
Linked Lists

Dr. Gurpreet Singh Lehal,

Department of Computer Science,

Punjabi University

Linked Lists

 A linear collection of self-referential objects,
called nodes, connected by links
 linear: for every node in the list, there is one and only

one node that precedes it (except for possibly the first
node, which may have no predecessor,) and there is
one and only one node that succeeds it, (except for
possibly the last node, which may have no successor)

 self-referential: a node that has the ability to refer to
another node of the same type, or even to refer to itself

 node: contains data of any type, including a reference
to another node of the same data type, or to nodes of
different data types

 Usually a list will have a beginning and an end; the first
element in the list is accessed by a reference to that
class, and the last node in the list will have a reference
that is set to null

Linked Lists

 A linked list is a linear collection of connected nodes

 Each node contains at least

 A piece of data (any type)

 Pointer to the next node in the list

 Head: pointer to the first node

 The last node points to NULL

A

data pointer

node

A 

Head

B C

a1 a2 a3 a4

a1 800 a2 712 a3 992 a4 0
Memory

Content

Memory

Address
1000 800 712 9923

A linked list is called “linked” because each node in the series

(i.e. the chain) has a pointer to the next node in the list, e.g.

a) The list head is a pointer to the first node in the list.

b) Each node in the list points to the next node in the list.

c) The last node points to NULL (the usual way to signify the end).

Composition of a Linked List

NULL

struct Node {

char element;

Node *next;

};
*next;

struct Node {

char element;

Node *next;

};
*next;

struct Node {

char element;

Node *next;

};
*next;

head tail

Composition of a Linked List

The pointers play a big role in maintaining
the linked list. The nodes in a linked list
can be spread out over memory.
Therefore, it is not possible to calculate
the address of the next node, like it is
possible to calculate the next element of
an array. If a pointer from one node to
another is lost, the list from that point is
lost forever. Therefore, extreme care
should be taken when assigning or re-
assigning a pointer in a linked list.

Composition of a Linked List

head

A

B

C

D

E

If the pointer between any nodes (say B and C) is re-assigned erroneously to

null or anything else, the access to the rest of the nodes (C, D and E) is then

lost.

If you loose the head pointer, you loose the entire list.

Linked lists are more complex to code and manage than

arrays, but they have some distinct advantages.

a) A linked list can easily grow and shrink in size -

The programmer doesn’t need to know how many

nodes will be in the list. They are created in memory

as needed.

b) Speed of insertion or deletion from the list -

Inserting and deleting elements into and out of arrays

requires moving elements of the array. When a node

is inserted, or deleted from a linked list, none of the

other nodes have to be moved.

Advantages of Linked Lists

over Arrays

Just like any other data type, the information about the node

has to be first be declared.

Step 1) Declare a data structure for the nodes.

struct Node

{

int data;

struct Node *next;

};

Typedef struct Node *NODEPTR;

Creating a Linked List

a) In this example, the first member of the Node

holds the node’s data. This could just as well be

just a string, or a structure of student records.

b) The second member is a pointer called next. It

holds the address of any object that is a structure

of type Node. Hence each Node struct can point

to the next node in the list.

The Node struct contains a pointer to an object of the

same type as that being declared. It is called a self-

referential data structure. This makes it possible to

create nodes that point to other nodes of the same

type.

Creating a Linked List

Next, since there is no physical relationship between

nodes, a pointer needs to be created to point to the first

logical node in the list.

Step 2) Declare a pointer to serve as the head of the

list:

NODEPTR head = NULL;

Once we have done these 2 steps (i.e. declared a node

data structure, and created a NULL head pointer, we

have an empty linked list.

Creating a Linked List

nullhead

 Step 3) Allocate memory for the node

head = (NODEPTR) /*type casting */

malloc(sizeof(struct node));

100

Creating a Linked List

100
1?

