dt ............... (1) 
 

Relation between Laplace and Fourier transforms 

Laplace transform of x(t) = X(S) = ∫ 
∞

 

Substitute s= σ + jω in above equation. 

x(t)e−st dt 

→ X(σ + jω) = ∫ ∞ x(t)e−(σ+jω)t dt 
 

∞ [x(t)e−σt ]e−jωt dt 
 

∴  X(S) = F. T [x(t)e−σt ] ................ (2) 

X(S) = X(ω) for s = jω 

Inverse Laplace  Transform You know 

that X(S) = F. T [x(t)e−σt ] 

→ x(t)e−σt = F. T −1[X(S)] = F. T −1[X(σ + jω)] 

= 1 π ∫ ∞ X(σ + jω)ejωt dω 
2 −∞ 

x(t) = eσt 1 
π 

∞ X(σ + jω)ejωt dω 

1 ∞ 

2π −∞ 
X(σ + jω)e(σ+jω)t dω ................. (3) 

Here, σ + jω = s 

jdω = ds → dω = ds/j 

= ∫ 

= ∫ 

∫ 

= 



−∞ 

−∞ 

∴  x(t) = 1 

2πj 
∞  X(s)estds............... (4) 

Equations 1 and 4 represent Laplace and Inverse Laplace Transform of a signal xt. 

Conditions for Existence of Laplace Transform 

Dirichlet's conditions are used to define the existence of Laplace transform. i.e. 

The function ft has finite number of maxima and minima. 

There must be finite number of discontinuities in the signal ft,in the given interval of time. It must be 

absolutely integrable in the given interval of time. i.e. 

∞ | f(t)| dt < ∞ 
 

Initial and Final Value Theorems 

If the Laplace transform of an unknown function xt is known, then it is possible to determine the initial and the final 

values of that unknown signal i.e. xt at t=0+ and t=∞. 

Initial Value Theorem 

Statement: if xt and its 1st derivative is Laplace transformable, then the initial value of xt is given by 
 

 

 
Final Value Theorem 

x(0+) = lim 
s→∞ 

SX(S) 

 

Statement: if xt and its 1st derivative is Laplace transformable, then the final value of xt is given by 
 

x(∞) = lim 
s→∞ 

SX(S) 

∫ 

∫ 
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The properties of Laplace transform are: 
 

Linearity Property 
 

L.T 

If x(t) ⟷ X(s) 

L.T 

& y(t) ⟷ Y (s) 
 

Then linearity property states that 
 

L.T 

ax(t) + by(t) ⟷ aX(s) + bY (s) 
 

Time Shifting Property 
 

L.T 

If x(t) ⟷ X(s) 
 

Then time shifting property states that 
 

L.T −st0 

x(t − t0) ⟷ e X(s) 
 

Frequency Shifting Property 
 

L.T 

If x(t) ⟷ X(s) 
 

Then frequency shifting property states that 
 

es0t 
L.T 

. x(t) ⟷ X(s − s0) 
 

Time Reversal Property 
 

L.T 

If x(t) ⟷ X(s) 
 

Then time reversal property states that 
 

L.T 

x(−t) ⟷ X(−s) 
 

Time Scaling Property 
 

L.T 

If x(t) ⟷ X(s) 
 

Then time scaling property states that 
 

L.T 1 s 
x(at) ⟷ X( ) 

|a| a 
 

Differentiation and Integration Properties 
 

L.T 

If x(t) ⟷ X(s) 
 

Then differentiation property states that 



 

dx(t) 

dt 
⟷ s. X(s) 
L.T 

dn x(t) 

dtn 
⟷ (s) . X(s) 
L.T 

n 

The integration property states that 

∫ x(t)dt ⟷ 
s
 

L.T 
1 X(s) 

∭ . . . ∫ x(t)dt ⟷ 1 X(s) 
L.T 

s n 

Multiplication and Convolution Properties 

L.T 

If x(t) ⟷ X(s) 

L.T 

and y(t) ⟷ Y (s) 

Then multiplication property states that 

x(t). y(t) ⟷ 
2πj 

L.T 1 X(s) ∗  Y (s) 

The convolution property states that 

L.T 

x(t) ∗  y(t) ⟷ X(s). Y (s) 
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The range variation of σ for which the Laplace transform converges is called region of convergence. 

Properties of ROC of Laplace Transform 

ROC contains strip lines parallel to jω axis in s-plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

If xt is absolutely integral and it is of finite duration, then ROC is entire s-plane. If xt is a 

right sided sequence then ROC : Re{s} > σo. 

If xt is a left sided sequence then ROC : Re{s} < σo. 

If xt is a two sided sequence then ROC is the combination of two regions. 

