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Fig. 9.20.11: Calculation of loads, sec 1-1 of Example 9.1, (Fig. 9.20.10)

Example 9.1:

Design the waist-slab type of the staircase of Fig.9.20.10. Landing slab A
is supported on beams along JK and PQ, while the waist-slab and landing slab B
are spanning iongiw-dinaﬂy as shown in Fig.9.20.10. The finish loads and live
loads are 1 kN/m* and 5 kN/m?, respectively. Use riser R = 160 mm, trade T =
270 mm, concrete grade = M 20 and steel grade = Fe 415.
Solution:

With R =160 mm and T = 270 mm, the inclined length of each step =
{(160)° + (270)°}”* = 313.85 mm.

(A) Design of going and landing slab B
Step 1: Effective span and depth of slab
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The effective span (cls. 33.1b and c) = 750 + 2700 + 1500 + 150 = 5100
mm. The depth of waist slab = 5100/20 = 255 mm. Let us assume total depth of

250 mm and effective depth = 250 — 20 — 6 = 224 mm (assuming cover = 20 mm
and diameter of main reinforcing bar = 12 mm). The depth of landing slab is
assumed as 200 mm and effective depth =200 —-20 -6 =174 mm.
Step 2: Calculation of loads (Fig.9.20.11, sec. 1-1)
(i) Loads on going (on projected plan area)
(a) Self-weight of waist-slab = 25(0.25)(313.85)/270 = 7.265 kN/m®
(b) Self-weight of steps = 25(0.5)(0.16) = 2.0 kN/m°
(c) Finishes (given) = 1.0 kN/m®
(d) Live loads (given) = 5.0 kN/m*
Total = 15.265 kN/m’
Total factored loads = 1.5(15.265) = 22.9 kN/m*
(i) Loads on landing slab A {50% of estimated loads)
(a) Self-weight of landing slab = 25(0.2) = 5§ kN/m®
(b) Finishes {given) = 1 kN/m?
(c) Live loads (given) = 5 kN/m*
Total = 11 kN/m®
Factored loads on landing slab A = 0.5(1.5)(11) = 8.25 kN/m®
(i)  Factored loads on landing slab B = (1.5){11} = 16.5 kN/m®
The loads are drawn in Fig.9.20.11.

Step 3: Bending moment and shear force (Fig. 9.20.11)

Total loads for 1.5 m width of fight = 1.5{B.25(0.75) + 22.9{2.7) +
16.5(1.65)}

= 142.86 kN
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Ve = 1.5(8.25(0.75)(5.1 — 0.375) + 22.9(2.7){5.1 — 0.75 — 1.35)
+ 16.5(1.65){1.65)(0.5)}/5.1 = 69.76 kN

Vo = 14286 -869.76 = 73.1 kN

The distance x from the left where shear force is zero is obtained from:
x = {69.76 —1.5(8.25)(0.75) + 1.5(22.9)(0.75)}/(1.5)(22.9) = 251 m
The maximum bending moment at x= 2.51 m is
= 69.76(2.51) —(1.5)(8.25)(0.75){2.51 — 0.375)

- {1.5)(22.9)(2.51 — 0.75)(2.51 — 0.75)(0.5) = 102.08 kNm.

For the landing slab B, the bending moment at a distance of 1.65 m from

= 73.1(1.65) — 1.5(16.5)(1.65)(1.65)(0.5) = 86.92 kNm
Step 4: Checking of depth of slab

From the maximum moment, we get d = {102(]3[].*2{2.?5)}1’"‘ = 135.98
mm < 224 mm for waist-slab and < 174 mm for landing slabs. Hence, both the
depths of 250 mm and 200 mm for waist-slab and landing slab are more than
adequate for bending.

For the waist-slab, r, =73100M1500(224) = 0.217 N/mm®. For the waist-

slab of depth 250 mm, k= 1.1 (cl. 40.2.1.1 of IS 456) and from Table 19 of IS
456, r. = 1.1(0.28) = 0.308 N/mm°. Table 20 of IS 456, r __ = 2.8 N/mm®

N

Since r, < r. < r_ ., the depth of waist-slab as 250 mm is safe for shear.

For the landing slab, r, = 73100/1500(174) = 0.28 N/mm’. For the

landing slab of depth 200 mm, k=1.2 (cl. 40.2.1.1 of IS 456) and from Table 19
of 1S 456, r. = 1.2(0.28) = 0.336 N/mm" and from Table 20 of IS 456, r._, =2.8

N/mm®. Herealso ¢, <1 < s0 the depth of landing slab as 200 mm is
safe for shear.

CImnex f

Step 5: Determination of areas of steel reinforcement
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Fig. 9.20.12: Reinforcing bars of Example 9.1, sec 1-1 of Fig. 9.20.10

(i) Waist-slab: Mubd® = 102080/(1.5)224(224) = 1.356 N/mm°. Table 2 of SP-
16 gives p=0.411.

12T 3 240 efo+ 18T @ 240 e

The area of steel = 0.411(1000)(224)/{100) = 920.64 mmZ. Provide 12
mm diameter @ 120 mm c/c (= 942 mm/m).

(i) Landing slab B: Mybef at a distance of 1.65 m from V, (Fig. 9.20.11) =
86920/(1.5)(174)(174) = 1.91 N/mm®. Table 2 of SP-16 gives: p = 0.606. The
area of steel = 0.606(1000) (174)1100 = 1054 mm*/m. Provide 16 mm diameter
@ 240 mm c/c and 12 mm dia. @ 240 mm c/c (1309 mm®) at the bottom of
landing slab B of which 16 mm bars will be terminated at a distance of 500 mm
from the end and will continue up to a distance of 1000 mm at the bottom of waist
slab (Fig. 9.20.12).

Distribution steel: The same distribution steel is provided for both the slabs as
calculated for the waist-slab. The amount is = 0.12(250) (1000)/100 = 300
mm?*/m. Provide 8 mm diameter @ 160 mm c/c (= 314 mm*/m).

Step 6: Checking of development length and diameter of main bars

Development length of 12 mm diameter bars = 47(12) = 564 mm, say
600 mm and the same of 16 mm dia. Bars = 47(16) = 752 mm, say 800 mm.

(i) For waist-slab
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M, for 12 mm diameter @ 120 mm o/c (= 942 mm°) = 942(102.08)/920.64
= 104.44 kNm. With V (shear force) = 73.1 kN, the diameter of main bars =
{1.3(104440)/73.1}/47 < 39.5 mm. Hence, 12 mm diameter is o.k.

(i) For landing-slab B

My for 16 mm diameter @ 120 mm clc (= 1675 mmz]l =
1675(102.08)/1650.88 = 103.57 kNm. With V (shear force) = 73.1 kN, the
diameter of main bars = {1.3(103570)/73.1)47 = 39.18 mm. Hence, 16 mm
diameter |s 0.k,

The reinforcing bars are shown in Fig.9.20.12 (sec. 1-1).
(B) Design of landing slab A
Step 1: Effective span and depth of slab

The effective span is lesser of (i) (1500 + 1500 + 150 + 174), and (ii) (1500
+ 1500 + 150 + 300) = 3324 mm. The depth of landing slab = 3324/20 = 166 mm,
< 200 mm already assumed. So, the depth is 200 mm.

¥, trom onea Right = E'?_.TE kM [iotai)

Fi . Trom other flight = 6578 kN (tokal)
¥ 7 | 50% of 16.5 = B.25 kNim’*
» 7 1
-

L .
Ve = 90.33 kN e 3324 -+
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Instructional Objectives:
At the end of this lesson, the student should be able to:
e explain the two major and other requirements of the design of foundation,

e identify five points indicating the differences between the design of
foundation and the design of other elements of the superstructure,

o differentiate between footing and foundation,
e differentiate between shallow and deep foundations,
e identify the situations when a combined footing shall be used,

e explain the safe bearing capacity of soil mentioning the difference
between gross and net safe bearing capacities,

e determine the minimum depth of foundation,

e determine the critical sections of bending moment and shear in isolated
footings,

e draw the distributions of pressure of soil below the footing for concentric
and eccentric loads with e < L/6 and e > L/6,

e determine the soil pressure in a foundation which is unsymmetrical.

11.28.1 Introduction

Till now we discussed the different structural elements viz. beams, slabs,
staircases and columns, which are placed above the ground level and are known
as superstructure. The superstructure is placed on the top of the foundation
structure, designated as substructure as they are placed below the ground level.
The elements of the superstructure transfer the loads and moments to its
adjacent element below it and finally all loads and moments come to the
foundation structure, which in turn, transfers them to the underlying soil or rock.
Thus, the foundation structure effectively supports the superstructure. However,
all types of soil get compressed significantly and cause the structure to settle.
Accordingly, the major requirements of the design of foundation structures are
the two as given below (see cl.34.1 of IS 456):
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1. Foundation structures should be able to sustain the applied loads,
moments, forces and induced reactions without exceeding the safe bearing
capacity of the soil.

2. The settlement of the structure should be as uniform as possible and it
should be within the tolerable limits. It is well known from the structural analysis
that differential settlement of supports causes additional moments in statically
indeterminate structures. Therefore, avoiding the differential settlement is
considered as more important than maintaining uniform overall settlement of the
structure.

In addition to the two major requirements mentioned above, the foundation
structure should provide adequate safety for maintaining the stability of structure
due to either overturning and/or sliding (see cl.20 of IS 456). It is to be noted that
this part of the structure is constructed at the first stage before other components
(columns / beams etc.) are taken up. So, in a project, foundation design and
details are completed before designs of other components are undertaken.

However, it is worth mentioning that the design of foundation structures is
somewhat different from the design of other elements of superstructure due to
the reasons given below. Therefore, foundation structures need special attention
of the designers.

1. Foundation structures undergo soil-structure interaction. Therefore, the
behaviour of foundation structures depends on the properties of structural
materials and soil. Determination of properties of soil of different types itself is a
specialized topic of geotechnical engineering. Understanding the interacting
behaviour is also difficult. Hence, the different assumptions and simplifications
adopted for the design need scrutiny. In fact, for the design of foundations of
important structures and for difficult soil conditions, geotechnical experts should
be consulted for the proper soil investigation to determine the properties of soil,
strata wise and its settlement criteria.

2. Accurate estimations of all types of loads, moments and forces are
needed for the present as well as for future expansion, if applicable. It is very
important as the foundation structure, once completed, is difficult to strengthen in
future.

3. Foundation structures, though remain underground involving very little
architectural aesthetics, have to be housed within the property line which may
cause additional forces and moments due to the eccentricity of foundation.

4. Foundation structures are in direct contact with the soil and may be

affected due to harmful chemicals and minerals present in the soil and
fluctuations of water table when it is very near to the foundation. Moreover,
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periodic inspection and maintenance are practically impossible for the foundation
structures.

5. Foundation structures, while constructing, may affect the adjoining
structure forming cracks to total collapse, particularly during the driving of piles
etc.

However, wide ranges of types of foundation structures are available. It is
very important to select the appropriate type depending on the type of structure,
condition of the soil at the location of construction, other surrounding structures
and several other practical aspects as mentioned above.

