
Queues

Data Structures

Dr. Gurpreet Singh Lehal,

Department of Computer Science,

Punjabi University

DEFINITION OF QUEUE

 A Queue is an ordered collection of items from

which items may be deleted at one end (called

the front of the queue) and into which items may

be inserted at the other end (the rear of the

queue).

 The first element inserted into the queue is the

first element to be removed. For this reason a

queue is sometimes called a FIFO (first-in first-

out) list as opposed to the stack, which is a LIFO

(last-in first-out).

Queues

Basic Queue Operations

 There are two basic operations that can be

performed on a queue:

 Enqueue: This operation inserts or adds data

in the queue. The data will be added to the

rear of the queue.

 Dequeue: This operation removes the data,

which has been in the queue for the longest

time. The data is present in the front of the

queue.

Enqueue

Front of queue

Adding an element

New element is

added to the rear

of the queue

Dequeue

Removing an element

New front element of queue

Element is

removed from the

front of the queue

Basic Queue Operations

Implementation of the Queues

There are many possible ways to implement
the queues:

 An array with front at index 0

 An array with floating front and rear

 A circular array with floating front and rear
(wrap around array)

 A singly linked list with front

 A singly linked list with front and rear

 A doubly linked list

 We must keep track of both the front and the rear of the

queue. One method is to keep the front of the array in the

first location on the array. Then, we can simply increase the

counter of the array to show the rear.

 Nevertheless, to delete an entry from this queue is very

expensive, since after the first entry was served, all the

existing entry need to be move back one position to fill in the

vacancy.

 With a long queue this process can lead to poor performance.

Array Implementation of the

Queues

Array with front at index 0

‘a’ ‘c’ ‘d’ ‘g’ ‘v’ ‘e’

0 1 2 3 4 5

Before:

‘a’ at index 0 is deleted‘c’ ‘d’ ‘g’ ‘v’ ‘e’

0 1 2 3 4 5

‘c’ ‘d’ ‘g’ ‘v’ ‘e’

0 1 2 3 4 5

After:

front

rear

Linear Implementation of Queues

 Indicate the front and rear of the queue. We can keep

track the entry of the queue without moving any entries.

 Append an entry: increase the rear by one.

 To remove the entry: increase the front by one.

 Problem:

 Position of front will increase and never decrease

 This leads to the end of the storage capacity

Linear Implementation of Queues

‘a’ ‘c’ ‘d’ ‘g’ ‘k’

0 1 2 3 4 5

Add ‘k’ to the queue:

- rear + 1 (increase)
front

rear

Delete ‘a’ in queue:

- front + 1 (increase)
‘a’ ‘c’ ‘d’ ‘g’ ‘k’

0 1 2 3 4 5
front rear

‘c’ ‘d’ ‘g’ ‘k’ ‘z’

0 1 2 3 4 5

Add ‘z’ to the queue:

-rear + 1 (increase)

Reach end of storage!!

rear
front

Need for Circular Queues

• Queues implemented as linear arrays have

the drawback that once the queue is FULL,

even though we delete few elements from the

"front" and relieve some occupied space, we

are not able to add anymore elements, as the

"rear" has already reached the Queue's rear

most position.

Need for Circular Queues

 To solve this problem, queues implement

wrapping around. Such queues are called

Circular Queues.

 Both the front and the rear pointers wrap

around to the beginning of the array.

 Circular queues are better than normal

queues as they effectively utilise the memory

space.

Circular Queues

Circular Queues

Queue with 6 elements

Circular Queues

dequeue()

Circular Queues

enqueue(6)

Circular Queues

enqueue(52)

Circular Queues

dequeue()

Circular Queues

enqueue(63)

Circular Queues

enqueue(29)

Circular Queues

dequeue()

Circular Queues

dequeue()

Circular Queues

dequeue()

Circular Queues

dequeue()

Circular Queues

dequeue()

Circular Queues

dequeue()

Circular Queues

dequeue()

Circular Queues

dequeue()

Empty Queue

Circular Queues

Full Queue

Array Implementation of the

Circular Queues
typedef char QueueItemType;

class Queue{

public:

Queue(int size);

~Queue();

bool isEmpty();

bool isFull();

bool enqueue(QueueItemType newItem);

bool dequeue(QueueItemType *QueueTop);

private:

QueueItemType *items;

int front, rear, count;

int MaxQueue;

};

Array Implementation of the

Circular Queues
Queue::Queue(int size) {

items = new QueueItemType[size];

MaxQueue = size;

front = 0;

rear = -1;

count = 0;

}

Queue:: ~Queue(){

delete [] items;

items = NULL;

}

Array Implementation of the

Circular Queues

bool Queue::isEmpty() {

return count <= 0;

}

bool Queue::isFull() {

return count >= MaxQueue-1;

}

Array Implementation of the

Circular Queues

bool Queue::enqueue(QueueItemType newItem){

if (isFull())

return false;

else{

rear = (rear + 1) % MaxQueue;

items[rear] = newItem;

count++;

return true;

}

}

Array Implementation of the

Circular Queues
bool Queue::dequeue (QueueItemType

*QueueTop){

if (isEmpty())

return false;

else {

count--;

*QueueTop = items[front];

front = (front + 1) % MaxQueue;

return true;

}

}

main(){

QueueItemType c;

Queue Queue(4);

Queue.enqueue('a');

Queue.enqueue('b');