?

head

 Note : head is not a node. It is a simple pointer

to a node. head used to "maintain" start of list

 To assign values to data items in first node we

have following statement:

(*head).data = 12;

 head is a pointer variable so *head is the node

that head points to

 The parentheses are necessary because the

dot operator . has higher precedence than the

dereference operator *

Creating a Linked List

 The arrow operator -> combines the actions

of the dereferencing operator * and the dot

operator to specify a member of a struct or

object pointed to by a pointer

 (*head).data= 12;

can be written as

head->data= 12;

 The arrow operator is more commonly used

 head->next = NULL;

Creating a Linked List

 The Linked list containing a single node can

be visualised as

100

100

100
112

0

head

Creating a Linked List

Sample Linked List Operations

void main() {

NODEPTR ListStart = NULL;

/* safest to give ListStart an initial legal

value -- NULL indicates empty list */

ListStart

100

ListStart

0

Pictorially In Memory

ListStart

? ? 108

100

ListStart

? ?

108Data Next

Data Next

ListStart = (NODEPTR) malloc(sizeof(struct node));

/* ListStart points to memory allocated at

location 108 */

Sample Linked List Ops (cont)
ListStart->data = 5;

ListStart->next = (NODEPTR) malloc(sizeof(struct node));

ListStart->next = NULL;

ListStart

5 ? 108

100

ListStart

5 ?

108

ListStart

5 108

100

ListStart

5 0

108

ListStart

5 ? ? 108

100

ListStart

5 120

108

? ?

120

ListStart->next->data = 9;

ListStart->next->next = NULL;

ListStart

5 9 108

100

ListStart

5 120

108

9 0

120

Sample Linked List Ops (cont)

ListStart->next->next = (NODEPTR) malloc(sizeof(struct node));

ListStart->next->next->data = 6;

ListStart->next->next->next = NULL;

ListStart

5 9 ? ? 108

100

ListStart

5 120

108

9 132

120

? ?

132

ListStart

5 9 6 108

100

ListStart

5 120

108

9 132

120

6 0

132

/* Linked list of 3 elements (count data values):

ListStart points to first element

ListStart->next points to second element

ListStart->next->next points to third element

and ListStart->next->next->next is NULL to

indicate there is no fourth element */

Basic Operations on a Linked

List

1. Traverse (walk) the list.

2. Add a node.

3. Delete a node.

4. Search for a node.

Displaying the contents of a

linked list
 A traverse operation visits each node in

the linked list
 A pointer variable cur keeps track of the

current node
for (Struct Node *cur = head;

cur != NULL; cur = cur->next)

printf(“%d”, cur->data);

A few questions on linked lists

 Write a function to count the nodes of a linked list.

 int get_count(NODEPTR head)

A few questions on linked lists

 Write a function to count the nodes of a linked list.

 int get_count(NODEPTR head)

int count_list(NODEPTR head)

{

int count;

for(count=0; head != NULL; head=head->next, count++);

return(count);

}

A few questions on linked lists

 Write a function to find the value stored in nth node of a

linked list.

 int get_nth(NODEPTR head, int n)

 Where n=1 means first node

A few questions on linked lists

 Write a function to find the value stored in nth node of a

linked list.

 int get_nth(NODEPTR head, int n)

 Where n=1 means first node
int get_nth(NODEPTR head, int n)

{

int count;

for(count=1; head != NULL && count!=n ; head=head->next, count++);

if(head)

return(head->data);

else return(0);

}

A few questions on linked lists

 Write a function to display the median value of an

ordered linked list.

 int get_median(NODEPTR head)

A few questions on linked lists

 Write a function to find the value stored in nth node from

end of a linked list.

 int get_end_nth(NODEPTR head, int n)

 Where n=0 means last node

A few questions on linked lists

 Write a function to display the median value of an

ordered linked list.

 int get_median(NODEPTR head)

int get_median(NODEPTR head)

{

int count = count_list(head);

int m1, m2;

if(count%2)

return(get_nth(head, 1+count/2));

m1 = get_nth(head, count/2);

m2 = get_nth(head, 1+(count/2));

return ((m1+m2)/2);

}

A few questions on linked lists

 Write a function to find the value stored in nth node from

end of a linked list.

int get_end_nth(NODEPTR head, int n)

{

int count;

NODEPTR p1=head, p2=head;

for(count=0; p1 != NULL && count!=n ; p1=p1->next, count++);

while(p1 && p1->next)

{

p1=p1->next;

p2=p2->next;

}

if(p2)

return(p2->data);

else return(0);

}

Adding Nodes to a Linked List

There are four steps to add a node to a linked
list:

 Allocate memory for the new node.