11.28.2 Types of Foundation Structures

Foundations are mainly of two types: (i) shallow and (ii) deep foundations.
The two different types are explained below:

(A) Shallow foundations

Shallow foundations are used when the soil has sufficient strength within a
short depth below the ground level. They need sufficient plan area to transfer the
heavy loads to the base soil. These heavy loads are sustained by the reinforced
concrete columns or walls (either of bricks or reinforced concrete) of much less
areas of cross-section due to high strength of bricks or reinforced concrete when
compared to that of soil. The strength of the soil, expressed as the safe bearing
capacity of the soil as discussed in sec.11.28.3, is normally supplied by the
geotechnical experts to the structural engineer. Shallow foundations are also
designated as footings. The different types of shallow foundations or footings are
discussed below.
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1. Plain concrete pedestal footings

Column

Plain concrete pedeéstal’

TT‘;‘TT'_T_TE_T_'T_T_T_T_T_T e

Fig. 11.28.1: Plain concrete pedestal

Plain concrete pedestal footings (Fig.11.28.1) are very economical for
columns of small loads or pedestals without any longitudinal tension steel (see
cls.34.1.2 and 34.1.3 of IS 456). In Fig.11.28.1, the angle o between the plane
passing through the bottom edge of the pedestal and the corresponding junction
edge of the column with pedestal and the horizontal plane shall be determined
from Eq. 11.3.
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2. Isolated footings
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Critical sections:

1) For moments 1-1 and 2-2

2} For one-way shear 3-3 and 4-4

3) For punching shear perimeter marked by 558 5
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Fig. 11.28.2: Uniform and rectangular footing
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Critical sections:

1. For moments 1-1 and 2-2

2. One way shear 3-3 and 4-4

3. Two-way punching shear marked by 5555

Fig. 11.28.3: Stepped and rectangular footing
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Fig. 11.28.4: Sloped and rectangular footing
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Fig. 11.28.5: Unsymmetrical footing about x axis
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Fig. 11.28.6: Unsymmetrical footing about both axes

These footings are for individual columns having the same plan forms of
square, rectangular or circular as that of the column, preferably maintaining the
proportions and symmetry so that the resultants of the applied forces and
reactions coincide. These footings, shown in Figs.11.27.2 to 11.27.4, consist of a
slab of uniform thickness, stepped or sloped. Though sloped footings are
economical in respect of the material, the additional cost of formwork does not
offset the cost of the saved material. Therefore, stepped footings are more
economical than the sloped ones. The adjoining soil below footings generates
upward pressure which bends the slab due to cantilever action. Hence, adequate
tensile reinforcement should be provided at the bottom of the slab (tension face).
Clause 34.1.1 of IS 456 stipulates that the sloped or stepped footings, designed
as a unit, should be constructed to ensure the integrated action. Moreover, the
effective cross-section in compression of sloped and stepped footings shall be
limited by the area above the neutral plane. Though symmetrical footings are
desirable, sometimes situation compels for unsymmetrical isolated footings
(Eccentric footings or footings with cut outs) either about one or both the axes
(Figs.11.28.5 and 6).
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3. Combined footings

Fig. 11.28.7: Combined footing without a central beam
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Central beam

Fig. 11.28.8: Combined footing with a central beam

When the spacing of the adjacent columns is so close that separate isolated
footings are not possible due to the overlapping areas of the footings or
inadequate clear space between the two areas of the footings, combined footings
are the solution combining two or more columns. Combined footing normally
means a footing combining two columns. Such footings are either rectangular or

trapezoidal in plan forms with or without a beam joining the two columns, as
shown in Figs.11.28.7 and 11.28.8.
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4. Strap footings
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Fig. 11.28.9: Strap footing

When two isolated footings are combined by a beam with a view to
sharing the loads of both the columns by the footings, the footing is known as
strap footing (Fig.11.28.9). The connecting beam is designated as strap beam.
These footings are required if the loads are heavy on columns and the areas of
foundation are not overlapping with each other.
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5. Strip foundation or wall footings
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Fig. 11.28.10: Wall footing

These are in long strips especially for load bearing masonry walls or
reinforced concrete walls (Figs.11.28.10). However, for load bearing masonry
walls, it is common to have stepped masonry foundations. The strip footings
distribute the loads from the wall to a wider area and usually bend in transverse
direction. Accordingly, they are reinforced in the transverse direction mainly,
while nominal distribution steel is provided along the longitudinal direction.
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6. Raft or mat foundation
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Fig. 11.28.11: Raft footing

These are special cases of combined footing where all the columns of the
building are having a common foundation (Fig.11.28.11). Normally, for buildings
with heavy loads or when the soil condition is poor, raft foundations are very
much useful to control differential settlement and transfer the loads not
exceeding the bearing capacity of the soil due to integral action of the raft
foundation. This is a threshold situation for shallow footing beyond which deep
foundations have to be adopted.
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(B) Deep foundations
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Fig. 11.28.12: Pile foundation
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As mentioned earlier, the shallow foundations need more plan areas due
to the low strength of soil compared to that of masonry or reinforced concrete.
However, shallow foundations are selected when the soil has moderately good
strength, except the raft foundation which is good in poor condition of soil also.
Raft foundations are under the category of shallow foundation as they have
comparatively shallow depth than that of deep foundation. It is worth mentioning
that the depth of raft foundation is much larger than those of other types of
shallow foundations.

However, for poor condition of soil near to the surface, the bearing
capacity is very less and foundation needed in such situation is the pile
foundation (Figs.11.28.12). Piles are, in fact, small diameter columns which are
driven or cast into the ground by suitable means. Precast piles are driven and
cast-in-situ are cast. These piles support the structure by the skin friction
between the pile surface and the surrounding soil and end bearing force, if such
resistance is available to provide the bearing force. Accordingly, they are
designated as frictional and end bearing piles. They are normally provided in a
group with a pile cap at the top through which the loads of the superstructure are
transferred to the piles.

Piles are very useful in marshy land where other types of foundation are
impossible to construct. The length of the pile which is driven into the ground
depends on the availability of hard soil/rock or the actual load test. Another
advantage of the pile foundations is that they can resist uplift also in the same
manner as they take the compression forces just by the skin friction in the
opposite direction.

However, driving of pile is not an easy job and needs equipment and
specially trained persons or agencies. Moreover, one has to select pile
foundation in such a situation where the adjacent buildings are not likely to be
damaged due to the driving of piles. The choice of driven or bored piles, in this
regard, is critical.

Exhaustive designs of all types of foundations mentioned above are
beyond the scope of this course. Accordingly, this module is restricted to the
design of some of the shallow footings, frequently used for normal low rise
buildings only.

11.28.3 Safe Bearing Capacity of Soil

The safe bearing capacity g. of soil is the permissible soil pressure
considering safety factors in the range of 2 to 6 depending on the type of soil,
approximations and assumptions and uncertainties. This is applicable under
service load condition and, therefore, the partial safety factors A, for different

load combinations are to be taken from those under limit state of serviceability
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(vide Table 18 of IS 456 or Table 2.1 of Lesson 3). Normally, the acceptable
value of q. is supplied by the geotechnical consultant to the structural engineer
after proper soil investigations. The safe bearing stress on soil is also related to
corresponding permissible displacement / settlement.

Gross and net bearing capacities are the two terms used in the design.
Gross bearing capacity is the total safe bearing pressure just below the footing
due to the load of the superstructure, self weight of the footing and the weight of
earth lying over the footing. On the other hand, net bearing capacity is the net
pressure in excess of the existing overburden pressure. Thus, we can write

Net bearing capacity = Gross bearing capacity - Pressure due to overburden
soil (11.1)

While calculating the maximum soil pressure g, we should consider all the
loads of superstructure along with the weight of foundation and the weight of the
backfill. During preliminary calculations, however, the weight of the foundation
and backfill may be taken as 10 to 15 per cent of the total axial load on the
footing, subjected to verification afterwards.

11.28.4 Depth of Foundation

All types of foundation should have a minimum depth of 50 cm as per IS
1080-1962. This minimum depth is required to ensure the availability of soil
having the safe bearing capacity assumed in the design. Moreover, the
foundation should be placed well below the level which will not be affected by
seasonal change of weather to cause swelling and shrinking of the soil. Further,
frost also may endanger the foundation if placed at a very shallow depth.
Rankine formula gives a preliminary estimate of the minimum depth of foundation
and is expressed as

d = (a4 (1 - sing)/(L + sing))’
(11.2)

where d = minimum depth of foundation
gc = gross bearing capacity of soil
A = density of soll

¢ = angle of repose of soill

Though Rankine formula considers three major soil properties g., 4 and

¢, it does not consider the load applied to the foundation. However, this may be

a guideline for an initial estimate of the minimum depth which shall be checked
subsequently for other requirements of the design.
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11.28.5 Design Considerations
(@) Minimum nominal cover (cl. 26.4.2.2 of IS 456)

The minimum nominal cover for the footings should be more than that of
other structural elements of the superstructure as the footings are in direct
contact with the soil. Clause 26.4.2.2 of IS 456 prescribes a minimum cover of 50
mm for footings. However, the actual cover may be even more depending on the
presence of harmful chemicals or minerals, water table etc.

(b) Thickness at the edge of footings (cls. 34.1.2 and 34.1.3 of IS 456)

The minimum thickness at the edge of reinforced and plain concrete
footings shall be at least 150 mm for footings on soils and at least 300 mm above
the top of piles for footings on piles, as per the stipulation in cl.34.1.2 of IS 456.

For plain concrete pedestals, the angle a (see Fig.11.28.1) between the
plane passing through the bottom edge of the pedestal and the corresponding
junction edge of the column with pedestal and the horizontal plane shall be
determined from the following expression (cl.34.1.3 of IS 456)

tana < 0.9{(100 qa/fe) + 1}
(11.3)

where g, = calculated maximum bearing pressure at the base of pedestal in
N/mm?, and

f.« = characteristic strength of concrete at 28 days in N/mm?.
(c) Bending moments (cl. 34.2 of IS 456)

1. It may be necessary to compute the bending moment at several
sections of the footing depending on the type of footing, nature of loads and the
distribution of pressure at the base of the footing. However, bending moment at
any section shall be determined taking all forces acting over the entire area on
one side of the section of the footing, which is obtained by passing a vertical
plane at that section extending across the footing (cl.34.2.3.1 of IS 456).

2. The critical section of maximum bending moment for the purpose of
designing an isolated concrete footing which supports a column, pedestal or wall
shall be:

() at the face of the column, pedestal or wall for footing supporting a

concrete column, pedestal or reinforced concrete wall, (Figs.11.28.2,
3 and 10), and
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(i) bhalfway between the centre-line and the edge of the wall, for footing
under masonry wall (Fig.11.28.10). This is stipulated in cl.34.2.3.2 of
IS 456.

The maximum moment at the critical section shall be determined as
mentioned in 1 above.

Inscribed

Iy square column :
e y
= o f/ ‘\_\. A
i g ™,
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(a) Gircular column (b} Octagonal column

Fig. 11.28.13: Equivalent square columns (cl 34.2.2 of IS 456:2000)

For round or octagonal concrete column or pedestal, the face of the
column or pedestal shall be taken as the side of a square inscribed within the
perimeter of the round or octagonal column or pedestal (see cl.34.2.2 of IS 456
and Figs.11.28.13a and b).

(d) Shear force (cl. 31.6 and 34.2.4 of IS 456)

Footing slabs shall be checked in one-way or two-way shears depending
on the nature of bending. If the slab bends primarily in one-way, the footing slab
shall be checked in one-way vertical shear. On the other hand, when the bending
is primarily two-way, the footing slab shall be checked in two-way shear or
punching shear. The respective critical sections and design shear strengths are
given below:

1. One-way shear (cl. 34.2.4 of IS 456)
One-way shear has to be checked across the full width of the base slab on
a vertical section located from the face of the column, pedestal or wall at a

distance equal to (Figs.11.28.2, 3 and 10):

(i) effective depth of the footing slab in case of footing slab on soil, and
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(if) half the effective depth of the footing slab if the footing slab is on piles
(Fig.11.28.12).

The design shear strength of concrete without shear reinforcement is
given in Table 19 of cl.40.2 of IS 456.

2. Two-way or punching shear (cls.31.6 and 34.2.4)

Two-way or punching shear shall be checked around the column on a
perimeter half the effective depth of the footing slab away from the face of the
column or pedestal (Figs.11.28.2 and 3).

The permissible shear stress, when shear reinforcement is not provided,
shall not exceed ks 7., where ks = (0.5 + £.), but not greater than one, . being

the ratio of short side to long side of the column, and 7, = 0.25(f.)*? in limit state
method of design, as stipulated in ¢l.31.6.3 of IS 456.

Normally, the thickness of the base slab is governed by shear. Hence, the
necessary thickness of the slab has to be provided to avoid shear reinforcement.

(e) Bond (cl.34.2.4.3 of IS 456)

The critical section for checking the development length in a footing slab
shall be the same planes as those of bending moments in part (c) of this section.
Moreover, development length shall be checked at all other sections where they
change abruptly. The critical sections for checking the development length are
given in cl.34.2.4.3 of IS 456, which further recommends to check the anchorage
requirements if the reinforcement is curtailed, which shall be done in accordance
with cl.26.2.3 of IS 456.

(f) Tensile reinforcement (cl.34.3 of IS 456)

The distribution of the total tensile reinforcement, calculated in accordance
with the moment at critical sections, as specified in part (c) of this section, shall
be done as given below for one-way and two-way footing slabs separately.

(i) In one-way reinforced footing slabs like wall footings, the reinforcement
shall be distributed uniformly across the full width of the footing i.e.,
perpendicular to the direction of wall. Nominal distribution reinforcement shall be
provided as per cl. 34.5 of IS 456 along the length of the wall to take care of the
secondary moment, differential settlement, shrinkage and temperature effects.