Queue.enqueue('c');

Queue.dequeue(&c);

printf("%c\n",c);

Queue.dequeue(&c);

printf("%c\n",c);

Queue.enqueue('d');

Queue.dequeue(&c);

Queue.enqueue(‘e');

printf("%c\n",c);

Queue.dequeue(&c);

printf("%c\n",c);

Queue.dequeue(&c);

printf("%c\n",c);

}

queue(4)

Count = 0

Items[0]

Items[3]

Items[2]

Items[1]

Rear = -1

Front = 0

enqueue (’a’)

Count = 1

aItems[0]

Items[3]

Items[2]

Items[1]

Rear = 0

Front = 0

Count = 2

b

a Front = 0

Rear = 1

Items[0]

Items[3]

Items[2]

Items[1]

enqueue (’b’)

Count = 3

c

b

a

Rear = 2

Items[0]

Items[3]

Items[2]

Items[1]

Front = 0

enqueue (’c’)

Count = 2

c

b

a

Rear = 2

Items[0]

Items[3]

Items[2]

Items[1] Front = 1

dequeue (&c)

Count = 1

c

b

a

Front = 2

Rear = 2

Items[0]

Items[3]

Items[2]

Items[1]

dequeue (&c)

Count = 2

d

c

b

a

Front = 2

Rear = 3

Items[0]

Items[3]

Items[2]

Items[1]

enqueue (’d’)

Count = 1

d

c

b

a

Front = 3

Rear = 3

Items[0]

Items[3]

Items[2]

Items[1]

dequeue (&c)

Count = 2

d

c

b

eItems[0]

Items[3]

Items[2]

Items[1]

Front = 3

Rear = 0

enqueue (’e’)

Count = 1

d

c

b

eItems[0]

Items[3]

Items[2]

Items[1]

Front = 0

Rear = 0

dequeue (&c)

Count = 0

d

c

b

eItems[0]

Items[3]

Items[2]

Items[1] Front = 1

Rear = 0

dequeue (&c)

Applications of Queues

 Queues are used in operating systems, for

controlling access to shared system

resources such as:

 Printer

 Disk access on a network

 CPU

Printer Queue

Disk Queue

Process Queues

Queues in Simulation

Simulation of Airplane Traffic

Other Applications of Queues

 Reading from the keyboard

 Implementing buffer

 Level order traversal of trees or breadth first

search in a graph

 Implementing Radix Sort

Buffers

Breadth First Traversal of Graph

Radix Sort

Radix Sort Algorithm

1. Place all the integers in the main queue.

2. Remove each value in the main queue and place it

in a digit queue corresponding to the digit being

considered, starting with the least significant digit.

3. Once all the values are placed in the appropriate

digit queue, collect the values from queue 0 to

queue 9, and place them back in the main queue.

4. Repeat steps 2 and 3 with the tens digit, the

hundreds digit, and so on. After the last digit is

processed, the main queue contains the values in

ascending order.

45834 06283 56323 92634 78332 55111

0

1

2

3

4

5

6

7

8

9

45834 06283 56323 92634 78332 55111

0

1

2

3

4

5

6

7

8

9

45834

06283 56323 92634 78332 55111

0

1

2

3

4

5

6

7

8

9

45834

06283

56323 92634 78332 55111

0

1

2

3

4

5

6

7

8

9

45834

06283 56323

92634 78332 55111

0

1

2

3

4

5

6

7

8

9

45834

06283 56323

92634

78332 55111

0

1

2

3

4

5

6

7

8

9

45834

06283 56323

92634

78332

55111

0

1

2

3

4

5

6

7

8

9

45834

06283 56323

92634

78332

55111

0

1

2

3

4

5

6

7

8

9

45834

06283 56323

92634

78332

55111

0

1

2

3

4

5

6

7

8

9

45834

06283 56323

92634

78332

55111

55111

0

1

2

3

4

5

6

7

8

9

45834

06283 56323

92634

78332

55111 78332

0

1

2

3

4

5

6

7

8

9

45834

06283 56323

92634

55111 78332 06283 56323

0

1

2

3

4

5

6

7

8

9

45834 92634

55111 78332 06283 56323 45834 92634

0

1

2

3

4

5

6

7

8

9

55111 78332 06283 56323 45834 92634

55111

78332

06283

56323

45834 92634

0

1

2

3

4

5

6

7

8

9

55111

78332

06283

56323

45834 92634

55111 56323 78332 45834 92634 06283

0

1

2

3

4

5

6

7

8

9

55111 56323 78332 45834 92634 06283

55111

56323 78332

45834

92634

06283

0

1

2

3

4

5

6

7

8

9

55111

56323 78332

45834

92634

06283

56323 78332 45834 92634 0628355111

0

1

2

3

4

5

6

7

8

9

56323

78332

45834

92634

06283

55111

56323 78332 45834 92634 0628355111

0

1

2

3

4

5

6

7

8

9

56323

78332

45834

92634

06283

55111

56323 78332 45834 92634 0628355111

0

1

2

3

4

5

6

7

8

9

56323

78332

45834

92634

06283

55111

56323 78332 45834 92634 0628355111

0

1

2

3

4

5

6

7

8

9

56323

78332

45834

92634

06283

55111

56323 78332 45834 92634 06283 55111

0

1

2

3

4

5

6

7

8

9

56323 78332 45834 92634 06283 55111