 Determine the insertion point you need to
know only the new node’s predecessor
(pPre)

 Point the new node to successor of pPre.

 Point pPre to the new node.

Head NULLf next g next h next

e NEXT
newNode

Inserting a Node at the Front

Inserting a Node at the Front

void insert_start(NODEPTR *head, int x);

Inserting a Node at the Front

We want to add a new entry,
13, to the front of the linked
list shown here.

10

15

7

null
head

entry

13

Inserting a Node at the Front

Create a new node,
pointed to by a local
variable temp_ptr.

10

15

7

null
head

entry

13

temp_ptr

void insert_start(NODEPTR *head, int x);

Inserting a Node at the Front

temp_ptr = (NODEPTR)
malloc(sizeof(struct node));

10

15

7

null
head

entry

13

temp_ptr

void insert_start(NODEPTR *head, int x);

Inserting a Node at the Front

10

15

7

null
head

entry

13

temp_ptr
13

temp_ptr = (NODEPTR)
malloc(sizeof(struct node));

Place the data in the new

node's data_field.

temp_ptr->data = 13;

void insert_start(NODEPTR *head, int x);

Inserting a Node at the Front

10

15

7

null
head

entry

13

temp_ptr
13

temp_ptr = (NODEPTR)
malloc(sizeof(struct node));

Place the data in the new node's

data_field.

Connect the new node to the front

of the list.

temp_ptr->next = *head;

void insert_start(NODEPTR *head, int x);

Inserting a Node at the Front

10

15

7

null
head

entry

13

temp_ptr
13

temp_ptr = (NODEPTR)
malloc(sizeof(struct node));

Make the old head pointer

point to the new node.

void insert_start(NODEPTR *head, int x);

Inserting a Node at the Front

10

15

7

null
head

entry

13

temp_ptr
13

temp_ptr = (NODEPTR)
malloc(sizeof(struct node));

*head = temp_ptr;

void insert_start(NODEPTR *head, int x);

Inserting a Node at the Front

temp_ptr = (NODEPTR) malloc(sizeof(struct
node));

*head = temp_ptr;

10

15

7

null
head

13

When the function returns,
the linked list has a new
node at the front.

void insert_start(NODEPTR *head, int x);

void insert_start(NODEPTR *head, int x)

{

NODEPTR temp_ptr = (NODEPTR) malloc(sizeof(struct node));

temp_ptr->data = x;

temp_ptr->next = *head;

*head = temp_ptr;

}

Lost Nodes Pitfall

Situation after executing

head = (NODEPTR) malloc(sizeof(struct node));

head->data=12;

Linked list before insertion

At any point, we can add a new item x by doing this:

temp_ptr = (NODEPTR) malloc(sizeof(struct
node));

temp_ptr->data = x;

temp_ptr->next = after_me->next;

after_me->next = temp_ptr;

A0 A1 A2

head

Inserting element in middle

after_me

At any point, we can add a new item x by doing this:

temp_ptr = (NODEPTR) malloc(sizeof(struct
node));

temp_ptr->data = x;

temp_ptr->next = after_me->next;

after_me->next = temp_ptr;

A0 A1 A2

head after_me

tmp_ptr

Inserting element in middle

At any point, we can add a new item x by doing this:

temp_ptr = (NODEPTR) malloc(sizeof(struct
node));

temp_ptr->data = x;

temp_ptr->next = after_me->next;

after_me->next = temp_ptr;

A0 A1 A2

head after_me

tmp_ptr

Inserting element in middle

x

At any point, we can add a new item x by doing this:

temp_ptr = (NODEPTR) malloc(sizeof(struct
node));

temp_ptr->data = x;

temp_ptr->next = after_me->next;

after_me->next = temp_ptr;

A0 A1 A2

head after_me

tmp_ptr

Inserting element in middle

x

At any point, we can add a new item x by doing this:
temp_ptr = (NODEPTR) malloc(sizeof(struct

node));

temp_ptr->data = x;

temp_ptr->next = after_me->next;

after_me->next = temp_ptr;

A0 A1 A2

head after_me

tmp_ptr

Inserting element in middle

x

void insert_after(NODEPTR after_me, int x)
{
NODEPTR temp_ptr = (NODEPTR) malloc(sizeof(struct node));
temp_ptr ->data = x;
temp_ptr ->next = after_me->next;
after_me->next = temp_ptr;

}

Adding a node to a sorted list

You are given a linked list in which the elements

are ordered. You want to add a node with a

new element, but you want to keep the list still

ordered.