(i) In two-way reinforced square footing slabs, the reinforcement

extending in each direction shall be distributed uniformly across the full
width/length of the footing.
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(i) In two-way reinforced rectangular footing slabs, the reinforcement in
the long direction shall be distributed uniformly across the full width of the footing
slab. In the short direction, a central band equal to the width of the footing shall
be marked along the length of the footing, where the portion of the reinforcement
shall be determined as given in the equation below. This portion of the
reinforcement shall be distributed across the central band:

. e
End ! End
Rard Centralband band
S SS E Sa e e g B
1
! b
{L-EE}L-'E| B (L-B)2
il .;_lq - L

Fig. 11.28.14: Bands for reinforcement in a
rectangular footing

Reinforcement in the central band = {2/( #+1)} (Total reinforcement in the short

direction)
(11.4)

where f is the ratio of longer dimension to shorter dimension of the footing slab
(Fig.11.28.14).

Each of the two end bands shall be provided with half of the remaining
reinforcement, distributed uniformly across the respective end band.
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(g9) Transfer of load at the base of column (cl.34.4 of IS 456)

W

Column
_//

F

; |
A, area is measured here |

- | Slope— 1

A, area

¥

Loaded .'ilrea A, of column

i

-

k

Perimeters are geometrically similar
and concentric with the loaded area
[

Fig. 11.28.15: Bearing area in sloped or stepped footing

All forces and moments acting at the base of the column must be
transferred to the pedestal, if any, and then from the base of the pedestal to the
footing, (or directly from the base of the column to the footing if there is no
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pedestal) by compression in concrete and steel and tension in steel.
Compression forces are transferred through direct bearing while tension forces
are transferred through developed reinforcement. The permissible bearing
stresses on full area of concrete shall be taken as given below from cl.34.4 of IS
456:

o, = 0.25fc, in working stress method, and
(11.5)

oy = 0.45f, in limit state method
(11.6)

It has been mentioned in sec. 10.26.5 of Lesson 26 that the stress of concrete is
taken as 0.45f, while designing the column. Since the area of footing is much
larger, this bearing stress of concrete in column may be increased considering
the dispersion of the concentrated load of column to footing. Accordingly, the
permissible bearing stress of concrete in footing is given by (cl.34.4 of IS 456):

= 0.45fq (As/AL)Y?

O-br

(11.7)
with a condition that

(A/A2)Y? < 2.0
(11.8)

where A; = maximum supporting area of footing for bearing which is
geometrically similar to and concentric with the loaded area A, as
shown in Fig.11.28.15

A, = loaded area at the base of the column.

The above clause further stipulates that in sloped or stepped footings, A1 may be
taken as the area of the lower base of the largest frustum of a pyramid or cone
contained wholly within the footing and having for its upper base, the area
actually loaded and having side slope of one vertical to two horizontal, as shown
in Fig.11.28.15.

If the permissible bearing stress on concrete in column or in footing is
exceeded, reinforcement shall be provided for developing the excess force
(cl.34.4.1 of IS 456), either by extending the longitudinal bars of columns into the
footing (cl.34.4.2 of IS 456) or by providing dowels as stipulated in cl.34.4.3 of IS
456 and given below:

(i) Sufficient development length of the reinforcement shall be provided to
transfer the compression or tension to the supporting member in accordance with
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cl.26.2 of IS 456, when transfer of force is accomplished by reinforcement of
column (cl.34.4.2 of IS 456).

(i) Minimum area of extended longitudinal bars or dowels shall be 0.5 per
cent of the cross-sectional area of the supported column or pedestal (cl.34.4.3 of
IS 456).

(iif) A minimum of four bars shall be provided (cl.34.4.3 of IS 456).

(iv) The diameter of dowels shall not exceed the diameter of column bars
by more than 3 mm.

Longitudinal bars

- AVD;_;"

Dowel bars

.ll.

4

g——— L

 Anchorage bond length in compression for base

Fig. 11.28.16: Anchorage length of dowels

(v) Column bars of diameter larger than 36 mm, in compression only can
be doweled at the footings with bars of smaller size of the necessary area. The
dowel shall extend into the column, a distance equal to the development length
of the column bar and into the footing, a distance equal to the development
length of the dowel, as stipulated in cl.34.4.4 of IS 456 and as shown in
Fig.11.28.16.

(h) Nominal reinforcement (cl. 34.5 of IS 456)
1. Clause 34.5.1 of IS 456 stipulates the minimum reinforcement and

spacing of the bars in footing slabs as per the requirements of solid slab
(cls.26.5.2.1 and 26.3.3b(2) of IS 456, respectively).
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2. The nominal reinforcement for concrete sections of thickness greater
than 1 m shall be 360 mm? per metre length in each direction on each face, as
stipulated in cl.34.5.2 of IS 456. The clause further specifies that this provision
does not supersede the requirement of minimum tensile reinforcement based on
the depth of section.

11.28.6 Distribution of Base Pressure

N

Fig. 11.28.17: Pressure distribution

in sandy soil
&
Column
__z""\l'
o

Uf jRRAAREE

M
S

e

Fig. 11.28.18; Pressure distribution in clayey soil
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Fig. 11.28.19: Assuming uniform
pressure in the design

E—
=

1
-

The foundation, assumed to act as a rigid body, is in equilibrium under the
action of applied forces and moments from the superstructure and the reactions
from the stresses in the soil. The distribution of base pressure is different for
different types of soil. Typical distributions of pressure, for actual foundations, in
sandy and clayey soils are shown in Figs.11.28.17 and 18, respectively.
However, for the sake of simplicity the footing is assumed to be a perfectly rigid
body, the soil is assumed to behave elastically and the distributions of stress and
stain are linear in the solil just below the base of the foundation, as shown in
Fig.11.28.19. Accordingly, the foundation shall be designed for the applied loads,
moments and induced reactions keeping in mind that the safe bearing capacity of
the soil is within the prescribed limit. It is worth mentioning that the soil bearing
capacity is in the serviceable limit state and the foundation structure shall be
designed as per the limit state of collapse, checking for other limit states as well
to ensure an adequate degree of safety and serviceability.

In the following, the distributions of base pressure are explained for (i)

concentrically loaded footings, (ii) eccentrically loaded footings and (i)
unsymmetrical (about both the axes) footings.
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(i) Concentrically loaded footings

P,
+ Soourlevel
A 7 o~ Backfill + self weight
P i ;’f e of footing = P,
[ egel|  [LILII1]]
3 YYY¥ | i
. Self weight of footing
L
*
1R R pi AR e g T q.= (P, + P.VBL
Al ich
E ]
D
A il s A A
____________ { _.I_._E.b_ iyt | 8
Footing area = BL
= =

A
-
x|

Fig. 11.28.20: Isolated footing subjected to concentric loading

Figure 11.28.20 shows rectangular footing symmetrically loaded with
service load P; from the superstructure and P, from the backfill including the
weight of the footing. The assumed uniformly distributed soil pressure at the base
of magnitude q is obtained from:

g = (P1+Py)/A
(11.9)
where A is the area of the base of the footing.

In the design problem, however, A is to be determined from the condition
that the actual gross intensity of soil pressure does not exceed gc, the bearing
capacity of the soil, a known given data. Thus, we can write from Eq.11.9:

A = (P1 + Pz)/qc

(11.10)
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From the known value of A, the dimensions B and L are determined such
that the maximum bending moment in each of the two adjacent projections is
equal, i.e., the ratio of the dimensions B and L of the footing shall be in the same
order of the ratio of width b and depth D of the column.

(if) Eccentrically loaded footings

‘ Fig. 11.28.21(a): Isolated footing

L2 ..+.L.fﬁ.§.L.-'ﬁ__..g._Lm_..1

Qe Fig. 11.28.219(b:) When e = /8

G ;_ |_ + Compression T

|

III
|

-

Fig. 11.28.21(c) When &= L/

Quras = QP'IBL

- -

H""‘x -
l:;l - .\"KH

Tension ™

T + Compression ‘Ii Fig. 11.28.21{d): When e > L/

e

arme

Fig. 11.28.21: Isolated footing subjected to different eccentric loadings

In most of the practical situations, a column transfers axial load P and
moment M to the footing, which can be represented as eccentrically loaded
footing when a load P is subjected to an eccentricity e = M/P. This eccentricity
may also be there, either alone or in combined mode, when
e the column transfers a vertical load at a distance of e from the centroidal axis

of the footing, and
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e the column or the pedestal transfers a lateral load above the level of
foundation, in addition to vertical loads.

Accordingly, the distribution of pressure may be of any one of the three
types, depending on the magnitude of the eccentricity of the load, as shown in
Figs.11.28.21b to d. The general expression of ga, the intensity of soil pressure at
a distance of y from the origin is:

Ja = PIA £ (Pellyy
(11.11)

We would consider a rectangular footing symmetric to the column. Substituting
the values of A = BL, I, = BL*/12 and y = L/2, we get the values of ga at the left
edge.

ga atthe left edge = (P/BL) {1 - (6e/L)}
(11.12)

It is evident from Eq.11.12, that the three cases are possible:
(A) when e < L/6, q, at the left edge is compression (+),
(B) when e = L/6, q, at the left edge is zero, and
(C) when e > L/6, g, at the left edge is tension (-).

The three cases are shown in Figs.11.28.21b to d, respectively. It is to be noted
that similar three cases are also possible when eccentricity of the load is
negative resulting the values of g, at the right edge as compression, zero or
tension. Evidently, these soil reactions, in compression and tension, should be
permissible and attainable.

Case (A): when|e| <L/6

Figures 11.28.21b and ¢ show these two cases, when |e| < L/6 or |e| =
L/6, respectively. It is seen that the entire area of the footing is in compression
having minimum and maximum values of g at the two edges with a linear and
non-uniform variation. The values of q are obtained from Eq.11.11.

In the limiting case i.e., when |e| = L/6, the value of g, is zero at one edge
and the other edge is having q. = 2P/BL (compression) with a linear variation.
Similarly, when e = 0, the footing is subjected to uniform constant pressure of
P/BL. Thus, when |e| = L/6, the maximum pressure under one edge of the footing
is twice of the uniform pressure when e = 0.
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In a more general case, as in the case of footing for the corner column of
a building, the load may have biaxial eccentricities. The general expression of ga
at a location of (x,y) of the footing, when the load is having biaxial eccentricities

of ex and ey is,

Ja = PIA £ Peylly £ Peyxlly
(11.13)

Similarly, it can be shown that the rectangular footing of width B and
length L will have no tension when the two eccentricities are such that

6e,/L + 6ey/B < 1

(11.14)
Case (B): when |e| >L/6
=]
.-'f.-
A
|_- _|_,-'_3_‘_LL.-'E e L6 L3 |
(<]
T l e
. T \"i G = 2ZP/BL’
- - C=05L-¢
L L' =3C 5
2 Lz i L2 i
il ] L h_?

Fig. 11.28.22: Eccentrically loaded isolated footing (e > L/6)
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The eccentricity of the load more than L/6 results in development of tensile
stresses in part of the soil. Stability, in such case, is ensured by either anchoring
or weight of overburden preventing uplift. However, it is to ensure that maximum
compressive pressure on the other face is within the limit and sufficient factor of
safety is available against over turning. Accordingly, the maximum pressure in
such a case can be determined considering the soil under compression part only.
Further, assuming the line of action of the eccentric load coincides with that of
resultant soil pressure (Fig.11.28.22) we have:

Jmax = P/L'B + 12P(0.5 C)(1.5 C)/BL' = 2P/L'B
(11.15)

where L' = 3C
(11.16)

(iiil) Unsymmetrical footings

It may be necessary to provide some cutouts in the foundation to reduce
the uplift pressure or otherwise. The footing in such cases becomes
unsymmetrical about both the axes. It is possible to determine the soil pressure
distribution using the structural mechanics principle as given below.

da(x,y) = PIA & {(Mylx - Mylx)(X)/(ixly - 1)} + {(Mcly - Mybo)(0)/(Idly - 12)}
(11.17)

where My moment about x axis,

F
|

= moment about y axis,
Iy, = moment of inertia about x axis,

moment of inertia about y axis,

<
I

product of inertia

11.28.7 Practice Questions and Problems with Answers
Q.1: (A) What are the two essential requirements of the design of foundation?

(B) Mention five points indicating the differences between the design of
foundation and the design of other elements of superstructure.

A.1l: Seesec. 11.28.1.

Q.2: Draw sketches of different shallow foundations.
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A.2:

Figure Nos. 11.28.1 to 11.