ROC can be explained by making use of examples given below: 
 

Example 1: Find the Laplace transform and ROC of x(t) = e at u(t) 

L. T [x(t)] = L. T [e 

Re > −a 

ROC : Res >> −a 

at u(t)] = 
   1 

S+a 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Example 2: Find the Laplace transform and ROC of x(t) = eatu(−t) 
 

L. T [x(t)] = L. T [eatu(t)] = Res < a 



ROC : Res < a    1 

S−a 



 

 
 

Example 3: Find the Laplace transform and ROC of x(t) = e−atu(t) + eatu(−t) 

L. T [x(t)] = L. T [e−atu(t) + eatu(−t)] =    1 

S+a 
+ 1 

S−a 

For
 1

 
S+a 

For
 1

 
S−a 

Re{s} > −a 

Re{s} < a 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Referring to the above diagram, combination region lies from –a to a. Hence, 

ROC : −a < Res < a 

Causality and Stability 

For a system to be causal, all poles of its transfer function must be right half of s-plane. 
 

A system is said to be stable when all poles of its transfer function lay on the left half of s- plane. 



 
 
 
 
 
 
 
 
 
 

 

A system is said to be unstable when at least one pole of its transfer function is shifted to the right half of 
s-plane. 

 
 
 
 
 
 
 
 
 
 
 

 

A system is said to be marginally stable when at least one pole of its transfer function lies on the jω axis of 
s-plane. 

 
 
 
 
 
 
 
 
 
 
 

 

ROC of Basic Functions 
 

 

 

u(t) 
1
 

s 

tu(t) 
1

 
s2 

ROC: Re{s} > 0 

ROC:Re{s} > 0 

tn u(t) 

eat u(t) 

 

  n! 

sn+1 

 

    1 

s − a 

 

 

 

ROC:Re{s} > 0 

 
 
 

ROC:Re{s} > a 

ft Fs ROC 



 

 

e−at u(t) 

 

 

eat u(t) 

 

 
e−at 

u(−t) 

 

 
t eat u(t) 

    1 

s + a 
 

 
    1 

− 
s − a 

 

 

− 
1 

s + a 
 

 
  1  

(s − a)2 

 
ROC:Re{s} > -a 

 
 
 

ROC:Re{s} < a 

 
 
 

ROC:Re{s} < -a 

 
 
 

ROC:Re{s} > a 

 

 

n! 
tneat    

u(t) 
 

 

t e−at 

u(t) 

(s 

− a)n+1 

 

  1  

(s + a)2 

ROC:Re{s} > a 

 
 
 

 
ROC:Re{s} > -a 

 

 

n! 
tn e−at    

u(t) 
 

 
 

t eat 

u(−t) 

 

 
tn eat 

u(−t) 

(s 

+ a)n+1 

 

  1  
− 

(s − a)2 

 
 

− 
n! 

(s 

ROC:Re{s} > -a 

 
 
 

 
ROC:Re{s} < a 

 
 
 
 

ROC:Re{s} < a 

− a)n+1 

 

 

 

t e−at 

u(−t) 

 

 
tn e−at 

u(−t) 

  1  
− 

(s + a)2 

 
 

− 
n! 

(s 

 

 
ROC:Re{s} < -a 

 
 
 
 

ROC:Re{s} < -a 

+ a)n+1 



 

e−at cos 

bt 

s + a 

(s + a)2 

+ b2 

e−at sin 

bt 

b 

(s + a)2 

+ b2 



n=−∞ 

n=0 

j 

2π 

2π 

Z-TRANSFORMS 
 
 

 

Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful mathematical tool to 
convert differential equations into algebraic equations. 

 

The bilateral twosided z-transform of a discrete time signal xn is given as 

Z. T [x(n)] = X(Z) = Σ∞ x(n)z−n 
 

The unilateral onesided z-transform of a discrete time signal xn is given as 

Z. T [x(n)] = X(Z) = Σ∞ x(n)z−n 
 

Z-transform may exist for some signals for which Discrete Time Fourier Transform DTFT not exist. 

Concept of Z-Transform and Inverse Z-Transform 

Z-transform of a discrete time signal xn can be represented with XZ, and it is defined as 

does 

 

X(Z) = Σ∞ x(n)z−n .............. (1) 
n=−∞ 

 

If Z = rejω then equation 1 becomes 
 

X(rejω) = Σ∞ x(n)[rejω]−n 
n=−∞ 

 

= Σ∞ x(n)[r−n]e−jωn 
n=−∞ 

 

X(rejω) = X(Z) = F . T[x(n)r−n] ................... (2) 

The above equation represents the relation between Fourier transform and Z-transform. 
 

X(Z)|z=ejω = F . T[x(n)]. 

Inverse Z-transform X(rejω) 

= F . T[x(n)r−n] x(n)r−n = F . 

T −1[X(rejω] 

x(n) = rn F . T −1[X(rejω)] 
 

n 1 ∫ X(rejω)ejωn dω 
 

1  ∫ X(rejω)[rejω]n dω ............... (3) 
 

Substitute rejω
 = z . 

 

dz = jrejωdω = jzdω 
 

dω = 1 z−1 dz 
 

Substitute in equation 3. 

