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POWER SYSTEM STABILITY 

 

 
5.1 INTRODUCTION 

 
 

Power system stability of modern large inter-connected systems is a major problem for 

secure operation of the system. Recent major black-outs across the globe caused by 

system instability, even in very sophisticated and secure systems, illustrate the problems 

facing secure operation of power systems. Earlier, stability was defined as the ability of a 

system to return to normal or stable operation after having been subjected to some form 

of disturbance. This fundamentally refers to the ability of the system to remain in 

synchronism. However, modern power systems operate under complex interconnections, 

controls and extremely stressed conditions. Further, with increased automation and use of 

electronic equipment, the quality of power has gained utmost importance, shifting focus 

on to concepts of voltage stability, frequency stability, inter-area oscillations etc. 

 
The IEEE/CIGRE Joint Task Force on stability terms and conditions have proposed the 

following definition in 2004: “Power System stability is the ability of an electric power 

system, for a given initial operating condition, to regain a state of operating equilibrium 

after being subjected to a physical disturbance, with most system variables bounded, so 

that practically the entire system remains intact”. 

 
The Power System is an extremely non-linear and dynamic system, with operating 

parameters continuously varying. Stability is hence, a function of the initial operating 

condition and the nature of the disturbance. Power systems are continually subjected to 

small disturbances in the form of load changes. The system must be in a position to be 

able to adjust to the changing conditions and operate satisfactorily. The system must also 

withstand large disturbances, which may even cause structural changes due to isolation of 

some faulted elements. 

 
A power system may be stable for a particular (large) disturbance and unstable for  

another disturbance. It is impossible to design a system which is stable under all 



 

disturbances. The power system is generally designed to be stable under those 

disturbances which have a high degree of occurrence. The response to a disturbance is 

extremely complex and involves practically all the equipment of the power system. For  

example, a short circuit leading to a line isolation by circuit breakers will cause variations 

in the power flows, network bus voltages and generators rotor speeds. The voltage 

variations will actuate the voltage regulators in the system and generator speed variations 

will actuate the prime mover governors; voltage and frequency variations will affect the 

system loads. In stable systems, practically all generators and loads remain connected,  

even though parts of the system may be isolated to preserve bulk operations. On the other 

hand, an unstable system condition could lead to cascading outages and a shutdown of a 

major portion of the power system. 

 
5.2 CLASSIFICATION OF POWER SYSTEM STABILITY 

 
 

The high complexity of stability problems has led to a meaningful classification of the 

power system stability into various categories. The classification takes into account the 

main system variable in which instability can be observed, the size of the disturbance and 

the time span to be considered for assessing stability. 

 
5.2.1 ROTOR ANGLE STABILITY 

 
 

Rotor angle stability refers to the ability of the synchronous machines of an 

interconnected power system to remain in synchronism after being subjected to a 

disturbance. Instability results in some generators accelerating (decelerating) and losing 

synchronism with other generators. Rotor angle stability depends on the ability of each 

synchronous machine to maintain equilibrium between electromagnetic torque and 

mechanical torque. Under steady state, there is equilibrium between the input mechanical 

torque and output electromagnetic torque of each generator, and its speed remains a 

constant. Under a disturbance, this equilibrium is upset and the generators 

accelerate/decelerate according to the mechanics of a rotating body. Rotor angle stability 

is further categorized as follows: 



 

Small single (or small disturbance) rotor angle stability: It is the ability of the power 

system to maintain synchronism under small disturbances. In this case, the system 

equation can be linearized around the initial operating point and the stability depends 

only on the operating point and not on the disturbance. Instability may result in 

(i) A non oscillatory or a periodic increase of rotor angle 

(ii) Increasing amplitude of rotor oscillations due to insufficient damping. 

The first form of instability is largely eliminated by modern fast acting voltage regulators 

and the second form of instability is more common. The time frame of small signal 

stability is of the order of 10-20 seconds after a disturbance. 

 
Large-signal rotor angle stability or transient stability: This refers to the ability of 

the power system to maintain synchronism under large disturbances, such as short circuit, 

line outages etc. The system response involves large excursions of the generator rotor  

angles. Transient stability depends on both the initial operating point and the disturbance 

parameters like location, type, magnitude etc. Instability is normally in the form of a  

periodic angular separation. The time frame of interest is 3-5 seconds after disturbance. 

 
The term dynamic stability was earlier used to denote the steady-state stability in the 

presence of automatic controls (especially excitation controls) as opposed to manual 

controls. Since all generators are equipped with automatic controllers today, dynamic 

stability has lost relevance and the Task Force has recommended against its usage. 

 
5.2.2 VOLTAGE STABILITY 

 
 

Voltage stability refers to the ability of a power system to maintain steady voltages at all 

buses in the system after being subjected to a disturbance. It depends on the ability of the 

system to maintain equilibrium between load demand and load supply. Instability results 

in a progressive fall or rise of voltages of some buses, which could lead to loss of load in 

an area or tripping of transmission lines, leading to cascading outages. This may 

eventually lead to loss of synchronism of some generators. 

 
The cause of voltage instability is usually the loads. A run-down situation causing voltage 

instability occurs when load dynamics attempt to restore power consumption beyond the 



 

capability of the transmission network. Voltage stability is also threatened when a  

disturbance increases the reactive power demand beyond the sustainable capacity of the 

available reactive power resources. Voltage stability is categorized into the following 

sub-categories: 

 
Small – disturbance voltage stability: It refers to the system’s ability to maintain 

steady voltages when subjected to small perturbations such as incremental changes in 

load. This is primarily influenced by the load characteristics and the controls at a given 

point of time. 