To do so, you have to spot the place to insert the

new node by traversing the list. Here, there are

some cases to consider:
 What if the list is empty?

 What if I need to add a node before the beginning of the list?

 What if I need to add a node somewhere inside the list?
 Caution you cannot go back!

 What if I need to add a node at the end of the list?

Create a new node.

Store data in the new node.

if there are no nodes in the list or new value smaller than value in

first node

Make the new node the first node.

else

Find the first node whose value is greater than or equal

the new value, or the end of the list (whichever is first).

Insert the new node before the found node, or at end of

the list if no node was found.

endif

Adding a node to a sorted list

Adding a node to a sorted list

(Program)
main()

{

NODEPTR head = NULL, p, prev;

int i;

scanf("%d" ,&i);

insert_start(&head, i);

scanf("%d", &i);

while (i)

{

if(head->data>i) insert_start(&head, i);

else

{

for(p=head; p!=NULL; prev=p, p=p->next)

if(p->data > i) {insert_after(prev, i); break;}

if(p==NULL) insert_after(prev, i);

}

scanf("%d", &i);

}

}

Adding a node to a sorted list

(Program)

main()

{

NODEPTR head = NULL, p, prev;

int i;

scanf("%d", &i);

while (i)

{

for(prev = NULL, p= head; (p != NULL)&& (i > p->data);

prev = p, p = p->next);

if(prev==NULL)

insert_start(&head, i);

else

insert_after(prev, i);

scanf("%d", &i);

}

}

A few questions on linked lists

 Print a singly-linked list backwards with and without

recursion.

 Write a C program to copy a linked list.

 Reorder A->B->C->D->E as B->A->D->C->E in a singly

linked list

 Write a function to return the Nth-to-Last element in a

singly linked list of unknown length. If N = 0, then your

function must return the last element.

 Write a function to reverse a Linked-list

 How would you find a loop in a singly-linked list?

 Find the middle element in a singly linked list without

counting the number of elements.

A few questions on linked lists

 Given an integer linked list of which both first half and

second half are sorted independently. Write a function to

merge the two parts to create one single sorted linked

list in place [do not use any extra space].

 Sample test case:

 Input 1 :1->2->3->4->5->1->2; Output: 1->1->2->2->3->4->5

 Input 2: 1->5->7->9->11->2->4->6; Output 2: 1->2->4->5->6->7-

>9->11

 Given two linked lists, return the intersection of the two

lists: i.e. return a list containing only the elements that

occur in both of the input lists.

Another interview question

 How would you find a loop in a singly-

linked list?
int detectloop(NODEPTR home)

{

NODEPTR slow_p = home, fast_p = home;

while(fast_p && fast_p->next)

{

slow_p = slow_p->next;

fast_p = fast_p->next->next;

if (slow_p == fast_p)

return 1;

}

return 0;

}

A more challenging question

 How would remove the loop in a singly-

linked list, if it exists?

A more challenging question

 How would remove the loop in a singly-

linked list, if it exists?

1. Detect Loop using Floyd’s Cycle detection algo and get

the pointer to a loop node.

2. Count the number of nodes in loop. Let the count be k.

3. Fix one pointer to the head and another to kth node from

head.

4. Move both pointers at the same pace, they will meet at

loop starting node.

5. Get pointer to the last node of loop and make next of it as

NULL.

Deleting a Node from a Linked List

 Deleting a node requires that we logically remove the

node from the list by changing various links and then

physically deleting the node from the list (i.e., return it

to the heap).

 Any node in the list can be deleted. Note that if the

only node in the list is to be deleted, an empty list will

result. In this case the head pointer will be set to

NULL.

 To logically delete a node:

 First locate the node itself (pCur) and its logical predecessor

(pPre).