Q.3: Explain the difference between gross and net safe bearing capacities of soil.

A.3:

Q.4:

A.4:

Q.5:

A.5:

Q.6:
A.6:

Q.7:

A.7:

Q.8:

A.8:

Q.9:

A.9:

Which one is used for the design of foundation?

See sec. 11.28.3.
How would you determine the minimum depth of foundation?
See sec.11.28.4.

What are the critical sections of determining the bending moment in
isolated footing?

See part (c)2 of sec.11.28.5.

Explain the one-way and two-way shears of foundation slabs.

See part (d) of sec.11.28.5.

Draw the actual distributions of base pressures of soil below the footing in
sandy and clayey soils. Draw the assumed distribution of base pressure
below the footing.

Figure Nos. 11.28.17 and 18.

Draw the distributions of pressure in a footing for concentric and
eccentric loadings (e < L/6 and e > L/6).

Figure Nos. 11.28.20 and 21.

How would you determine the pressure at any point (x,y) of a foundation
which is unsymmetrical?

See part (iii) of sec.11.28.6.
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11.28.9 Test 28 with Solutions

Maximum Marks = 50, Maximum Time = 30 minutes
Answer all questions.
TQ.1: (A) What are the two essential requirements of the design of foundation?
5
marks)
(B) Mention five points indicating the differences between the design of
foundation and the design of other elements of superstructure.
(5 marks)
A.TQ.1: See sec. 11.28.1.

TQ.2: How would you determine the minimum depth of foundation? (a0
marks)
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A.TQ.2: See sec.11.28.4.

TQ.3: What are the critical sections of determining the bending moment in
isolated footing?
(10 marks)

A.TQ.3: See part (c)2 of sec.11.28.5.

TQ.4: Explain the one-way and two-way shears of foundation slabs. (10
marks)

A.TQ.4: See part (d) of sec.11.28.5.

TQ.5: Draw the distributions of pressure in a footing for concentric and
eccentric loadings (e < L/6 and e > L/6).
(20 marks)

A.TQ.5: Figure Nos. 11.28.20 and 21.

10.26.11 Summary of this Lesson

This lesson explains the two major and other requirements of the
design of foundation structures. Various types of shallow foundations and pile
foundation are discussed explaining the distribution of pressure in isolated
footings loaded concentrically and eccentrically with e < L/6 and e > L/6. The
gross and net safe bearing capacities are explained. The equation for
determining the minimum depth of the foundation is given. Various design
considerations in respect of minimum nominal cover, thickness at the edge of
footing, bending moment, shear force, bond, tensile reinforcement, transfer of
load at the base of the column, and minimum distribution reinforcement are
discussed, mentioning the codal requirements. The actual and the assumed
distributions of base pressure are discussed. The distributions of base pressure
for concentric and eccentric loads with eccentricity < L/6 and > L/6 are
explained. Determination of bearing pressure of soil for unsymmetrical footing is
also discussed.

All the discussions are relevant in understanding the load carrying
mechanism of the foundation and the behaviour of soil. These understandings
are essential in designing the foundation structures which is taken up in the next
lesson.

Version 2 CE IIT, Kharagpur



ot

= 1500 i
| 1.5
Maximum B, . = M = 129758 x 8.40 X 1.5 —= = 486324.35 Nm
Factored moment
M =15 % 496324.95 = 744486.63 Nm

ng for the column. The safe ht'url'.n#

Pexign.28.4 A square colump 409 mm x
100 mm carrieg

an'axial load of 1500 kN, Design the column and @ $quare

Salution. Design of the coly mn 4 of the soil is 150 mms, Use M 20 concrete and Fe 250 steel

Load on the column W=

Fﬂmrﬁj g [ the col = :ﬁ-’?z ‘:gm = 9250 kN
Overall area of the column secti ol - .
Aren of Steel = A_ on =500 * 500 = 250000 mym?

Area of concrete = A = 250000 — 4
Ultimate load P = 0.4 f A +u3ﬁr A
, , e = 2260 x 100
U.ir:!ﬂl,iﬁﬂﬂﬂﬂ—d__}+ﬂ,|37:mj - 950
A = 15674 mm? e ARE0.% 38

Provide 8 bars of 16 mm # (1608 mm?)

Lateral Ties
Diameter of lateral ties shall not be less than,
3 lova siigy 16
(M 2 dinmeter of longitudinal bars = 3 "Amm,
(i) & mm.

Provide 6mm @ lics

Pitch of Lateral ties

The pitch of lateral ties shall not exceed the following,
() Least lateral dimension of the column = 400 mm,

(W) 16 umes the diameter of the longitudinal bars = 16 %16 = 256 mm.

(i) 48 times the diameter of ties = 48 x 6 = 288 mm.
Provide 6 mm ¢ ties @ 250 mm ¢/¢c.

Design of the Foundation. _
Load on the column = 1500 AN
Approximate weight of footing =150 kN

Tatal load = 1650 kN.
Safe bearing capacity of the soil = 150 AN/m?
. Area of foundation =1650 _ 1y pye

" Bide of footing =11 =332 m
Provide 3.40 m = 3.40 m

5
1500%10 _ 10758 N /m?

Net upward pressure intensity =p = 3.40 % 3.40

Depth from B.M. Consideration

Critical section for bending moment is shown in Fig.28.12 Projection beyond the critical section

3400 - 400
2




Eq“..t.in# H.h h
i)

0148/ bdt=p %
A48
d = 790, 20 % 400 o -
90.3 mm 00 &P = 744488.53 x 1 b | B
P e

ding 12 mun 4 ba
" e n
Eﬂ'ﬂnllvim“rmmup tlﬂnrﬂm'ﬂ of 60 mm, - f!

=60+ 124 6=7g Per layer of by

Overall e -

T'h d"'ﬂth l‘nqu]_r-d = '-"H_'l, o S
a r " i

Y 0|
Depth from d=1128
g e ot

= 1500 = 100 Ee i Rﬂlﬂlnh on the column AFon .-"'f. i Y : |
: : --.\."'\- !

Pactared Punching load = 1, G e, = 14762387 N / ' J .2

M, T44486.53x 1000
ba* 400 x 1052

Percentage of steel required

= 1.682

0.868
""a-rz 1 * 400 % 1052 = 3653 mm*

Provide 33 bars of 12 mm ¢ (3729 mm?)
Provide alsa 38 bars of 12 mm ¢ in the other principal direction also.

Check for Shear
() Check for one-way shear The eritical section for one-way

shear is considered at a distance equal to the effoctive depth
from the face of the column.
Let the depth of the footing be reduced to 400 mm at the edges.
.. Owverall depth at the critical section,
=D'= nm-'ﬁ”’fﬁ;m’ % 1052 = §18.03 mm
Effective depth at the critical section =d = 618.03 — 78 = 540,03 mm
Shear force at this critical section
= 120758 % 3.40 X 0,448 = 1976474 N
Factoned shear V, = 1.5 X 197647.4 = 2964711 N
Width of the footing of the top at this critical section
=b"=b + 2d = 400 + 2 x 1052 = 2604 mm
Nominal shear stress at this critical section
W 206471.1 N/mm?
T -ﬁ-w =022 N/mi
A= g 113 %3729

:MII’H :
2504 <B40.03 - V2% ey

anding to the above percentage of stoq) - S mdiag




=1
iih Check for two way shear 1§ the
The eritical ﬁﬁfrlir?'rn ff.‘-l' two-way shear is taken at the periphery surrounding the column at o distance of ha ;
utive depth of the footing from the face of the column.

overall depth of the footing at a distance 4 -2l0% = 526 mm from the column face.

2 2
1130 -

D =1130 = lﬁmm} % 526 = 874 mm
Effective depth of this eritical section

d’ =874 —T8=THE mm
Critienl perimeter = b = 4 (400 + 1052) = 5808 mm
Shear force at the eritical section
=¥=129758 (3.40° = 1.452)* = 12264332 N
Factored Shear V. = 1,5 x 1226433.2 = 1839649.8 N

1839649.8
g e e e m?
Nominal shear stress 1, 5808 » 796 0.40 N/mm

Short side of column section _ |
p, = Long side of column sectin-i

gmmé @ ')L‘ I& "T':::
4~ B-16 ¢

250 mm efc

T

1130

@r | -Em : K =05+p=05+1=15
ol m~——-—'——4 Pﬁfmmlademgnnhmsnmsﬂ_xutﬁ,
T & =1x025 20 =112 N/mm?
+1 Y LR N6 | = Lenapes depd sl
1 P UL e R Vg B, M
. id W I'I‘.."!:'q mmm -
w00 i - B s e
] k - o o 1' :



ot

= 1500 i
| 1.5
Maximum B, . = M = 129758 x 8.40 X 1.5 —= = 486324.35 Nm
Factored moment
M =15 % 496324.95 = 744486.63 Nm

ng for the column. The safe ht'url'.n#

Pexign.28.4 A square colump 409 mm x
100 mm carrieg

an'axial load of 1500 kN, Design the column and @ $quare

Salution. Design of the coly mn 4 of the soil is 150 mms, Use M 20 concrete and Fe 250 steel

Load on the column W=

Fﬂmrﬁj g [ the col = :ﬁ-’?z ‘:gm = 9250 kN
Overall area of the column secti ol - .
Aren of Steel = A_ on =500 * 500 = 250000 mym?

Area of concrete = A = 250000 — 4
Ultimate load P = 0.4 f A +u3ﬁr A
, , e = 2260 x 100
U.ir:!ﬂl,iﬁﬂﬂﬂﬂ—d__}+ﬂ,|37:mj - 950
A = 15674 mm? e ARE0.% 38

Provide 8 bars of 16 mm # (1608 mm?)

Lateral Ties
Diameter of lateral ties shall not be less than,
3 lova siigy 16
(M 2 dinmeter of longitudinal bars = 3 "Amm,
(i) & mm.

Provide 6mm @ lics

Pitch of Lateral ties

The pitch of lateral ties shall not exceed the following,
() Least lateral dimension of the column = 400 mm,

(W) 16 umes the diameter of the longitudinal bars = 16 %16 = 256 mm.

(i) 48 times the diameter of ties = 48 x 6 = 288 mm.
Provide 6 mm ¢ ties @ 250 mm ¢/¢c.

Design of the Foundation. _
Load on the column = 1500 AN
Approximate weight of footing =150 kN

Tatal load = 1650 kN.
Safe bearing capacity of the soil = 150 AN/m?
. Area of foundation =1650 _ 1y pye

" Bide of footing =11 =332 m
Provide 3.40 m = 3.40 m

5
1500%10 _ 10758 N /m?

Net upward pressure intensity =p = 3.40 % 3.40

Depth from B.M. Consideration

Critical section for bending moment is shown in Fig.28.12 Projection beyond the critical section

3400 - 400
2




Eq“..t.in# H.h h
i)

0148/ bdt=p %
A48
d = 790, 20 % 400 o -
90.3 mm 00 &P = 744488.53 x 1 b | B
P e

ding 12 mun 4 ba
" e n
Eﬂ'ﬂnllvim“rmmup tlﬂnrﬂm'ﬂ of 60 mm, - f!

=60+ 124 6=7g Per layer of by

Overall e -

T'h d"'ﬂth l‘nqu]_r-d = '-"H_'l, o S
a r " i

Y 0|
Depth from d=1128
g e ot

= 1500 = 100 Ee i Rﬂlﬂlnh on the column AFon .-"'f. i Y : |
: : --.\."'\- !

Pactared Punching load = 1, G e, = 14762387 N / ' J .2

M, T44486.53x 1000
ba* 400 x 1052

Percentage of steel required

= 1.682

0.868
""a-rz 1 * 400 % 1052 = 3653 mm*

Provide 33 bars of 12 mm ¢ (3729 mm?)
Provide alsa 38 bars of 12 mm ¢ in the other principal direction also.

Check for Shear
() Check for one-way shear The eritical section for one-way

shear is considered at a distance equal to the effoctive depth
from the face of the column.
Let the depth of the footing be reduced to 400 mm at the edges.
.. Owverall depth at the critical section,
=D'= nm-'ﬁ”’fﬁ;m’ % 1052 = §18.03 mm
Effective depth at the critical section =d = 618.03 — 78 = 540,03 mm
Shear force at this critical section
= 120758 % 3.40 X 0,448 = 1976474 N
Factoned shear V, = 1.5 X 197647.4 = 2964711 N
Width of the footing of the top at this critical section
=b"=b + 2d = 400 + 2 x 1052 = 2604 mm
Nominal shear stress at this critical section
W 206471.1 N/mm?
T -ﬁ-w =022 N/mi
A= g 113 %3729

:MII’H :
2504 <B40.03 - V2% ey

anding to the above percentage of stoq) - S mdiag




=1
iih Check for two way shear 1§ the
The eritical ﬁﬁfrlir?'rn ff.‘-l' two-way shear is taken at the periphery surrounding the column at o distance of ha ;
utive depth of the footing from the face of the column.

overall depth of the footing at a distance 4 -2l0% = 526 mm from the column face.