 
Large disturbance voltage stability: It refers to the systems ability to maintain steady 

voltages following large disturbances; It requires computation of the non-linear response 

of the power system to include interaction between various devices like motors, 

transformer tap changers and field current limiters. Short term voltage stability involves 

dynamics of fast acting load components and period of interest is in the order of several 

seconds. Long term voltage stability involves slower acting equipment like tap-changing 

transformers and generator current limiters. Instability is due to loss of long-term 

equilibrium. 

 

 

 

 
5.2.3 FREQUENCY STABILITY 

 
 

Frequency stability refers to the ability of a power system to maintain steady frequency 

following a severe disturbance, causing considerable imbalance between generation and 

load. Instability occurs in the form of sustained frequency swings leading to tripping of  

generating units or loads. During frequency swings, devices such as under frequency load 

shedding, generator controls and protection equipment get activated in a few seconds.  

However, devices such as prime mover energy supply systems and load voltage 

regulators respond after a few minutes. Hence, frequency stability could be a short-term 

or a long-term phenomenon. 

 
5.3 MECHANICS OF ROTATORY MOTION 



 

 

Since a synchronous machine is a rotating body, the laws of mechanics of rotating bodies 

are applicable to it. In rotation we first define the fundamental quantities. The angle θm is 

defined, with respect to a circular arc with its center at the vertex of the angle, as the ratio 

of the arc length s to radius r. 

s 
θm = 

r 
(5.1) 

The unit is radian. Angular velocity ωm is defined as 

 
ωm = 

dθ
m

 
 

dt 

 
(5.2) 

and angular acceleration as 

dω d 2θ 

α  m    m  (5.3) 
dt dt 2 

The torque on a body due to a tangential force F at a distance r from axis of rotation is 

given by         T = r F (5.4) 

The total torque is the summation of infinitesimal forces, given by 

T = ∫ r dF (5.5) 

The unit of torque is N-m. When torque is applied to a body, the body experiences 

angular acceleration. Each particle experiences a tangential acceleration a  rα , where r 

is the distance of the particle from axis of rotation. The tangential force required to 

accelerate a particle of mass dm is 

dF = a dm = r α dm (5.6) 

 
 

The torque required for the particle is 

dT = r dF = r2 α dm (5.7) 

and that required for the whole body is given by 

T = α ∫ r2dm = I α (5.8) 

Here, I = ∫ r2dm (5.9) 

It is called the moment of inertia of the body. The unit is Kg – m2. If the torque is 

assumed to be the result of a number of tangential forces F, which act at different points 

of the body 

T = ∑ r F 

Now each force acts through a distance, ds = r dθm and the work done is ∑ F . ds i.e., 



 

dW = ∑ F r dθm = dθm T 

W = ∫ T dθm (5.10) 

 
and T = 

d W 

dθm 

 
(5.11) 

Thus the unit of torque may also be Joule per radian. The power is defined as rate of 

doing work. Using (5.11) 

P = 
d W 

d t 
 

T dθm T ω 
dt m 

(5.12) 

The angular momentum M is defined as 

M = I ωm (5.13) 

And the kinetic energy is given by 

 
KE = 

1 
I ω 2 = 

2 
m 

1 
M ωm 

2 

 
(5.14) 

From (5.14) we can see that the unit of M has to be J-sec/rad. 

 
 

5.4 SWING EQUATION: 

 
 

The laws of rotation developed in section.3 are applicable to the synchronous machine. 

From(.5.8) 

Iα = T 

I d 2θ 
or    m T 

d t 2 

 

 
(5.15) 

 

Here T is the net torque of all torques acting on the machine, which includes the shaft  

torque (due to prime mover of a generator or load on a motor), torque due to rotational 

losses (friction, windage and core loss) and electromagnetic torque. 

 
Let Tm = shaft torque or mechanical torque corrected for rotational losses 

Te = Electromagnetic or electrical torque 

 
For a generator Tm tends to accelerate the rotor in positive direction of rotation as shown 

in Fig 5.1. It also shows the corresponding torque for a motor with respect to the 

direction of rotation. 



 

 

(a) Generator (b) Motor 

 

Fig. 5.1 Torque acting on a synchronous machine 

 

 

 
The accelerating torque for a generator is given by: 

Ta = Tm  Te (5.16) 

Under steady-state operation of the generator, Tm is equal to Te and the accelerating 

torque is zero. There is no acceleration or deceleration of the rotor masses and the 

machines run at a constant synchronous speed. In the stability analysis in the following 

sections, Tm is assumed to be a constant since the prime movers (steam turbines or hydro 

turbines) do no act during the short time period in which rotor dynamics are of interest in 

the stability studies. 

 
Now (5.15) has to be solved to determine θm as a function of time. Since θm is measured 

with respect to a stationary reference axis on the stator, it is the measure of the absolute 

rotor angle and increases continuously with time even at constant synchronous speed. 

Since machine acceleration /deceleration is always measured relative to synchronous 

speed, the rotor angle is measured with respect to a synchronously rotating reference axis. 