 Change the predecessor’s link field to point to the deleted

node’s successor (located at pCur -> next).

 Recycle the node using the free() function.

Page 57 57

Deleting the First Node from a Linked List

Before: Code:

Head = pCur -> next;

free(pCur);

After:

Head

pPre

75 124

pCur

Head

pPre

Recycle

d
124

pCur

Deleting a Node from a Linked List – General

Case

Before: Code:

pPre -> next = pCur -> next;

free(pCur);

After:

75 12496

pPre pCur

75 124
Recycle

d

pPre pCur

Deleting a Node From Start of Linked List

int delete_start(NODEPTR *p)

{

int i;

NODEPTR q;

if(*p==NULL)return 0;

i = (*p)->data;

q = (*p)->next;

free(*p);

*p = q;

printf("\nValue deleted =%d\n", i);

return i;

}

Deleting a Node From a Linked List

int delete_after(NODEPTR p)

{

int i;

NODEPTR q;

if(p==NULL)return 0;

if(p->next==NULL) return 0;

q = p->next;

p->next = p->next->next;

i = q->data;

free(q);

printf("\nValue deleted = %d\n", i);

return i;

}

A few questions on linked lists

 Write a function to delete all nodes of a linked list

A few questions on linked lists

 Write a function to delete all nodes of a linked list

void delete_list(NODEPTR *list)

{

while(*list)

delete_start(list);

}

A few questions on linked lists

 Write a function to remove alternate nodes from a given

linked list

A few questions on linked lists

 Write a function to remove alternate nodes from a given

linked list

void delete_alternate(NODEPTR list)

{

NODEPTR p=list;

while(p!=NULL && p->next != NULL)

{

delete_after(p);

p=p->next;

}

}

A few questions on linked lists

 Write a function to delete all nodes containing given

value

void delete_all_val(NODEPTR *list, int val)

A few questions on linked lists

 Write a function to delete all nodes containing given

value
void delete_all_val(NODEPTR *list, int val)

{

NODEPTR p=*list;

while(*list != NULL && (*list)->data == val)

delete_start(list);

p=*list;

while(p!=NULL && p->next != NULL)

{

if(p->next->data == val)

delete_after(p);

else p=p->next;

}

}

A few questions on linked lists

 Write a function to delete all duplicates in a linked list

A few questions on linked lists

 Write a function to delete all duplicates in a linked list

void remove_duplicate(NODEPTR *list)

{

NODEPTR p=*list;

while(p!=NULL)

{

delete_all_val(&(p->next), p->data);

p=p->next;

}

}

Circular Linked Lists

 A Circular Linked List is a special type of

Linked List. No node contains NULL

 It supports traversing from the end of the list

to the beginning by making the last node point

back to the head of the list

 A Rear pointer is often used instead of a Head

pointer (Why?)

struct Node{

int data;

struct Node *next;

};

typedef struct Node *NODEPTR;

Circular Linked List Definition

Circular Linked List

Operations

 print(NODEPTR Rear)

//print the Circular Linked List once

 insertNode(NODEPTR Rear, int item)

//add new node to ordered circular

linked list

 deleteNode(NODEPTR Rear, int item)

//remove a node from circular linked

list

void print(NODEPTR Rear){

NODEPTR Cur;

if(Rear != NULL){

Cur = Rear->next;

do{

printf(“%d”, Cur->data);

Cur = Cur->next;

}while(Cur != Rear->next);

}

}

Traverse the list

Rear

10 20 40 7055

Insert Node

 Insert into an empty list

Rear

10

New

NODEPTR New = malloc(sizeof(struct node));

New->data = 10;

Rear = New;

Rear->next = Rear;

 Insert to head of a Circular Linked List

Rear

New

New->next = Rear->next;

Rear->next = New;

Head

10 20 40 55 70

 Insert to end of a Circular Linked List

Rear

New

New->next = Rear->next;

Rear->next = New;

Rear = New;

Cur

10 20 40 55 70

 Insert to middle of a Circular Linked List
between Prev and Cur

Prev

New

New->next = Cur;

Prev->next = New;