2 2
1130 -

D =1130 = lﬁmm} % 526 = 874 mm
Effective depth of this eritical section

d’ =874 —T8=THE mm
Critienl perimeter = b = 4 (400 + 1052) = 5808 mm
Shear force at the eritical section
=¥=129758 (3.40° = 1.452)* = 12264332 N
Factored Shear V. = 1,5 x 1226433.2 = 1839649.8 N

1839649.8
g e e e m?
Nominal shear stress 1, 5808 » 796 0.40 N/mm

Short side of column section _ |
p, = Long side of column sectin-i

gmmé @ ')L‘ I& "T':::
4~ B-16 ¢

250 mm efc

T

1130

@r | -Em : K =05+p=05+1=15
ol m~——-—'——4 Pﬁfmmlademgnnhmsnmsﬂ_xutﬁ,
T & =1x025 20 =112 N/mm?
+1 Y LR N6 | = Lenapes depd sl
1 P UL e R Vg B, M
. id W I'I‘.."!:'q mmm -
w00 i - B s e
] k - o o 1' :



Fig. 28.34. Region of transverse bending.

Design. 28.9 Desi : N
Ay L& a rewnforced coner :  pooting for two columns A and B located 3.60
metres apart. The sizes of {) concrete combined rectangular footing for two

1500 kN respectivel | f»hem‘lumm_m 400 mm % 400mm and 600 mm * 600 mm and the loads on them are 1000 kN and
is limited t f?; f;ue ¥. I € projection of the footing parailel to the length of the footing beyond the axis of the column A
mi 0 mm. The safe bearing capacity of the soil is 280 N/ m?. Use M 20 concrete and Fe 415 steel.

L



= Eﬁ{] F
0 n c}
Distance of the W — 1500x360 _g16m | ([ !
resultan column load from the axis of column A 2500 L hiE
PR e
- &00 kM / -
Y 1000 kN AT e | 74 ‘}tf‘r 'D-U.ﬁ: 31?;_?_,-4 Z
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Fig. 28.25.

f the foundation plan,

. ' g e =275 m
Distance of the resultant column load from the left edge of the footing = 0- Be ; ifcentmid 0
For the condition that the resultant of the column loads must pass throug

length of the footing =L =2 x 2.75 =5.50 m

: 9.821
Width of the footing = B = —5—5*5%: 1.79 m say 1.80 m
Fig. 28.29 shows the position of the two columns on the foundation plan.
Net upward pressure intensity on the footing.

1000 + 1500 .
=p= = 252.52 kRN/m>
P 5.5x1.8 EEJ J i:!

Depth of the footing _ | (P( m\ r ¥
() Punching shear consideration under the column A F{ L
Punching load = Column load — Reaction of soil on column area
= 1000 - 252.52 x 0.40° = 959.60 N = 959600 N
Factored punching load = 1.5 % 959600 = 1439400 N
Design punching shear stress « =1.BON/mm® . -
Equating punching shear resistance to the factored punching loa
. "4 % 400 x D % 1.80 = 1439400 - v D=499.8 mm kS
ﬁ*ﬁ "Eij_"ﬁ;nching shear consideration under the column B
Punching load = 1500 — 252.52 X 0.60* = 1409 kN .
Factored punching load =1.5 X 1409'=2113.5 kN = 2113500 N

Equating punching shear resistance to the factored punching load
4x600% Dx1.80=2113500 - D=4892mm ", e o

(i) B.M. Consideration o o WA L s .
Factored load on column A = 1.5 X 1000 = 1500 kN e oy s TR

Factored load on column B'= 1.5 x 1500 = 2250 kN




Fig. 28.36 ,
his section bes s

The ma’g“m hogging moment occurs at a section where the shear force 18 2670 Lett

the left Eﬂd:
Equating the shear force to zZero,

681.818x—-1500=0

x=220m
M =681818x 220°
s Mg, = 081.818 X =27 — 1500 (2.20 - 0.59) = — 765 kNm
Points of Contraflexure il “1al ’{ 2.
Equating the general expression for bending momgnt to zero, < 0 o / Ly e g (< (o
? | L0 mmRi, 2

681.818 —- — 1500 (x-0.59) =0 ‘i’,f‘; Loy N bg—g{. & ,(pq’
orx®—4.4x+2596=0 i Dol % cﬂ_-bdz _
Solving we get, x = 0.70 m and 3.70 m from the left end. 500 = |

Equam Mn. lim to ji; max
0.138 f, bd* =0.138 X 20 X 1800 d* = 765 x 10°
Providing 16 mm ¢ bars at a clear cover of 60 mm
Effective cover to the centre of steel = 60 + 8 = 68 mm
Overall depth = 392.4 + 68=4524 mm ~

For economic use of steel increase the depth by 40%
- Overall depth = 1.40 x 452-4 = 634 mm :
Provide an overall depth of 650 mm 5
Actual effective depth = d = 650 ~ 68 = 582 mm .
Reinforcement from B.M. Consideration

Top steel for maximum hogging moment of 765 kNm

Ma..  768x10° by
max =
bd® " 1800x582° 0

Percentage of steel required
1-"1 _46 1955
| 20
Py =0 415

d=392.4 mm




Solution. Total load on the columng = g x RO +

Approximate weight of foundation 4 % 500 = 3600 kN

|
@ 10% column loads = 360 AN o e 1 i B =g
Total = 3960 kN 3 1 -
Total moment about the base = 1200 Ny 3 £+ -~{=}- =
|
. Eccemtricity of the load = 1200 = 0.908 m w'h T m
Extreme pressure mntensity at the bosp l 450 = 480 |
3960 [,  6x0.30a] oy & ] £3-
T e } kN/m? vor [l 8 <ol %
a # i :-.-.. _._]
Pos= 58.4 AN/ m? r'r*- i '
i P =39 EN/m? Flg. 28.85.
Pressure due to weight of foundation = I:;ﬂﬂ_ =4.3 kN/m* A1 8 WP
"7 =1 5
Net pressure, / D _
P we =594 - 4.0 = 55.1 kN/m" | L
P =848 4.3=306 kN/m? /
Since the columns are 450 mm X 450 mom, let the width of the main f
beams be 500 mm. f
Cantilevering projection = 1,00 - 0.25=0.75 m [ 52 5 st
Upward pressure at 0.75 m from the edge '
= i e

= 55.1- ﬁ‘l;mjxn.n = 52,5 kN/m?
Censider a one metre wide strip of the cantilever slab.
Upward laad on the cantilever = H'i;ﬁjuﬂ.ﬁ kN = 40.4 kN
$25+2«551 Q075
" meire fram the edge of beam

This acta at 525+551 3
= 0.36 m from the edge of beam

- Maximum bending moment for the cantilever slab per mrtre width
= 40.4 % 0.389 ANm = 15.7 kNm

Factored moment = 1.6 x 15.7 = 24.65 kNm
Equating M__ to M,
0.138f, bd® =0.138 x 20 % 1000 d® = 23,55 x 100

s d=03mm
Provide on averall depth of 180 mm

.

Fig. 28.86.
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Providing 10 mm ¢ bars at a clear cover of 60 mm,
! .md=lm__m+5}=:llﬁ--mﬂ
Effective M, _ 23.55x10°
bd* "~ 10001157 = 178




T erventage of steel repuined

n.--n

A, = Tﬁrlmlnl-m“'
_ %1000
B

A am § any = 122 mm

provide 10 mm Phars @ 120 mm c/c

T——
{ hetribution 100 X 1000 |80 = 218 mm*

gpociag of 8 mm ¢ bary = 2021000 o 951

prouide Emm & bare @ 200 mm e/e

'Wml‘ﬁwhpmﬂi-uﬂmhl_n%nm
r‘whl-ﬁuﬂldh.mmlhhﬂmwld“ﬂ

mﬂnuuhwﬂh“
—nl.'lﬂ?_-i'_“"

h‘_,,thnmuulmhudn;m.ihi -l.ﬂ-ﬁ-nmthlulllﬂﬂh'w

5 ﬁﬂﬂ%mﬂm-uhm w |80 =487 AN/ml

) « 11.27 kNm

li

Manimum

Mh-l.l_-l.ﬁ!llmu 16.905 kNm.




Provide 10 num Pbare @ 170 mumn e,

—e
Secondary beams, These are designed as T - beama.

The loading on an S rmediate wecondary beum is Jess than thet on the end socondary beam. The loading on the

vl secondnry beam varies

Yy

From B16x 15 =804.6 kN/m

A ]

to 8341 x 15— =826 AN/m |

4.0 ANim

Total | = 620+046 . _
oad == 0 X6= 1928 AN e

This acts at - [M]uﬁm from A = 2.67 m from A
62.6x04.6 3

Taking moments aboyt A, we have
V.¥8 = 3928 x 2467
V., = 200.7 kN

> V. = 392.8-200.7 = 183.1 kN
Shear force at Any section X distant ¥ m from A

s =EE.51+%.=132: :-183.1 AN

S =625x+321 - 183.1 &N

1‘1 1

B.M. at section X = M =625 5 +321 fj- ~1830 x kNm

expression for shear force to zero, we have,

, the flange and equating the ultimate moment of resistance to the
factored moment, "f'""m,_m-ﬂaﬂ:.}fm_ % 10¢

B25x+3.21x-1831 =0
¥ +19.47x-5705 = 0

Solving, we get, x=258m
2.58° 2.58°
BMatx=258m= ﬂ.ﬁuT+ﬂ;21u 3 ~183.1=2.68 kNm
= —246.02 ANm

Factored moment =—1.5Hf.4l3.l]2 =—iliﬂ.£3hﬁm e ﬁ -
Overall depth of beam = ahout g nfnpun#—ﬂ— mm say 800 mm T
Breadth of rib = 350 mm

the effective cover to reinforcement be 80 mm
EL;-uﬁwdmm=d=Hﬂﬂ—N'Tﬂmm
Breadth of Flange

This shall be taken as the lesser of the following

@ 1+§-1_Eﬂm'1m““

don “'“‘"ﬁ;ﬂ + 350 + 6 % 180 = 2263 mm
H&Iﬁﬁﬂwﬂiﬂmm-mﬂﬁimtﬂhﬂ;m]iu

0.36x20x x)=28007.741

s




Prowsde 5 bars of 30 mm ¢ (1570 mm?)

Shear Analysis

Factored shear at the end B=1.5% 200.7 = 314.55 kN
Factored shear at theond A = 1.5 x 183,11 = 274.65 kN

814.55 10"
250 =780

: 27465 =10"
Nominal shear stress at theend A= ———— = 1
350x720 - 100 N/mm

A
Parcentage of steel provided = =2 » 100 = 1570
bl 350 = 720

For 0.62% ateel 1, = 0.52 N/mm?
Shoar resistance of conerete S = 0,52 * 350 * 720 = 131040 N = 181.04 kN
Position of this section in the zone of negative shear
1.5(625x+ 321 " -183.1}=-131.04
S+ 1047 x-2083=0
£ =143 m from the end A.
Position of this section in the zone of positive shear
1.5(625x +3.21 x!-188.1)=+ 131.04
£+ 1947x-8425=0
.. x=3,65m from the end A
Main Beams
Each main beam is subjected to the following loads :
i Upward concentrated loads transmitted by secondary
beams
(i Upward uniformly distributed load transferred by the
slab cantilevering from the main beams,
{iiff Downward column loads.
Maximum load transmitted by an end secondary beam.

=208.7 AN
- Maximum load transmitted by an intermedinte secondary

beam

Nominal shenr stress at the ond B =

=1.25 N/mm?

» 100 = 0.62%

5

= _% «209.7 kN =180.6 kN

1=
g

Uniformly distributed load on the main beam
= %{55.1-1- El.ﬁ]ul kN/m =53.36 kN/m

The load system mﬂngunthunminhenmisnhmiuﬁg.