Let 

δ
m    
θ

m
 □ ωsm t (5.17) 



 

where ω
sm 

is  the  synchronous  speed  in  mechanical  rad/s  and   δ m is  the  angular 

displacement in mechanical radians. Taking the derivative of (5.17) we get 
 
 

dδ
m

 

dt 

d 
2δ 

 
dθ

m  
 

dt 

d 
2θ 

ω
sm 

  m     m  (5.18) 

dt 
2 

dt 
2
 

Substituting (5.18) in (5.15) we get 

d 
2δ 

I m  

dt 
2
 

= Ta = Tm  Te  N-m (5.19) 

Multiplying by ωm on both sides we get 

d 
2δ 

ω I  m 

m 
dt 

2
 

= ωm ( Tm  Te ) N-m (5.20) 

From (5.12) and (5.13), we can write 

d 2δ 
M m  P  P W (5.21) 

dt 
2 m a 

 

where M is the angular momentum, also called inertia constant, Pm is shaft power input 

less rotational losses, Pe is electrical power output corrected for losses and Pa is the 

acceleration power.  M depends on the angular velocity ωm , and hence is strictly not a 

constant, because   ωm deviates  from  the  synchronous  speed  during  and  after  a 

disturbance. However, under stable conditions ωm   does not vary considerably and M can 

be treated as a constant. (21) is called the “Swing equation”. The constant M depends on 

the rating of the machine and varies widely with the size and type of the machine. 

Another constant called H constant (also referred to as inertia constant) is defined as 

stored kinetic energy in mega 

H = 
at sychronous speed 

Machine rating in MVA 

joules  
MJ / MVA 

 
(5.22) 

 

 

H falls within a narrow range and typical values are given in Table 5.1. If the rating of the 

machine is G MVA, from (5.22) the stored kinetic energy is GH Mega Joules. From 

(5.14) 



 

 ω 

s 

 

GH = 

 
or 

1 
Mω 

2 
s m 

 

MJ (5.23) 

M = 
2GH 

ω
s m 

 
MJ-s/mech rad (5.24) 

The swing equation (5.21) is written as 

2H d 2δ P Pm  Pe 

     m      a  (5.25) 
ω

s m d t 2 G G 

 

 

In (5.25) δm is expressed in mechanical radians and ω
s m in mechanical radians per 

second (the subscript m indicates mechanical units). If δ and ω have consistent units 

(both are mechanical or electrical units) (5.25) can be written as 

2H d 2δ 

ω dt 2 
 Pa   Pm Pe pu (5.26) 

 
Here 

 
ωs    is the synchronous speed in electrical rad/s ( ωs 

 p  
2 



s m ) and Pa is 

 

acceleration power in per unit on same base as H. For a system with an electrical 

frequency f Hz, (5.26) becomes 

H d 2δ 
 

 

π f dt 2 
 Pa   Pm Pe pu (5.27) 

when δ is in electrical radians and 

H 

180 f 

d 2δ 

dt 2 

 
 Pa   Pm Pe 

 
pu (5.28) 

when δ is in electrical degrees. Equations (5.27) and (5.28) also represent the swing 

equation. It can be seen that the swing equation is a second order differential equation 

which can be written as two first order differential equations: 

2H d ω 

 P P pu (5.29) 

ωs dt 

dδ  
 ω ω 

dt s 

 
(5.30) 

In which ω , ωs and δ are in electrical units. In deriving the swing equation, damping 

has been neglected. 

m e 



 

G ω dt 

 

Table 5.1 H constants of synchronous machines 
 

Type of machine H (MJ/MVA) 

Turbine generator condensing 1800 rpm 

3600 rpm 

Non condensing 3600 rpm 

Water wheel generator 

Slow speed < 200 rpm 

High speed > 200 rpm 

Synchronous condenser Large 

Small 

Synchronous motor with load varying 

from 1.0 to 5.0 

9 – 6 

7 – 4 

4 – 3 

 
 

2 – 3 

2 – 4 

1.25

 25% less for hydrogen cooled 

1.0 

 
 
2.0 

 
In defining the inertia constant H, the MVA base used is the rating of the machine. In a 

multi machine system, swing equation has to be solved for each machine, in which case, 

a common MVA base for the system has to chosen. The constant H of each machine must 

be consistent with the system base. 

Let Gmach = Machine MVA rating (base) 

Gsystem = System MVA base 

In (5.25), H is computed on the machine rating  G  G
mach

 

 
Multiplying (5.25) by 

G
mach 

G
system 

 
on both sides we get 

 G  2H d 2δ P  P  G 
    mach         m      m e       mach  (5.31) 
  2 

 system  s m 
G

mach     




system 




2H 
system d 

2 δ 
     m  P  P pu (on system base) 

ω
s m 

dt 2 m e 

 
where H system = H 

G
mach 

G
system 

 
(5.32) 

G 



 

d δ 

s s 1 

In the stability analysis of a multi machine system, computation is considerably reduced 

if the number of swing equations to be solved is reduced. Machines within a plant  

normally swing together after a disturbance. Such machines are called coherent machines 

and can be replaced by a single equivalent machine, whose dynamics reflects the 

dynamics of the plant. The concept is best understood by considering a two machine 

system. 

 
5.4.1 SWING EQUATION OF TWO COHERENT MACHINES 

 
 

The swing equations for two machines on a common system base are: 

 2H1 

ωs 

2H 

 
2 

  1 

d t 2 

d 2 δ 

 
 Pm1  Pe1 pu (5.33) 

  2 2  Pm 2  Pe2 pu (5.34) 

 
Now δ1 

2 

ωs d t 

 δ 2  δ (since they swing together). Adding (5.33) and (5.34) we get 

2Heq 

ωs 

d 2 δ 

d t 2 

 
 Pm  Pe pu (5.35) 

Where Heq    H1  H 2 

 
Pm  Pm1  Pm 2 

Pe  Pe1  Pe 2 

The relation (5.35) represents the dynamics of the single equivalent machine. 