RearCur

10 5520

40

70

 Delete a node from a single-node Circular

Linked List

Rear = Cur = Prev

Rear = NULL;

Free(Cur);

10

Delete Node

 Delete the head node from a Circular Linked

List

Rear
Cur

Cur = Rear->next;

Rear->next = Cur->next;

free(Cur);

Prev

10 20 40 55 70

 Delete the end node from a Circular Linked

List

Rear

Prev->next = Rear->next;

free(Cur);

Rear = Prev;

Prev Cur

10 20 40 55 70

 Delete a middle node Cur from a Circular

Linked List

Prev RearCur

Prev->next = Cur->next;

Free(Cur);

10 20 40 55 70

A few questions on linked lists

 Write a function to convert singly linked list to circular

linked list.

single_to_circular(NODEPTR *list)

A few questions on linked lists

 Write a function to convert singly linked list to circular

linked list.

void single_to_circular(NODEPTR *list)

{

NODEPTR p=*list;

if(p==NULL) return;

while(p->next)

p = p->next;

p->next = *list;

*list = p;

}

Applications of singly linked

lists

 Polynomials

 Sparse arrays

 File Allocation Table

 Big numbers

Polynomial Application

 Many high level polynomials have many

terms with a 0 coefficient.

 Would need to store them if using an array.

 Use a linked list to not take memory for items

with a 0 coefficient.

typedef struct poly_node *poly_pointer;
typedef struct poly_node {

int coef;
int expon;
poly_pointer next;

};
poly_pointer a, b, c;

A x a x a x a x
m

e

m

e em m() ...   
 

 

1 2 0

1 2 0

coef expon link

Representation

Polynomials

3 14 2 8 1 0

a

8 14 -3 10 10 6
b

a x x  3 2 114 8

b x x x  8 3 1014 10 6

null

null

Example

3 14 2 8 1 0

a

8 14 -3 10 10 6

b

11 14

d

a->expon == b->expon

3 14 2 8 1 0

a

8 14 -3 10 10 6

b

11 14

d

a->expon < b->expon-3 10

Adding Polynomials

3 14 2 8 1 0

a

8 14 -3 10 10 6

b

11 14

a->expon > b->expon

-3 10

d

2 8

Adding Polynomials (cont’d)

About sparse arrays
 A sparse array is simply an array most of whose entries

are zero (or null, or some other default value)

 For example: Suppose you wanted a 2-dimensional
array of course grades, whose rows are students and
whose columns are courses
 There are about 22,000 students

 There are about 5000 courses

 This array would have about 11,00,00,000 entries

 Since most students take fewer than 5000 courses, there will be
a lot of empty spaces in this array

 This is a big array, even by modern standards

 There are ways to represent sparse arrays efficiently

Sparse arrays as linked lists

 We will start with sparse one-dimensional arrays, which
are simpler
 We’ll do sparse two-dimensional arrays later

 Here is an example of a sparse one-dimensional array:

 Here is how it could be represented as a linked list:

0 0 0 0 17 0 0 23 14 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11

ary

4 17 7 23 8 14
ary

Sparse two-dimensional arrays

 Here is an example of a sparse two-dimensional array, and

how it can be represented as an array of linked lists:

 With this representation,

 It is efficient to step through all the elements of a row

 It is expensive to step through all the elements of a column

 Clearly, we could link columns instead of rows

 Why not both?

8

12

33

17

0 1 2 3 4 5

0

1

2

3

4

5

5 120

1

2

3

4

5

1 8 5 33

3 17

Big Numbers
 The unsigned int type in C requires 4 bytes of

memory storage. With 4 bytes we can store
integers as large as 232-1; but what if we need
bigger integers, for example ones having
hundreds of digits?

 One way of dealing with this is to use a different
storage structure for integers, such as an array
of digits. If we represent an integer as an array
of digits, where each digit is stored in a different
array index.

 But if we want the integers to be as large as we
like, the best data structure will be linked list,
where each node holds one digit.

A few examples of big number

 Factorial of 10,000.

A few examples of big number

 Factorial of 10,000 is 35,659 digits long

A few examples of big number

 Find the largest prime number

A few examples of big number

 Find the largest prime number

 As of January 2016, the largest known

prime number is 274,207,281 − 1, a number

with 2,23,38,618 digits.