Resolving the forces on the main beam, vertically, we have,
90+ 609.4 = 190.6 % 4 + 53.35 x 10

Q@ = 343,25 kN
8.F. Calculations S, =- 343.25 kN
' s, = 3432545335 % = 2543 kN
S, =-254.4+ 190.6 =-63.7T kN
5, = ~637+5338 ;-- 252 kN
.3!_ _==+m +190.6 =+ 2158 kN
e §,, = +215.8+ 5335 = 43047 kN

98 89, Let the resultant point load at esch end be Q.



Ei’ﬁ'f}”}’ o ~500.1 kNm
&

b
b

]
M = -043.26 !.: .mnﬁ:J -
3323 &7 w065 kNm

10
= =7 w54 1906 & —- g Ti
M 4325% 190 3 + 2

o

Foint of zere shear between Band
Lot at o distance of x metres the *-E- bo zero
. 53.35 x + 190.6 = 343.25
T =286 m

S BUM, :
M. at x =285 m =M, =-343.25x2.86 + E’éﬂ{ﬂ.ﬁﬁﬁi ' 19”-5{2'35 F 5] o

: ==536.7 Nm
:}:::‘;':d moment = M =-15x 536.7 = - B0B.05 kNm
e nn uvnru!l depth of 1000 mm and a width of 500 mm
rovide an effoctive cover to top steel = 80 mm

Effective depth d = 1000 — 80 =920 mm

M,  805.05x10° :
.l_'“.!'! = Emlﬁ'ﬂﬂ: = [.902

Percentage of steel required
= 1 - f'ﬁ = l.!-HJ.'E

0
P, =50 a5 = 0.602%
o0
0.
A, = lgﬁ: X 500 = 920 =2769.2 mm*
Provide 9 bars of 20 mm diameter (2826 mm”®)

Shear Reinforcement
Nominal shear stress due to factored shear forge of 1.5 % 343.25 kN

3 3
3 1.O=343.25 10 = 1.12 N/mimn?

‘ 200 = 920
Nominal shear stress due to factored shear force of 1.5 * 254.3 AN

1.5x254.3x10"
= =) g 4
_ 500 x 920 Sieailv/mm
Nominal shear stress due to factored shear force of 1.5 % 304.7 kN
1.5x304.7 x10? .
% 2920 =099 N/ mm

Beam between A and B, and F and G
V, = 1.5 % 348.25 = 514.875 kN

X 100 =0.614%

_ 2826
Percentage of steel = 500 % 920

Corresponding to 0.614% steel, t, =0.51 N/mm?".
Shear resistance of concrete = 1. bd = (.51 x 500 x 920 = 234600 N

Net lhur‘l?:#ﬁ'-liﬂ?ﬁ-- 234600 =280275 N
: . 0.87 x415 x4 x50 x 920
cin .[gm mm $ stirrups = =23
Spacing _ _ﬁf‘l eE 8 ¥ ps 980575 Tmm

Provide 4 legged 8§ mm ¢ stirrups @ 230 mm c/c
Beam between C and D, and D and |
V., = 1.5 % 304.7 = 457.05 kN

et b i e N
Net shear V. = 457050 — 284600 = 222450 N



B — -

Spacing of 4 legged 8 mm ¢ stirrups = G'ET"“;;; 45’:}501920 =298 mm
4

Provide 4 legged 8 mm ¢ stirrups @ 250 mm c¢/c
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Instructional Objectives:
At the end of this lesson, the student should be able to:

o define effective length, pedestal, column and wall,

e classify the columns based on types of reinforcement, loadings and
slenderness ratios,

e identify and explain the functions of bracing in a braced column,

e determine the minimum and maximum percentage of longitudinal
reinforcement,

e determine the minimum numbers and diameter of bars in rectangular and
circular columns,

e determine the longitudinal reinforcement in a pedestal,

e determine the type, pitch and diameter of lateral ties of columns after
determining the longitudinal steel,

e state the assumptions in the design of compression member by limit state
of collapse,

e determine the strain distribution lines of a compression member subjected
to axial load with or without the moments about one or both the axes,

e explain the need of the minimum eccentricity to be considered in the
design of compression members.

10.21.1 Introduction

Compression members are structural elements primarily subjected to axial
compressive forces and hence, their design is guided by considerations of
strength and buckling. Figures 10.21.1a to ¢ show their examples: pedestal,
column, wall and strut. While pedestal, column and wall carry the loads along its
length | in vertical direction, the strut in truss carries loads in any direction. The
letters |, b and D represent the unsupported vertical length, horizontal lest
lateral dimension, width and the horizontal longer lateral dimension, depth. These
compression members may be made of bricks or reinforced concrete. Herein,
reinforced concrete compression members are only discussed.

Version 2 CE IIT, Kharagpur
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o A
Sechion B £
t
b
*'1"
¥
% K
7 >
L
Flan Plan
| == 60b (restrained at both ends )
|, <= 3b | <= 100b* /D (cantilever }
D ==4b D <=4b
b<D b=D

Fig. 10:21.1{a): Pedestal Fig. 10.21.1(b}): Column

* i
'y
Note:
. . le = effective length
H} (eflective height) | = unsupported length
b = least lateral dimension
D = greater lateral dimension
a i H,= _{eﬂecﬂve height)
: = X t = thickness of wall
SAchon L1 = length of wall
4y
'y
o =X ETH {: 30t
> dt
L1 t<L1
= : :
'[ Plan Fig. 10.21.1{c): Wall

Fig. 10.21.1: Pedestal, column and wall
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This module is intended to explain the definition of some common
terminologies and to illustrate the design of compression members and other
related issues. This lesson, however, explain the definitions and classifications of
columns depending on different aspects. Further, the recommendations of IS 456
to be followed in the design are discussed regarding the longitudinal and lateral
reinforcing bars. The assumptions made in the design of compression member
by limit sate of collapse are illustrated.

10.21.2 Definitions

(a) Effective length: The vertical distance between the points of inflection
of the compression member in the buckled configuration in a plane is termed as
effective length | of that compression member in that plane. The effective
length is different from the unsupported length | of the member, though it
depends on the unsupported length and the type of end restraints. The relation
between the effective and unsupported lengths of any compression member is
= ki

le

(10.1)

where k is the ratio of effective to the unsupported lengths. Clause 25.2 of IS
456 stipulates the effective lengths of compression members (vide Annex E of IS
456). This parameter is needed in classifying and designing the compression
members.

(b) Pedestal: Pedestal is a vertical compression member whose effective
length le does not exceed three times of its least horizontal dimension b (cl.
26.5.3.1h, Note). The other horizontal dimension D shall not exceed four times
of b (Fig.10.21.1a).

(c) Column: Column is a vertical compression member whose
unsupported length | shall not exceed sixty times of b (least lateral dimension),
if restrained at the two ends. Further, its unsupported length of a cantilever
column shall not exceed 100b%/D, where D is the larger lateral dimension which
is also restricted up to four times of b (vide cl. 25.3 of IS 456 and Fig.10.21.1b).

(d) Wall: Wall is a vertical compression member whose effective height
Huwe to thickness t (least lateral dimension) shall not exceed 30 (cl. 32.2.3 of IS
456). The larger horizontal dimension i.e., the length of the wall L is more than
4t (Fig.10.21.1c).
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10.21.3 Classification of Columns Based on Types of
Reinforcement

[ ]
=]
4.
¥
%
> Ties
N e
I
I .. Longitudinal bars

Fig. 10.21.2(a). Tied column

Longltudinal bars

/ Pitch

Fig. 10.21.2b: Column with helical reinforcement

Version 2 CE IIT, Kharagpur



s P

Fig. 10.21.2{c): Compaosite column (steel section)

Steel pipe
et g W - —

.4

E"

_H,-*'H':-, Concrete

Fig. 10.21.2({d): Composite column (steel pipe)

Fig. 10.21.2: Tied, helically bound & composite columns

Based on the types of reinforcement, the reinforced concrete columns are
classified into three groups:

() Tied columns: The main longitudinal reinforcement bars are enclosed
within closely spaced lateral ties (Fig.10.21.2a).

(i) Columns with helical reinforcement: The main longitudinal
reinforcement bars are enclosed within closely spaced and continuously wound
spiral reinforcement. Circular and octagonal columns are mostly of this type
(Fig.10.21.2Db).

(i) Composite columns: The main longitudinal reinforcement of the
composite columns consists of structural steel sections or pipes with or without
longitudinal bars (Fig.20.21.2c and d).

Out of the three types of columns, the tied columns are mostly common
with different shapes of the cross-sections viz. square, rectangular, T-, L-, cross
etc. Helically bound columns are also used for circular or octagonal shapes of
cross-sections. Architects prefer circular columns in some specific situations for
the functional requirement. This module, accordingly takes up these two types
(tied and helically bound) of reinforced concrete columns.

Version 2 CE IIT, Kharagpur



10.21.4 Classification of Columns Based on Loadings

E z & E':I f p = M,‘ J'E\,
Y _
-
8] o I
Section 1-1
Ay
(13 @ 0 : G
D [ A X Section 1-1
0] Kk
(Df — T@
: b » E[ G :-Y
Plan D
Plan

Fig. 10.21.3{a): Axial loading {concentric ) Fig. 10.21.3(b}: Axial loading with uniaxial bending
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Fig. 10.21.3{c): Axial loading with biaxial bending
Fig. 10.21.3: Concentric and eccentric loadings on columns

Columns are classified into the three following types based on the
loadings:

Version 2 CE IIT, Kharagpur



() Columns subjected to axial loads only (concentric), as shown in
Fig.20.21.3a.

(i) Columns subjected to combined axial load and uniaxial bending, as
shown in Fig.10.21.3b.

(i) Columns subjected to combined axial load and bi-axial bending, as
shown in Fig.10.21.3c.
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Fig. 10.21.4: Grid of beams and columns

Figure 10.21.4 shows the plan view of a reinforced concrete rigid frame
having columns and inter-connecting beams in longitudinal and transverse
directions. From the knowledge of structural analysis it is well known that the
bending moments on the left and right of columns for every longitudinal beam will
be comparable as the beam is continuous. Similarly, the bending moments at the
two sides of columns for every continuous transverse beam are also comparable
(neglecting small amounts due to differences of Ij, I, I3 and by, by, bs, by).
Therefore, all internal columns (Cla to C1f) will be designed for axial force only.
The side columns (C2a to C2j) will have axial forces with uniaxial bending
moment, while the four corner columns (C3a to C3d) shall have axial forces with
bi-axial bending moments. Thus, all internal columns (Cla to C1f), side columns
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(C2a to C2j) and corner columns (C3a to C3d) are the columns of type (i), (ii) and
(iii), respectively.

It is worth mentioning that pure axial forces in the inside columns is a rare
case. Due to rigid frame action, lateral loadings and practical aspects of
construction, there will be bending moments and horizontal shear in all the inside
columns also. Similarly, side columns and corner columns will have the column
shear along with the axial force and bending moments in one or both directions,
respectively. The effects of shear are usually neglected as the magnitude is very
small. Moreover, the presence of longitudinal and transverse reinforcement is
sufficient to resist the effect of column shear of comparatively low magnitude.
The effect of some minimum bending moment, however, should be taken into
account in the design even if the column is axially loaded. Accordingly, cls. 39.2
and 25.4 of IS 456 prescribes the minimum eccentricity for the design of all
columns. In case the actual eccentricity is more than the minimum, that should
be considered in the design.

10.21.5 Classification of Columns Based on Slenderness
Ratios

Columns are classified into the following two types based on the
slenderness ratios:

(i) Short columns

(ii) Slender or long columns
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Fig. 10.21.5: Modes of failure of columns
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Figure 10.21.5 presents the three modes of failure of columns with
different slenderness ratios when loaded axially. In the mode 1, column does not
undergo any lateral deformation and collapses due to material failure. This is
known as compression failure. Due to the combined effects of axial load and
moment a short column may have material failure of mode 2. On the other hand,
a slender column subjected to axial load only undergoes deflection due to beam-
column effect and may have material failure under the combined action of direct
load and bending moment. Such failure is called combined compression and
bending failure of mode 2. Mode 3 failure is by elastic instability of very long
column even under small load much before the material reaches the yield
stresses. This type of failure is known as elastic buckling.