 

 

 
5.4.2 SWING EQUATION OF TWO NON – COHERENT MACHINES 

 
 

For any two non – coherent machines also (5.33) and (5.34) are valid. Subtracting (5.34) 

from (33) we get 

2 d 2 δ 2 d 2 δ P
m1 
 P

e 1 P  P 
     1    2     m2 e2  

 

(5.36) 
ω d t 2 ω d t 2 H H 

 

 
Multiplying both sides by 

H1 H 2 

H1  H 2 

 
we get 

2 



 

1 




s 

 

 
 H H 
 2 

 
 

 
 d 2 δ 
 1 

δ 2 

P

m1 
H 

2  Pm 2 H1  P
e1 

H 
2  pe 2 H1 

ω
s  1  H 2 

 d t 2 H1  H 2 H1  H 2 

 

 

i.e 

 
2 d 2 δ 

H
12

 12  P
m12 

 P
e12 

ω d t 2 

 

(5.37) 

 

 

where δ12    δ1 δ 2 , the relative angle of the two machines 

H  
H1 H 2 

 

12 

1  H 2 

P  
p

m1 
H 

2 
 p

m2   
H

1 
 

m12 

H1  H 2 

P  
p

e1 
H 

2 
 p

e2   
H

1 
 

e12 

H1  H 2 

 
 

From (5.37) it is obvious that the swing of a machine is associated with dynamics of  

other machines in the system. To be stable, the angular differences between all the 

machines must decrease after the disturbance. In many cases, when the system loses  

stability, the machines split into two coherent groups, swinging against each other. Each 

coherent group of machines can be replaced by a single equivalent machine and the 

relative swing of the two equivalent machines solved using an equation similar to (5.37), 

from which stability can be assessed. 

 
The acceleration power is given by Pa = Pm – Pe. Hence, under the condition that Pm is a 

constant, an accelerating machine should have a power characteristic, which would 

increase Pe as δ increases. 

 
This would reduce Pa and hence the acceleration and help in maintaining stability. If on 

the other hand, Pe decreases when δ increases, Pa would further increase which is 

detrimental to stability. Therefore, 
P  

must be positive for a stable system. Thus the 
δ 

power-angle relationship plays a crucial role in stability. 

H 

2 

H 



 

5.5 POWER–ANGLE EQUATION: 

 
 

In solving the swing equation, certain assumptions are normally made 

(i) Mechanical power input Pm is a constant during the period of interest, 

immediately after the disturbance 

(ii) Rotor speed changes are insignificant. 

(iii) Effect of voltage regulating loop during the transient is neglected i.e the 

excitation is assumed to be a constant. 

As discussed in section 4, the power–angle relationship plays a vital role in the solution 

of the swing equation. 

 
5.5.1 POWER–ANGLE EQUATION FOR A NON–SALIENT POLE MACHINE: 

The simplest model for the synchronous generator is that of a constant voltage behind an 

impedance. This model is called the classical model and can be used for cylindrical rotor 

(non–salient pole) machines. Practically all high–speed turbo alternators are of 

cylindrical rotor construction, where the physical air gap around the periphery of the rotor 

is uniform. This type of generator has approximately equal magnetic reluctance, 

regardless of the angular position of the rotor, with respect to the armature mmf. The 

phasor diagram of the voltages and currents at constant speed and excitation is shown in 

Fig. 5.2. 

 
 

Fig 5.2 Phasor diagram of a non–salient pole synchronous generator 

 
 

Eg = Generator internal emf. 

Vt = Terminal voltage 

θ = Power factor angle 



 

g 

R a 

Ia = Armature current 

Ra = Armature resistance 

xd = Direct axis reactance 

 
The power output of the generator is given by the real part of Eg Ia

* . 
 
 

I    
Eg δ   Vt   0




(5.38) 

a jx 

 
Neglecting R , 

I    
Eg  δ  Vt 0

a a 
j x 

 E   90δ V  90 
* 

P = R  E  δ       g      t    

  x
d 

x
d   



= 
Eg 

 
2 cos90


xd 

 
Eg Vt cos90δ 

xd 

 
 

= 
Eg Vt sin δ 

xd 

 
(5.39) 

(Note- R stands for real part of). The graphical representation of (9.39) is called the 

power angle curve and it is as shown in Fig 5.3. 

 

Fig 5.3 Power angle curve of a non – salient pole machine 
 
 

 
The maximum power that can be transferred for a particular excitation is given by 

 
at δ = 90o. 

Eg Vt 

xd 

d 

d 



 

t 

d 

q 

5.5.2 POWER ANGLE EQUATION FOR A SALIENT POLE MACHINE: 

Here because of the salient poles, the reluctance of the magnetic circuit in which flows  

the flux produced by an armature mmf in line with the quadrature axis is higher than that 

of the magnetic circuit in which flows the flux produced by the armature mmf in line with 

the direct axis. These two components of armature mmf are proportional to the 

corresponding components of armature current. The component of armature current  

producing an mmf acting in line with direct axis is called the direct component, Id. The 

component of armature current producing an mmf acting in line with the quadrature axis 

is called the quadrature axis component, Iq. The phasor diagram is shown in Fig 5, with 

same terminology as Fig 5.4 and Ra neglected. 