Implementation of Stacks and

Queues using linked lists

Implementation of Stacks and

Queues using linked lists

push = insert_start(&list);

Pop = delete_start(&list);

Enqueue = insert_end(&rear);

Dequeue = delete_start(&rear);

Programming Assignment

Write a program to implement add two

sparse matrices using linked lists.

Circular List Application

 Round-Robin Based Job Scheduling

CPU

Registers

Page

Table

File

Descriptors

Prog name

“emacs”

Process ID

100

CPU

Registers

Page

Table

File

Descriptors

Prog name

“g++”

Process ID

105

CPU

Registers

Page

Table

File

Descriptors

Prog name

“a.out”

Process ID

99

CPU

Registers

Page

Table

File

Descriptors

Prog name

“ps2pdf”

Process ID

217

head

Josephus Problem

 Given a group of n men arranged in a circle

under the edict that every mth man will be

executed going around the circle until only

one remains, find the position in which you

should stand in order to be the last survivor.

Josephus Problem - Example

M=3, N=5

4

0

1

23

Initial state:

4

0

1

23

Round 1

X

X

Person removed so far: {2, 0,

4

0

1

23 X

Round 2

4

0

1

23 X

Josephus Problem - Example

M=3, N=5

Round 3

4

0

1

23
X

X

4

0

1

23 X

X

X

Person removed so far: {2, 0, 4, 1 }

X

4

0

1

23 X

X

Round 2

X
4

0

1

23 X

X

X

Survivor is 3

OriginalJosephus Problem

 The original Josephus problem consisted of a

circle of 41 men with every third man killed.In

order for the lives of the last two men to be

spared, they must be placed at positions 31

(last) and 16 (second-to-last). The complete

list in order of execution is 3, 6, 9, 12, 15, 18,

21, 24, 27, 30, 33, 36, 39, 1, 5, 10, 14, 19,

23, 28, 32, 37, 41, 7, 13, 20, 26, 34, 40, 8,

17, 29, 38, 11, 25, 2, 22, 4, 35, 16, 31.

Original Josephus Problem

Josephus Problem - Solution

while(list->next!=list)

{

for(i=0; i<count-1; i++)

list = list->next;

delete_after(list);

}

Array of linked lists

 An array of linked list combines a static structure (an

array) and a dynamic structure (linked lists) to form

a useful data structure. This type of a structure is

appropriate for applications, where say for example,

number of categories is known in advance, but how

many nodes in each category is not known. For

example, we can use an array (of size 26) of linked

lists, where each list contains words starting with a

specific letter in the alphabet.

Implement sparse matrix using

array of linked lists
Node structure.

struct node

{

int col, val;

struct node *next;

};

typedef struct node *NODEPTR;

next

valcol

Variations of Linked Lists

 Doubly linked lists

 Each node points to not only successor but the
predecessor

 There are two NULL: at the first and last nodes
in the list

 Advantage: given a node, it is easy to visit its
predecessor. Convenient to traverse lists
backwards

A

Head

B C 

 Solves the problem of traversing backwards in

an ordinary linked list.(Implementing big

numbers)

 A link to the previous item as well as to the

next item is maintained.

 The only disadvantage is that every time an

item is inserted or deleted, two links have to be

changed instead of one.

Advantages of Doubly Linked

Lists

struct Node{

int data;

struct Node *next, *prev;

};

typedef struct Node *NODEPTR;

Doubly Linked List Definition

newNode = (NODEPTR) malloc(sizeof(struct node));

newNode->prev = current;

newNode->next = current->next;

newNode->prev->next = newNode;

newNode->next->prev = newNode;

current = newNode;