The slenderness ratio of steel column is the ratio of its effective length Ie
to its least radius of gyration r. In case of reinforced concrete column, however,
IS 456 stipulates the slenderness ratio as the ratio of its effective length le to its
least lateral dimension. As mentioned earlier in sec. 10.21.2(a), the effective
length le is different from the unsupported length, the rectangular reinforced
concrete column of cross-sectional dimensions b and D shall have two
effective lengths in the two directions of b and D. Accordingly, the column may
have the possibility of buckling depending on the two values of slenderness
ratios as given below:

Slenderness ratio about the major axis = lex/D
Slenderness ratio about the minor axis = ley/b

Based on the discussion above, cl. 25.1.2 of IS 456 stipulates the
following:

A compression member may be considered as short when both the
slenderness ratios lex/D and le/b are less than 12 where lex = effective length
in respect of the major axis, D = depth in respect of the major axis, ley = effective
length in respect of the minor axis, and b = width of the member. It shall
otherwise be considered as a slender compression member.

Further, it is essential to avoid the mode 3 type of failure of columns so
that all columns should have material failure (modes 1 and 2) only. Accordingly,
cl. 25.3.1 of IS 456 stipulates the maximum unsupported length between two
restraints of a column to sixty times its least lateral dimension. For cantilever
columns, when one end of the column is unrestrained, the unsupported length is
restricted to 100b%/D where b and D are as defined earlier.
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10.21.6 Braced and unbraced columns
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Fig. 10.21.6: Bracing of columns

It is desirable that the columns do not have to resist any horizontal loads
due to wind or earthquake. This can be achieved by bracing the columns as in
the case of columns of a water tank or tall buildings (Figs.10.21.6a and b).
Lateral tie members for the columns of water tank or shear walls for the columns
of tall buildings resist the horizontal forces and these columns are called braced
columns. Unbraced columns are supposed to resist the horizontal loads also.
The bracings can be in one or more directions depending on the directions of the
lateral loads. It is worth mentioning that the effect of bracing has been taken into
account by the IS code in determining the effective lengths of columns (vide
Annex E of IS 456).

10.21.7 Longitudinal Reinforcement

The longitudinal reinforcing bars carry the compressive loads along with
the concrete. Clause 26.5.3.1 stipulates the guidelines regarding the minimum
and maximum amount, number of bars, minimum diameter of bars, spacing of
bars etc. The following are the salient points:

(&) The minimum amount of steel should be at least 0.8 per cent of the

gross cross-sectional area of the column required if for any reason the provided
area is more than the required area.
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(b) The maximum amount of steel should be 4 per cent of the gross cross-
sectional area of the column so that it does not exceed 6 per cent when bars
from column below have to be lapped with those in the column under
consideration.

(c) Four and six are the minimum number of longitudinal bars in
rectangular and circular columns, respectively.

(d) The diameter of the longitudinal bars should be at least 12 mm.

(e) Columns having helical reinforcement shall have at least six
longitudinal bars within and in contact with the helical reinforcement. The bars
shall be placed equidistant around its inner circumference.

() The bars shall be spaced not exceeding 300 mm along the periphery
of the column.

(g) The amount of reinforcement for pedestal shall be at least 0.15 per
cent of the cross-sectional area provided.

10.21.8 Transverse Reinforcement

Transverse reinforcing bars are provided in forms of circular rings,
polygonal links (lateral ties) with internal angles not exceeding 135° or helical
reinforcement. The transverse reinforcing bars are provided to ensure that every
longitudinal bar nearest to the compression face has effective lateral support
against buckling. Clause 26.5.3.2 stipulates the guidelines of the arrangement of
transverse reinforcement. The salient points are:
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Fig. 10.21.7: Lateral tie (Scheme 1)

(a) Transverse reinforcement shall only go round corner and alternate
bars if the longitudinal bars are not spaced more than 75 mm on either side
(Fig.10.21.7).
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Fig. 10.21.8: Lateral tie (Scheme 2)
(b) Longitudinal bars spaced at a maximum distance of 48 times the

diameter of the tie shall be tied by single tie and additional open ties for in

between longitudinal bars (Fig.10.21.8).
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Fig. 10.21.9: Lateral tie (Scheme 3)
(c) For longitudinal bars placed in more than one row (Fig.10.21.9): (i)
transverse reinforcement is provided for the outer-most row in accordance with
(a) above, and (ii) no bar of the inner row is closer to the nearest compression

face than three times the diameter of the largest bar in the inner row.
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Fig. 10.21.10: Lateral tie (Scheme 4)
(d) For longitudinal bars arranged in a group such that they are not in

contact and each group is adequately tied as per (a), (b) or (c) above, as
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appropriate, the transverse reinforcement for the compression member as a
whole may be provided assuming that each group is a single longitudinal bar for
determining the pitch and diameter of the transverse reinforcement as given in
sec.10.21.9. The diameter of such transverse reinforcement should not, however,
exceed 20 mm (Fig.10.21.10).

10.21.9 Pitch and Diameter of Lateral Ties

(a) Pitch: The maximum pitch of transverse reinforcement shall be the
least of the following:

0] the least lateral dimension of the compression members;

(i) sixteen times the smallest diameter of the longitudinal
reinforcement bar to be tied; and

@ii) 300 mm.

(b) Diameter: The diameter of the polygonal links or lateral ties shall be
not less than one-fourth of the diameter of the largest longitudinal bar, and in no
case less than 6 mm.

10.21.10 Helical Reinforcement

(a) Pitch: Helical reinforcement shall be of regular formation with the turns
of the helix spaced evenly and its ends shall be anchored properly by providing
one and a half extra turns of the spiral bar. The pitch of helical reinforcement
shall be determined as given in sec.10.21.9 for all cases except where an
increased load on the column is allowed for on the strength of the helical
reinforcement. In such cases only, the maximum pitch shall be the lesser of 75
mm and one-sixth of the core diameter of the column, and the minimum pitch
shall be the lesser of 25 mm and three times the diameter of the steel bar
forming the helix.

(b) Diameter: The diameter of the helical reinforcement shall be as
mentioned in sec.10.21.9b.

10.21.11 Assumptions in the Design of Compression
Members by Limit State of Collapse

It is thus seen that reinforced concrete columns have different
classifications depending on the types of reinforcement, loadings and
slenderness ratios. Detailed designs of all the different classes are beyond the
scope here. Tied and helically reinforced short and slender columns subjected to
axial loadings with or without the combined effects of uniaxial or biaxial bending
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will be taken up. However, the basic assumptions of the design of any of the
columns under different classifications are the same. The assumptions (i) to (v)
given in sec.3.4.2 of Lesson 4 for the design of flexural members are also
applicable here. Furthermore, the following are the additional assumptions for the
design of compression members (cl. 39.1 of IS 456).

() The maximum compressive strain in concrete in axial compression
is taken as 0.002.

(i) The maximum compressive strain at the highly compressed
extreme fibre in concrete subjected to axial compression and
bending and when there is no tension on the section shall be
0.0035 minus 0.75 times the strain at the least compressed
extreme fibre.
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Fig. 10.21.11: Strain profiles for different positions of neutral axis
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The assumptions (i) to (v) of section 3.4.2 of Lesson 4 and (i) and (ii)
mentioned above are discussed below with reference to Fig.10.21.11a to c
presenting the cross-section and strain diagrams for different location of the
neutral axis.

The discussion made in sec. 3.4.2 of Lesson 4 regarding the assumptions
(1), (i), (iv) and (v) are applicable here also. Assumption (ii) of sec.3.4.2 is also
applicable here when kD, the depth of neutral axis from the highly compressed
right edge is within the section i.e., k < 1. The corresponding strain profile IN in
Fig.10.21.11b is for particular value of P and M such that the maximum
compressive strain is 0.0035 at the highly compressed right edge and tensile
strain develops at the opposite edge. This strain profile is very much similar to
that of a beam in flexure of Lesson 4.

The additional assumption (i) of this section refers to column subjected
axial load P only resulting compressive strain of maximum (constant) value of
0.002 and for which the strain profile is EF in Fig.10.21.11b. The neutral axis is at
infinity (outside the section).

Extending the assumption of the strain profile IN (Fig.10.21.11b), we can
draw another strain profile IH (Fig.10.21.11c) having maximum compressive
strain of 0.0035 at the right edge and zero strain at the left edge. This strain
profile 1H along with EF are drawn in Fig.10.21.11c to intersect at V. From the
two similar triangles EVI and GHI, we have

EV/GH = 0.0015/0.0035 = 3/7, which gives

EV = 3D/7
(10.2)

The point V, where the two profiles intersect is assumed to act as a fulcrum for
the strain profiles when the neutral axis lies outside the section. Another strain
profile JK drawn on this figure passing through the fulcrum V and whose neutral
axis is outside the section. The maximum compressive strain GJ of this profile is
related to the minimum compressive strain HK as explained below.

GJ= GlI-1J = GI-=0.75 HK, as we can write 1J in term of HK from two
similar triangles JVI and HVK:

IJ/JHK = VE/VF = 0.75.
The value of the maximum compressive strain GJ for the profile JK is,

therefore, 0.0035 minus 0.75 times the strain HK on the least compressed edge.
This is the assumption (ii) of this section (cl. 39.1b of IS 456).
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10.21.12 Minimum Eccentricity

Section 10.21.4 illustrates that in practical construction, columns are rarely
truly concentric. Even a theoretical column loaded axially will have accidental
eccentricity due to inaccuracy in construction or variation of materials etc.
Accordingly, all axially loaded columns should be designed considering the
minimum eccentricity as stipulated in cl. 25.4 of IS 456 and given below
(Fig.10.21.3c)

exmin > greater of )I/500 + D/30) or 20 mm
(10.3)

eymin > greater of )I/500 + b/30) or 20 mm

where |, D and b are the unsupported length, larger lateral dimension and least
lateral dimension, respectively.

10.21.13 Practice Questions and Problems with Answers
Q.1: Define effective length, pedestal, column and wall.
A.l: See sec. 10.21.2.

Q.2: Classify the columns based on types of reinforcement.
A.2: Seesec. 10.21.3

Q.3: Classify the columns based on loadings.

A.3: Seesec. 10.21.4.

Q.4: Classify the columns based on slenderness ratios.
A.4: See Sec. 10.21.5

Q.5: Explain braced and unbraced columns.

A.5: See sec. 10.21.6.

Q.6: Answer the following:

(@) What are the minimum and maximum amounts of longitudinal
reinforcement in a column?
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A.6:

Q.7:

A.7:

Q.8:

A.8:

(b) What are the minimum numbers of longitudinal bars in rectangular and
circular columns?

(c) What is the amount of longitudinal reinforcement in a pedestal?

(d) What is the maximum pitch of transverse reinforcement in a column?
(e) What is the diameter of lateral ties in a column?

(@) 0.8% and 4%

(b) 4and 6

(c) 0.15% of cross-sectional area of the pedestal

(d) See sec. 10.21.9(a)

(e) See sec. 10.21.9(b).

Explain the assumptions of determining the strain distribution lines in a
column subjected to axial force and biaxial bending.

See sec. 10.21.11(i) and (ii).
State the minimum eccentricity of a rectangular column for designing.

See sec. 10.21.12.
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10.21.15 Test 21 with Solutions

Maximum Marks = 50, Maximum Time = 30 minutes
Answer all questions carrying equal marks.

TQ.1l: Define effective length, pedestal, column and wall.
A.TQ.1: See sec. 10.21.2.

TQ.2: Classify the columns separately based on loadings and slenderness
ratios.

A.TQ.2: See secs. 10.21.4 and 5.

TQ.3: Explain braced and unbraced columns.
A.TQ.3: See sec. 10.21.6.

TQ.4: Answer the following:

(&) What are the minimum and maximum amounts of longitudinal
reinforcement in a column?

(b) What are the minimum numbers of longitudinal bars in rectangular
and circular columns?
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(c) What is the amount of longitudinal reinforcement in a pedestal?
(d) What is the maximum pitch of transverse reinforcement in a column?
(e) What is the diameter of lateral ties in a column?
A.TQ.4: (a) 0.8% and 4%
(b) 4and 6
(c) 0.15% of cross-sectional area of the pedestal
(d) See sec. 10.21.9(a)
(e) See sec. 10.21.9(b).

TQ.5: Explain the assumptions of determining the strain distribution lines in a
column subjected to axial force and biaxial bending.

A.TQ.5: See sec. 10.21.11(i) and (ii).