= r 

= 



 

∞ 

X(Z) =  ∑ x(n)z−n 
n=−∞ 

x(n) = 
1 

2πj 
∫ X(z)zn−1dz 

3  → x(n) = ∫ X(z)zn 1 z−1dz = 1 
2π j 

1 
2πj ∫ X(z)zn−1dz 
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Z-Transform has following properties: 
 

Linearity Property 
 

Z.T 

If x(n) ⟷ X(Z) 
 

 

and 
Z.T 

y(n) ⟷ Y (Z) 
 

Then linearity property states that 
 

Z.T 

a x(n) + b y(n) ⟷ a X(Z) + b Y (Z) 
 

Time Shifting Property 
 

Z.T 

If x(n) ⟷ X(Z) 
 

Then Time shifting property states that 
 

Z.T 

x(n − m) ⟷ z−m X(Z) 
 

Multiplication by Exponential Sequence Property 
 

Z.T 

If x(n) ⟷ X(Z) 
 

Then multiplication by an exponential sequence property states that 
 

Z.T 

an . x(n) ⟷ X(Z/a) 
 

Time Reversal Property 
 

Z.T 

If x(n) ⟷ X(Z) 
 

Then time reversal property states that 
 

Z.T 

x(−n) ⟷ X(1/Z) 
 

Differentiation in Z-Domain OR Multiplication by n Property 
 

Z.T 

If x(n) ⟷ X(Z) 
 

Then multiplication by n or differentiation in z-domain property states that 
 

k 
Z.T k k d

k X(Z) 

n x(n) ⟷ [−1] z  
dZK 

 

Convolution Property 
 

Z.T 

If x(n) ⟷ X(Z) 



and 
Z.T 

y(n) ⟷ Y (Z) 
 

Then convolution property states that 
 

Z.T 

x(n) ∗  y(n) ⟷ X(Z). Y (Z) 
 

Correlation Property 
 

Z.T 

If x(n) ⟷ X(Z) 
 

 

and 
Z.T 

y(n) ⟷ Y (Z) 
 

Then correlation property states that 
 

Z.T 

x(n) ⊗ y(n) ⟷ X(Z). Y (Z −1 ) 
 

Initial Value and Final Value Theorems 

Initial value and final value theorems of z-transform are defined for causal signal. 
 

Initial Value Theorem 

For a causal signal xn, the initial value theorem states that 

x(0) = limz→∞ X(z) 

This is used to find the initial value of the signal without taking inverse z-transform 
 

Final Value Theorem 

For a causal signal xn, the final value theorem states that 

x(∞) = limz→1[z − 1]X(z) 

This is used to find the final value of the signal without taking inverse z-transform. 
 

Region of Convergence ROC of Z-Transform 

The range of variation of z for which z-transform converges is called region of convergence of z- transform. 
 

Properties of ROC of Z-Transforms 

ROC of z-transform is indicated with circle in z-plane. ROC 

does not contain any poles. 

If xn is a finite duration causal sequence or right sided sequence, then the ROC is entire z- plane except at 
z = 0. 

 

If xn is a finite duration anti-causal sequence or left sided sequence, then the ROC is entire z- plane except 
at z = ∞. 

If xn is a infinite duration causal sequence, ROC is exterior of the circle with radius a. i.e. |z| 
> a. 

If xn is a infinite duration anti-causal sequence, ROC is interior of the circle with radius a. i.e. 
|z| < a. 

If xn is a finite duration two sided sequence, then the ROC is entire z-plane except at z = 0 & z = ∞. 



Z 
+ 

a 

The concept of ROC can be explained by the following example: 

Example 1: Find z-transform and ROC of an u[n] + a− nu[−n − 1] 

Z. T [an u[n]] + Z. T [a−n u[−n − 1]] = 
 

   Z  Z 

Z−a −1 
a 

 

1 
ROC : |z| > a ROC : |z| < 

a 

The plot of ROC has two conditions as a > 1 and a < 1, as you do not know a. 
 

In this case, there is no combination ROC. 
 

Here, the combination of ROC is from a < |z| < 1 

Hence for this problem, z-transform is possible when a < 1. 

Causality and Stability 

Causality condition for discrete time LTI systems is as follows: 

A discrete time LTI system is causal when ROC 

is outside the outermost pole. 

In The transfer function H[Z], the order of numerator cannot be grater than the order of denominator. 
 

Stability Condition for Discrete Time LTI Systems 



u n 

A discrete time LTI system is stable when 

its system function H[Z] include unit circle |z|=1. 

all poles of the transfer function lay inside the unit circle |z|=1. 

Z-Transform of Basic Signals 
 
 

δ 1 

(  ) Z 
Z−1 

u(−n 

− 1) 

− Z 
Z−1 

δ(n − m) z−m
 

an u[n] 

an u[−n 

− 1] 

n an u[n] 

n an u[−n 

− 1] 

an cos 

ωnu[n] 
 

an sin 

ωnu[n] 

 

Z 

Z−a 

 
− Z 

Z−a 

 
 

aZ 

|Z−a|2 

 
− aZ 

|Z−a|2 

 

Z 2 −aZ cos ω 

Z 2 −2aZ cos 

ω+a2 

aZ sin ω Z 
2 −2aZ cos 

ω+a2 

xt X[Z] 
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