 

Fig 5.4 Phasor diagram of a salient pole machine 
 
 

Power output P  Vt Ia cosθ 

 Ed Id   Eq Iq 

 

 
(5.40) 

From Fig 5.4, Ed  Vt sin δ ; Eq    Vt  cosδ 

I  
Eg  Eq 

x d 

 
 Ia sinδ  θ 

I    
Ed

 

xq 

 

 Ia cosδ  θ 


(5.41) 

Substituting (5.41) in (5.40), we obtain 

P  
Eg Vt sin δ V 2 x 

 d 
 xq sin 2δ 

 
(5.42) 

xd 2 xd xq 



 

which is equivalent to an ideal voltage source, whose voltage and frequency are constant. 

The one line diagram is shown in Fig 7. 

d q 

the relation (5.42) gives the steady state power angle relationship for a salient pole 

machine. The second term does not depend on the excitation and is called the reluctance 

power component. This component makes the maximum power greater than in the 

classical model. However, the angle at which the maximum power occurs is less than 90o. 

 
5.6 POWER ANGLE RELATIONSHIP IN A SMIB SYSTEM: 

Without loss of generality, many important conclusions on stability can be arrived at by 

considering the simple case of a Single Machine Infinite Bus (SMIB), where a generator 

supplies power to an infinite bus. The concept of an infinite bus arises from the fact that  

if we connect a generator to a much larger power system, it is reasonable to assume that  

the voltage and frequency of the larger system will not be affected by control of the 

generator parameters. Hence, the external system can be approximated by an infinite bus, 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.5 SMIB System 

 
 

In Fig. 5.5, the infinite bus voltage is taken as reference and δ is the angle between Eg and 

Eb. The generator is assumed to be connected to the infinite bus through a lossless line of 

reactance xe. The power transferred (using classical model) is given by 

P = 
Eg Eb 

sin δ (5.43) 
 

xd  xe 

and using salient pole model, 

E E E 2 x  x 
P =      g b   sin δ   

   
b 

   sin 2δ 
 

(5.44) 

xd  xe 2 xd  xe xq  xe 



 

g 

An important measure of performance is the steady state stability limit, which is defined 

as the maximum power that can be transmitted in steady state without loss of 

synchronism, to the receiving end. If transient analysis is required, respective transient 

quantities namely E 
 
, 

output. 

 
and 

 
are used in (5.43) and (5.44) to calculate the power 

 

5.7 TRANSIENT STABILITY 

 
 

Transient stability is the ability of the system to remain stable under large disturbances  

like short circuits, line outages, generation or load loss etc. The evaluation of the transient 

stability is required offline for planning, design etc. and online for load management,  

emergency control and security assessment. Transient stability analysis deals with actual 

solution of the nonlinear differential equations describing the dynamics of the machines 

and their controls and interfacing it with the algebraic equations describing the 

interconnections through the transmission network. 

 
Since the disturbance is large, linearized analysis of the swing equation (which describes 

the rotor dynamics) is not possible. Further, the fault may cause structural changes in the 

network, because of which the power angle curve prior to fault, during the fault and post 

fault may be different (See example 9.8). Due to these reasons, a general stability criteria 

for transient stability cannot be established, as was done in the case of steady state 

stability (namely PS > 0). Stability can be established, for a given fault, by actual solution 

of the swing equation. The time taken for the fault to be cleared (by the circuit breakers) 

is called the clearing time. If the fault is cleared fast enough, the probability of the system 

remaining stable after the clearance is more. If the fault persists for a longer time,  

likelihood of instability is increased. 

 
Critical clearing time is the maximum time available for clearing the fault, before the 

system loses stability. Modern circuit breakers are equipped with auto reclosure facility, 

wherein the breaker automatically recloses after two sequential openings. If the fault still 

persists, the breakers open permanently. Since most faults are transient, the first reclosure 

x x d q 



 

is in general successful. Hence, transient stability has been greatly enhanced by auto 

closure breakers. 

 
Some common assumptions made during transient stability studies are as follows: 

1. Transmission line and synchronous machine resistances are neglected. Since 

resistance introduces a damping term in the swing equation, this gives 

pessimistic results. 

2. Effect of damper windings is neglected which again gives pessimistic results. 

3. Variations in rotor speed are neglected. 

4. Mechanical input to the generator is assumed constant. The governor control 

loop is neglected. This also leads to pessimistic results. 

5. The generator is modeled as a constant voltage source behind a transient 

reactance, neglecting the voltage regulator action. 

6. Loads are modeled as constant admittances and absorbed into the bus 

admittance matrix. 

 
The above assumptions, vastly simplify the equations. A digital computer program for 

transient stability analysis can easily include more detailed generator models and effect of 

controls, the discussion of which is beyond the scope of present treatment. Studies on the 

transient stability of an SMIB system, can shed light on some important aspects of 

stability of larger systems. One of the important methods for studying the transient  

stability of an SMIB system is the application of equal-area criterion. 

 
5. 8 EQUAL- AREA CRITERION 

 
 

Transient stability assessment of an SMIB system is possible without resorting to actual 

solution of the swing equation, by a method known as equal–area criterion. In a SMIB 

system, if the system is unstable after a fault is cleared, δ(t) increases indefinitely with 

time, till the machine loses synchronism. In contrast, in a stable system, δ(t) reaches a 

maximum and then starts reducing as shown in Fig.5.6. 



 

 
 

 

Fig.5.6 Swing Curve (δ VS t) for stable and unstable system 
 
 

Mathematically stated, 

dδ t  
 0

 

d t 

some time after the fault is cleared in a stable system and 

the fault is cleared in an unstable system. 