Inserting into a Doubly Linked List

a c

head tail
current

Inserting into a Doubly Linked List

a c

head tail

newNode = (NODEPTR) malloc(sizeof(struct node));

newNode->prev = current;

newNode->next = current->next;

newNode->prev->next = newNode;

newNode->next->prev = newNode;

current = newNode;

b
current

Inserting into a Doubly Linked List

a c

head tail

newNode = (NODEPTR) malloc(sizeof(struct node));

newNode->prev = current;

newNode->next = current->next;

newNode->prev->next = newNode;

newNode->next->prev = newNode;

current = newNode;

b
current

Inserting into a Doubly Linked List

a c

head tail

newNode = (NODEPTR) malloc(sizeof(struct node));

newNode->prev = current;

newNode->next = current->next;

newNode->prev->next = newNode;

newNode->next->prev = newNode;

current = newNode;

b
current

Inserting into a Doubly Linked List

a c

head tail

newNode = (NODEPTR) malloc(sizeof(struct node));

newNode->prev = current;

newNode->next = current->next;

newNode->prev->next = newNode;

newNode->next->prev = newNode;

current = newNode;

b
current

Inserting into a Doubly Linked List

a c

head tail

newNode = (NODEPTR) malloc(sizeof(struct node));

newNode->prev = current;

newNode->next = current->next;

newNode->prev->next = newNode;

newNode->next->prev = newNode;

current = newNode;

b
current

newNode = (NODEPTR) malloc(sizeof(struct node));

newNode->prev = current;

newNode->next = current->next;

newNode->prev->next = newNode;

newNode->next->prev = newNode;

current = newNode;

Inserting into a Doubly Linked List

a c

head tailb
current

Inserting into a Doubly Linked List

Take care of all cases

Write code for

 Insert_start(NODEPTR *head, int val)

 Insert_end(NODEPTR head, int val);

Inserting at start of doubly

linked list

Insert_start(NODEPTR *head, int val)

{

NODEPTR a = (NODEPTR) malloc(sizeof(struct node));

a->data = val;

if(*head==NULL)

{

a->prev=a->next=NULL;

*head = a;

return;

}

a->prev=NULL;

a->next=*head;

(*head)->prev = a;

*head = a;

}

Inserting at end of doubly

linked list
Insert_end(NODEPTR *head, int val)

{

NODEPTR p=*head, a = (NODEPTR) malloc(sizeof(struct node));

a->data = val;

if(*head==NULL)

{

a->prev=a->next=NULL;

*head = a;

return;

}

while(p->next) p = p->next;

p->next = a;

a->prev=p;

a->next=NULL;

}

Deleting an element from a double

linked list

oldNode=current;

oldNode->prev->next = oldNode->next;

oldNode->next->prev = oldNode->prev;

current = oldNode->prev;

free(oldNode);

a c

head b
current

Deleting an element from a double

linked list

oldNode=current;

oldNode->prev->next = oldNode->next;

oldNode->next->prev = oldNode->prev;

current = oldNode->prev;

free(oldNode);

a c

head b
current

oldNode

oldNode=current;

oldNode->prev->next = oldNode->next;

oldNode->next->prev = oldNode->prev;

current = oldNode->prev;

free(oldNode);

a c

head b
current

oldNode

Deleting an element from a double

linked list

oldNode=current;

oldNode->prev->next = oldNode->next;

oldNode->next->prev = oldNode->prev;

current = oldNode->prev;

free(oldNode);

a c

head b
current

oldNode

Deleting an element from a double

linked list

oldNode=current;

oldNode->prev->next = oldNode->next;

oldNode->next->prev = oldNode->prev;

current = oldNode->prev;

free(oldNode);

a c

head b
current

oldNode

Deleting an element from a double

linked list

oldNode=current;

oldNode->prev->next = oldNode->next;

oldNode->next->prev = oldNode->prev;

current = oldNode->prev;

free(oldNode);

a c

head

current

Deleting an element from a double

linked list

Deleting an element from a

double linked list

 Write down functions to delete first and last

elements in doubly linked list

 delete_first(NODEPTR *head)

 delete_last(NODEPTR *head)

Deleting an element from a

double linked list

int delete_start(NODEPTR *p)

{

int i;

NODEPTR q;

if(*p==NULL)return 0;

i = (*p)->data;

q = (*p)->next;

if(q)

q->prev = NULL;

free(*p);

*p = q;

printf("\nValue deleted =%d\n", i);

return i;

}

Doubly Linked List Application

 Line-based text editors like Unix ed

int main() {

int a = 3, b = 5;

cout << a + b << endl;

}

NULL

string

NULL
HEADER