Consider the swing equation (21) 

d 2δ 

 
 
 
d δ 

> 0, for a long time after 
d t 

M 
dt 2 

d 2δ 

 Pm  Pe  Pa 

 
P 

dt 2 
   a  

M 

Multiplying both sides by  2 
dδ  

, we get 
dt 

2  
dδ 

dt 

d 2δ 

dt 2 
 2 

dδ 

dt 

 
P

a  

M 

This may be written as 

d   dδ 
2 


dδ   P 

    2 a  

d t  dt   dt  M 

Integrating both sides we get 



 

g 

d 

 dδ 
2  

2  
dt 

   
M 

δ 

 Pa dδ 

  δ 

 

or  
dδ  


dt 

 

 

(5.45) 

 

For stability  
dδ

 
dt 

 0 , some time after fault is cleared. This means 

 
δ 

 Pa  dδ   0 
δo 

 
(5.46) 

The integral gives the area under the Pa – δ curve. The condition for stability can be, thus 

stated as follows: A SMIB system is stable if the area under the P a – δ curve, becomes 

zero at some value of δ. This means that the accelerating (positive) area under P a – δ 

curve, must equal the decelerating (negative) area under Pa – δ curve. Application of 

equal area criterion for several disturbances is discussed next. 

 
5.9 SUDDEN CHANGE IN MECHANICAL INPUT 

Consider the SMIB system shown in Fig. 5.7. 
 

 
 

 
 

Fig.5.7 SMIB System 

 
 

The electrical power transferred is given by 

Pe  Pmax sin δ 

E 

V 

P
max 

 
x 
 
 x 

Under steady state Pm = Pe. Let the machine be initially operating at a steady state angle 

δo, at synchronous speed ωs, with a mechanical input Pmo, as shown in Fig.5.8 ( point a). 

M   
Pa  dδ 

2 
δ 

δo 

e 

o 



 

0 

1 

 

 

 

 

Fig.5.8 Equal area criterion–sudden change in mechanical input 

 
 

If there is a sudden step increase in input power to Pm1 the accelerating power is positive 

(since Pm1 > Pmo) and power angle δ increases. With increase in δ, the electrical power Pe 

increases, the accelerating power decreases, till at δ = δ1, the electrical power matches the 

new input Pm1. The area A1, during acceleration is given by 
A  =    

δ1 

P     P dδ 

1 δ m1 e 

 Pm1 (δ1   δ 0 )  Pmax (cosδ 0   cosδ1 ) (5.47) 

At b, even though the accelerating power is zero, the rotor is running above synchronous 

speed. Hence, δ and Pe increase beyond b, wherein Pe < Pm1 and the rotor is subjected to 

deceleration. The rotor decelerates and speed starts dropping, till at point d, the machine 

reaches synchronous speed and δ = δmax. The area A2, during deceleration is given by 
A = 

δ max 

(P  P ) dδ   P (cosδ  cosδ )  P   (δ  δ  ) (5.48) 

2 δ e m1 max 1 max m1 max 1 

By equal area criterion A1 = A2. The rotor would then oscillate between δ0 and δmax at its 

natural frequency. However, damping forces will reduce subsequent swings and the 

machine finally settles down to the new steady state value δ1 (at point b). Stability can be 

maintained only if area A2 at least equal to A1, can be located above Pm1. The limiting 

case is shown in Fig.5.9, where A2 is just equal to A1. 



 

 

Fig.5.9 Maximum increase in mechanical power 

 
 

Here δmax is at the intersection of Pe and Pm1. If the machine does not reach synchronous 

speed at d, then beyond d, Pe decreases with increase in δ, causing δ to increase 

indefinitely. Applying equal area criterion to Fig.5.9 we get 

A1 = A2. 

From (5.47) and (5.48) we get 

Pm1 (δ max   δ 0 )  Pmax (cosδ 0   cosδ max ) 

Substituting Pm1  Pmax sin δ max , we get 

δ max   δ 0 sin δ max   cosδ max    cosδ 0 (5.49) 

Equation (5.49) is a non-linear equation in δmax and can be solved by trial and error or by 

using any numerical method for solution of non-linear algebraic equation (like Newton- 

Raphson, bisection etc). From solution of δmax, Pm1 can be calculated. Pm1 – Pmo will give 

the maximum possible increase in mechanical input before the machine looses stability. 

 

 
5.10 NUMERICAL EXAMPLES 

 
 

Example 1: A 50Hz, 4 pole turbo alternator rated 150 MVA, 11 kV has an inertia 

constant of 9 MJ / MVA. Find the (a) stored energy at synchronous speed (b) the rotor  

acceleration if the input mechanical power is raised to 100 MW when the electrical load 

is 75 MW, (c) the speed at the end of 10 cycles if acceleration is assumed constant at the 

initial value. 



 

 

Solution: 

(a) Stored energy = GH = 150 × 9 = 1350 MJ 

(b) Pa = Pm – Pe = 100 – 75 = 25 MW 

M =   
GH 

180 f 
 

d 2 δ 

 
1350 

180 50 
 0.15 MJ – s /ºe 

0.15 
d t 2 

 25 

d 2δ 25 2 
 Acceleration α 

d t 2 


0.15 
166.6 ºe/s 

 

= 166.6 × 
2 

ºm/s2 
P 

 
= 166.6 × 

2 
× 

1 

P 360 

 
rps /s 

 
= 166.6 × 

2 
× 

1 
× 60 rpm/s 

P 360 

= 13.88 rpm/s 

* Note ºe = electrical degree; ºm = mechanical degree; P=number of poles. 

(c) 10 cycles = 
10 

 0.2 s 
50 

NS = Synchronous speed = 
120  50 

 1500 rpm 
4 

Rotor speed at end of 10 cycles = NS + α × 0.2 = 1500 + 13.88 × 0.2 = 1502.776 rpm. 

Example 2: Two 50 Hz generating units operate in parallel within the same plant, with 

the following ratings: Unit 1: 500 MVA, 0.8 pf, 13.2 kV, 3600 rpm: H = 4 MJ/MVA; 

Unit 2: 1000 MVA, 0.9 pf, 13.8 kV, 1800 rpm: H = 5 MJ/MVA. Calculate the equivalent 

H constant on a base of 100 MVA. 

 

Solution:  

 
H

1system 

 
 
 H

1mach 

 

 
G

1mach 

G
system 

 
= 4 

500 
 20 MJ/MVA 

100 

 
H 

2 system 

 
 H 

2 mach 
 

G
2 mach 

G
system 

= 5 
1000 

 50 MJ/MVA 
100 



 

Vt      I x 2 2 

a     d 

Heq  H1  H 2 = 20 + 50 = 70 MJ/MVA 

This is the equivalent inertia constant on a base of 100 MVA and can be used when the 

two machines swing coherently. 

 
Example 3: Obtain the power angle relationship and the generator internal emf for (i) 

classical model (ii) salient pole model with following data: xd = 1.0 pu : xq = 0.6 pu : Vt 

= 1.0 pu : Ia = 1.0 pu at upf 

 

Solution: 

(i) Classical model: The phasor diagram is shown in Fig P3. 
 
 

Fig.P3 Example 3, case(i) 
 

 

 
 

Eg       1.414 
 

δ = tan 1 
Ia xd

 

Vt 

= tan 1 
1.0 

 45 
1.0 

 Eg = 1.414 45 . 

If the excitation is held constant so that Eg 

 

 
= 1.414, then power output 

P = 
1.414  1.0 sin δ 

1.0 

 
 1.414sin δ 

 
 

(ii) Salient pole: From Fig (5), we get using (41a) to (41d) 

Eg = Eq + Id xd = Vt cos δ + Id xd 

= Vt cos δ + Ia sin δ xd 

1.02   
 1.0  1.02

 



 

(* θ = 00, since we are considering upf) 

Substituting given values we get 

Eg = cos δ + sin δ. 

Again from Fig (9.5) we have 

Ed = Vt sin δ = Iq xq 

 Vt sin δ – Iq xq = 0 

Vt sin δ – Ia cos δ xq = 0 

Substituting the given values we get 

0 = sin δ – 0.6 cos δ 

We thus have two simultaneous equations. 

Eg = cos δ + sin δ 

0 = sin δ – 0.6 cos δ 

Solving we get δ = 30.96o 

Eg = 1.372 pu 

If the excitation is held constant, then from (42) 

P = 1.372 sin δ + 0.333 sin 2δ 

 
 

Example 4: Determine the steady state stability limit of the system shown in Fig 8, if Vt 

= 1.0 pu and the reactances are in pu. 

 

Fig. P4 Example 4 
 
 

Solution:  
Current I = 

Vt θ  1.00 
 

1.0 θ  1.00


Eg  δ   Vt θ   j1.0 (I ) 

j1.0 j1.0 



 

g 

= 1 θ 
 j1.0 1.0θ 1.00

j1.0 

= cos θ + j sinθ + cosθ + j sinθ – 1.0 

= 2cosθ – 1 + j 2sinθ 

When maximum power is transferred δ = 90o; which means real part of E = 0 

 2 cosθ – 1 = 0 

θ = cos-1 0.5 = 60o 

E = 2 sin 60o = 1.732 
 

Eg = 1.732 90 (for maximum power) 

Steady state stability limit = 
1.732  1.0 

 0.866 pu 
1.0  1.0 

 

 

Example 5: A  50  Hz  synchronous  generator  having  an  internal  voltage  1.2  pu, 

H = 5.2 MJ/MVA and a reactance of 0.4 pu is connected to an infinite bus through a  

double circuit line, each line of reactance 0.35 pu. The generator is delivering 0.8pu  

power and the infinite bus voltage is 1.0 pu. Determine: maximum power transfer,  

Steady state operating angle, and Natural frequency of oscillation if damping is 

neglected. 

 
Solution: The one line diagram is shown in Fig P5. 

 
 

Fig . P5 Example 6 
 
 

 

(a) X = 0.4 + 
0.35 

 

 

2 

 

= 0.575 pu 



 

PS 

M 

 

Pmax = 
Eg Eb 

X 
 

1.2  1.0 
 2.087 pu 

0.575 

(b) Pe = Pmax sin δo 

1  P
e 

 

1  0.8 
 δo  sin 

P
  sin    22.54 . 2.087 
max  

(c) Ps = Pmax cos δo = 2.087 cos (22.54o) 

= 1.927 MW (pu)/ elec rad. 

M (pu) = 
H

 
 f 

 
5.2 

 50 

 

 0.0331 s 2 / elec 

 
rad 

 

Without damping s =  j   j 
 

= ± j 7.63 rad/sec =  1.21 Hz 

Natural frequency of oscillation ωn = 1.21 Hz. 

 

Example 6: In example .6, if the damping is 0.14 and there is a minor disturbance of  

= 0.15 rad from the initial operating point, determine: (a) n (b)  (c) d (d) setting time 

and (e) expression for . 

Solution: 
 

(a) n = 

 

(b)  = 

= 

 

 
0.14 

2 

= 7.63 rad/sec = 1.21 Hz 

 

 
= 0.277 

 

(c) d = ωn  7.63 = 7.33 rad/sec = 1.16 Hz 

 
(d) Setting time = 4 = 4 

1 

ξωn 

 
 4

1 
 

 

0.277  7.63 

 
= 1.892 s 

(e)  o = 0.15 rad = 8.59o 

 = cos-1  = cos-1 0.277 = 73.9o 

 
δ = δo  

 δo  
 

e 
ξ ωnt 

sin ωd t θ 


= 22.54o  e 0.277 7.63t sin 7.33t  73.9o 

1.927 

0.0331 

PS 

M 

1.927 

0.0331 

D 1 

2 M PS 

1 

0.0331 1.927 

1 ξ 2 1 0.2772
 

1 ξ 2 

8.59 

1  0.2772 



 

= 22.54o + 8.94 e- 2.11t sin (7.33t + 73.9o) 

The variation of delta with respect to time is shown below. It can be observed that the 

angle reaches the steady state value of 22.54o after the initial transient. It should be noted 

that the magnitudes of the swings decrease in a stable system with damping. 

 

 
 

 

Fig.P6 Swing Curve for example 7 

 

 

 

 

Example 7: In example 6, find the power angle relationship 

(i) For the given network 

(ii) If a short circuit occurs in the middle of a line 

(iii) If fault is cleared by line outage 

Assume the generator to be supplying 1.0 pu power initially. 

 
 

Solution: 

(i) From example 6, Pmax = 2.087, Pe = 2.087 sin . 

(ii) If a short circuit occurs in the middle of the line, the network equivalent 

can be draw as shown in Fig. 12a. 



 

 

 
 

 
 

Fig.P7a Short circuit in middle of line 

 

 

 
The network is reduced by converting the delta to star and again the resulting star to delta 

as shown in Fig P7a, P7b and P7c. 

 

 

 

 
 

Fig.P7b Fig.P7c 



 

Δ =δ max 

max 

max 

max 

The transfer reactance is 1.55 pu. Hence, 

Pmax = 
1.2  1.0 

1.55 

 
= 0.744 ; Pe = 0.744 sin δ 

(iii) When there is a line outage 

X = 0.4 + 0.35 = 0.75 

Pmax = 
1.2  1.0 

0.75 

Pe = 1.6 sin δ 

= 1.6 

 
 

Example 8: A generator supplies active power of 1.0 pu to an infinite bus, through a 

lossless line of reactance xe = 0.6 pu. The reactance of the generator and the connecting 

transformer is 0.3 pu. The transient internal voltage of the generator is 1.12 pu and 

infinite bus voltage is 1.0 pu. Find the maximum increase in mechanical power that will 

not cause instability. 

 

Solution: 

Pmax = 
1.12  1.0 

0.9 

 

 
= 1.244 pu 

Pmo = Peo = 1.0 = Pmax sin δo = 1.244 sin δo 

 

 δo = sin-1 
1.0 

 

 

1.244 

 
= 53.47o = 0.933 rad. 

The above can be solved by N–R method since it is of the form f(δmax) = K. Applying N– 

R method, at any iteration ‘r’, we get 
 
 

(r ) 

max 

K  f δ (r) 


df 

dδ 
max 

r 

df 

dδ 
max 

 
r 


(r ) 

max  δo   cosδ (r ) 

 

(This is the derivative evaluated at a value of δ = δ (r ) 
)
 

δ ( r 1)  δ ( r )   δ (r ) 
max max max max 

 
Starting from an initial guess of δmax between 

π 
to π , the above equations are solved 

2 

iteratively till Δ δ (r) ≤ . Here K = cos δo = 0.595. The computations are shown in table 
 

P8, starting from an initial guess δ (1) = 1.745 rad. 

 δ 



 

max 

Table P8 
 

Interaction 

r 

 
δ (r ) 

max 

    df  

dδ  
(r ) 

max 

f δ (r) 
max 

 δ (r ) 

max 

 

δ (r 1) 

max 

1 1.745 – 0.1407 0.626 0.22 1.965 

2 1.965 – 0.396 0.568 – 0.068 1.897 

3 1.897 – 0.309 0.592 – 0.0097 1.887 

4 1.887 – 0.2963 0.596 – 0.0033 1.883 

 

Since  δ (r) is sufficient by small, we can take 

δmax = 1.883 rad = 107.88o 

o 

δ1 = 180  δ max = 72.1 

Pm1 = Pmax sin δmax = 1.183 

Maximum step increase permissible is Pm1 – Pmo, = 1.183 – 1.0 = 0.183 pu 

 

Example 9: Transform a two machine system to an equivalent SMIB system and show 

how equal area criterion is applicable to it. 

 
Solution: Consider the two machine system show in Fig.P9. 

 

 

 
Fig.P9 Two machine system under steady state (neglecting losses) 

 
 

Pm1  Pm2  Pm ; Pe1  Pe2  Pe 

The swing equations are 



 

1 

2 

d 2δ P  P P  P 
  1    m1 e1       m e  

dt 2 M M 
 

d 2δ P    P P  P 
  2      m2 e2       e m  

dt 2 M M 

Simplifying, we get 

d 2 (δ  δ  ) M   M 
  1 2          1 2 (Pm  Pe )

 
dt 2 M M 

1 2 

 
d 2δ 

or Meq 

dt 2 
 Pm  Pe 

 
where Meq = 

M 1 M 2 
 

M 1  M 2 

δ = δ1 – δ2 

E 
 

E 


Pe  
   

1 2 

 
sin δ 

xd 1 
 xe  xd 2

 

This relation is identical to that of an SMIB system in form and can be used to determine 

the relative swing (δ1 – δ2) between the two machines to assess the stability. 
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