10.21.16 Summary of this Lesson

This lesson defines the effective length, pedestal, column and wall. Three
different classifications of columns based on types of reinforcement, loadings
slenderness ratio are explained. The need and functions of bracings are
illustrated. The guidelines of IS 456 are discussed regarding the types,
arrangement, minimum numbers and diameter of bars, pitch and other aspects of
longitudinal and transverse reinforcement of columns. The assumptions needed
for the design of compression members are illustrated. The determination of
strain distribution lines are explained depending on the location of the neutral
axis. The need for considering the minimum eccentricity and its amount are
explained.
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[Lesson

22

Short Axially Loaded
Compression Members
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Instructional Objectives:
At the end of this lesson, the student should be able to:

e state additional assumptions regarding the strengths of concrete and steel
for the design of short axially loaded columns,

e specify the values of design strengths of concrete and steel,

e derive the governing equation for the design of short and axially loaded
tied columns,

e derive the governing equation for the design of short and axially loaded
spiral columns,

e derive the equation to determine the pitch of helix in spiral columns,

e apply the respective equations to design the two types of columns by
direct computation,

e use the charts of SP-16 to design these two types of columns subjected to
axial loads as per IS code.

10.22.1 Introduction

Tied and helically bound are the two types of columns mentioned in
sec.10.21.3 of Lesson 21. These two types of columns are taken up in this
lesson when they are short and subjected to axially loads. Out of several types of
plan forms, only rectangular and square cross-sections are covered in this lesson
for the tied columns and circular cross-section for the helically bound columns.
Axially loaded columns also need to be designed keeping the provision of
resisting some moments which normally is the situation in most of the practical
columns. This is ensured by checking the minimum eccentricity of loads applied
on these columns as stipulated in IS 456. Moreover, the design strengths of
concrete and steel are further reduced in the design of such columns. The
governing equations of the two types of columns and the equation for
determining the pitch of the helix in continuously tied column are derived and
explained. The design can be done by employing the derived equation i.e., by
direct computation or by using the charts of SP-16. Several numerical examples
are solved to explain the design of the two types of columns by direct
computation and using the charts of SP-16.
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10.22.2 Further Assumptions Regarding the Strengths of
Concrete and Steel

All the assumptions required for the derivation of the governing equations
are given in sec.10.21.11 of Lesson 21. The stress-strain diagrams of mild steel
(Fe 250) and cold worked deformed bars (Fe 415 and Fe 500) are given in
Figs.1.2.3 and 4, respectively of Lesson 2. The stress block of compressive part
of concrete is given in Fig.3.4.1.9 of Lesson 4, which is used in the design of
beam by limit state of collapse. The maximum design strength of concrete is
shown as constant at 0.446 f,« when the strain ranges from 0.002 to 0.0035. The
maximum design stress of steel is 0.87 fy.

Sections 10.21.4 and 12 of Lesson 21 explain that all columns including
the short axially loaded columns shall be designed with a minimum eccentricity
(cls. 25.4 and 39.2 of IS 456). Moreover, the design strengths of concrete and
steel are further reduced to 0.4 fi and 0.67 fy, respectively, to take care of the
minimum eccentricity of 0.05 times the lateral dimension, as stipulated in ¢l.39.3
of IS 456. It is noticed that there is not attempt at strain compatibility. Also the
phenomenon of creep has not been directly considered.

exmin > greater of (I/500 + D/30) or 20 mm

(10.3)
eymin = greater of (/500 + b/30) or 20 mm

The maximum values of l/D and ley/b should not exceed 12 in a short column
as per cl.25.1.2 of IS 456. For a short column, when the unsupported length | =
lex (for the purpose of illustration), we can assume | =12 D (or 12b when b is
considered). Thus, we can write the minimum eccentricity = 12D/500 + D/30 =
0.057D, which has been taken as 0.05D or 0.05b as the maximum amount of
eccentricity of a short column.

It is, therefore, necessary to keep provision so that the short columns can
resist the accidental moments due to the allowable minimum eccentricity by
lowering the design strength of concrete by ten per cent from the value of
0.446f, used for the design of flexural members. Thus, we have the design
strength of concrete in the design of short column as (0.9)(0.446fy) = 0.4014f,
say 0.40 fe. The reduction of the design strength of steel is explained below.

For mild steel (Fe 250), the design strength at which the strain is 0.002 is
fy/1.15 = 0.87f,. However, the design strengths of cold worked deformed bars (Fe
415 and Fe 500) are obtained from Fig.1.2.4 of Lesson 2 or Fig.23A of IS 456.
Table A of SP-16 presents the stresses and corresponding strains of Fe 415 and
Fe 500. Use of Table A of SP-16 is desirable as it avoids error while reading from
figures (Fig.1.2.4 or Fig.23A, as mentioned above). From Table A of SP-16, the
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corresponding design strengths are obtained by making linear interpolation.
These values of design strengths for which the strain is 0.002 are as follows:

(i) Fe 415: {0.9f,q + 0.05f,4(0.002 — 0.00192)/(0.00241 — 0.00192)} = 0.908f,q =
0.789f,

(ii) Fe 500: {0.85f,q + 0.05f,4(0.002 — 0.00195)/(0.00226 — 0.00195)} = 0.859f,q =
0.746f,

A further reduction in each of three values is made to take care of the
minimum eccentricity as explained for the design strength of concrete. Thus, the
acceptable design strength of steel for the three grades after reducing 10 per
cent from the above mentioned values are 0.783f,, 0.710f, and 0.671f, for Fe
250, Fe 415 and Fe 500, respectively. Accordingly, cl. 39.3 of IS 456 stipulates
0.67f, as the design strength for all grades of steel while designing the short
columns. Therefore, the assumed design strengths of concrete and steel are
0.4f and 0.67fy, respectively, for the design of short axially loaded columns.

10.22.3 Governing Equation for Short Axially Loaded Tied
Columns

Factored concentric load applied on short tied columns is resisted by
concrete of area A; and longitudinal steel of areas A effectively held by lateral
ties at intervals (Fig.10.21.2a of Lesson 21). Assuming the design strengths of
concrete and steel are 0.4fy and 0.67fy,, respectively, as explained in sec.
10.22.2, we can write

Pu 04fck Ac + 067fy Asc

(10.4)

factored axial load on the member,

where P,

fec = characteristic compressive strength of the concrete,

&
I

area of concrete,

fy = characteristic strength of the compression reinforcement, and

Asc = area of longitudinal reinforcement for columns.
The above equation, given in cl. 39.3 of IS 456, has two unknowns Ac and Agc to
be determined from one equation. The equation is recast in terms of Ay, the

gross area of concrete and p, the percentage of compression reinforcement
employing
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Asc = pA/100
(10.5)

Ac = Ay(1 - p/100)
(10.6)

Accordingly, we can write

(10.7)

Equation 10.7 can be used for direct computation of Ay when Py, fi and f, are
known by assuming p ranging from 0.8 to 4 as the minimum and maximum
percentages of longitudinal reinforcement. Equation 10.4 also can be employed
to determine Ay and p in a similar manner by assuming p. This method has been
illustrated with numerical examples and is designated as Direct Computation
Method.

On the other hand, SP-16 presents design charts based on Eq.10.7. Each
chart of charts 24 to 26 of SP-16 has lower and upper sections. In the lower
section, Py /Aq is plotted against the reinforcement percentage p(= 100As/Ag) for
different grades of concrete and for a particular grade of steel. Thus, charts 24 to
26 cover the three grades of steel with a wide range of grades of concrete. When
the areas of cross-section of the columns are known from the computed value of
Pu/Ag, the percentage of reinforcement can be obtained directly from the lower
section of the chart. The upper section of the chart is a plot of P,/Ay versus P,
for different values of Aq. For a known value of P, a horizontal line can be drawn
in the upper section to have several possible Aq values and the corresponding
Pu/Ag values. Proceeding vertically down for any of the selected P,/Aq value, the
corresponding percentage of reinforcement can be obtained. Thus, the combined
use of upper and lower sections of the chart would give several possible sizes of
the member and the corresponding Asc without performing any calculation. It is
worth mentioning that there may be some parallax error while using the charts.
However, use of chart is very helpful while deciding the sizes of columns at the
preliminary design stage with several possible alternatives.

Another advantage of the chart is that, the amount of compression
reinforcement obtained from the chart are always within the minimum and
maximum percentages i.e., from 0.8 to 4 per cent. Hence, it is not needed to
examine if the computed area of steel reinforcement is within the allowable range
as is needed while using Direct Computation Method. This method is termed as
SP-16 method while illustrating numerical examples.
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10.22.4  Governing Equation of Short Axially Loaded
Columns with Helical Ties

Columns with helical reinforcement take more load than that of tied
columns due to additional strength of spirals in contributing to the strength of
columns. Accordingly, cl. 39.4 recommends a multiplying factor of 1.05 regarding
the strength of such columns. The code further recommends that the ratio of
volume of helical reinforcement to the volume of core shall not be less than 0.36
(Ag/Ac — 1) (fulfy), in order to apply the additional strength factor of 1.05 (cl.
39.4.1). Accordingly, the governing equation of the spiral columns may be written
as

Pu = 1.05(0.4 fck AC + 0.67 fy Asc)
(10.8)

All the terms have been explained in sec.10.22.3.

Earlier observations of several investigators reveal that the effect of
containing holds good in the elastic stage only and it gets lost when spirals reach
the yield point. Again, spirals become fully effective after spalling off the concrete
cover over the spirals due to excessive deformation. Accordingly, the above two
points should be considered in the design of such columns. The first point is
regarding the enhanced load carrying capacity taken into account by the
multiplying factor of 1.05. The second point is maintaining specified ratio of
volume of helical reinforcement to the volume of core, as specified in cl.39.4.1
and mentioned earlier.

The second point, in fact, determines the pitch p of the helical
reinforcement, as explained below with reference to Fig.10.21.2b of Lesson 21.

Volume of helical reinforcement in one loop = 7z(D, -4,) a,
(10.9)

Volume of core = (z/4)DZ p
(10.10)

where D, = diameter of the core (Fig.10.21.2b)

diameter of the spiral reinforcement (Fig.10.21.2b)

Ps

area of cross-section of spiral reinforcement

asp
p = pitch of spiral reinforcement (Fig.10.21.2b)

To satisfy the condition of cl.39.4.1 of IS 456, we have
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{7(D. - ¢5,) 8o} { (x4 DS p} > 0.36(A; / A, -1) (fo / f,)
which finally gives

p <11.1D, -4,) a, fy/(D2 -D?) f,

(10.12)
Thus, Egs.10.8 and 11 are the governing equations to determine the diameter of
column, pitch of spiral and area of longitudinal reinforcement. It is worth
mentioning that the pitch p of the spiral reinforcement, if determined from
EqQ.10.11, automatically satisfies the stipulation of cl.39.4.1 of IS 456. However,

the pitch and diameter of the spiral reinforcement should also satisfy cl. 26.5.3.2
of IS 456:2000.

10.22.5 lllustrative Examples

Problem 1:

Design the reinforcement in a column of size 400 mm x 600 mm subjected
to an axial load of 2000 kN under service dead load and live load. The column
has an unsupported length of 4.0 m and effectively held in position and
restrained against rotation in both ends. Use M 25 concrete and Fe 415 steel.
Solution 1:

Step 1. To check if the column is short or slender

Given | = 4000 mm, b = 400 mm and D = 600 mm. Table 28 of IS 456 = lex = ley =
0.65() = 2600 mm. So, we have

lex/D = 2600/600 = 4.33 < 12
ley/b = 2600/400 = 6.5 < 12
Hence, it is a short column.
Step 2: Minimum eccentricity

Greater of (lex/500 + D/30) and 20 mm = 25.2 mm

€x min

eymin = Greater of (le,/500 + b/30) and 20 mm = 20 mm

0.05D = 0.05(600) = 30 mm > 25.2 mm (= €xmin)
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0.05b = 0.05(400) = 20 mm = 20 mm (= €y min)

Hence, the equation given in cl.39.3 of IS 456 (Eq.10.4) is applicable for the
design here.

Step 3: Area of steel
Fro Eq.10.4, we have

Py = 0.4 fy Ac+0.67 fy Asc .... (10.4)

3000(10%) = 0.4(25){(400)(600) — Asc} + 0.67(415) Asc
which gives,

Asc = 2238.39 mm?
Provide 6-20 mm diameter and 2-16 mm diameter rods giving 2287 mm? (>
2238.39 mm?) and p = 0.953 per cent, which is more than minimum percentage
of 0.8 and less than maximum percentage of 4.0. Hence, o.k.

Step 4: Lateral ties

The diameter of transverse reinforcement (lateral ties) is determined from
cl.26.5.3.2 C-2 of IS 456 as not less than (i) ¢/4 and (ii) 6 mm. Here, ¢ = largest

bar diameter used as longitudinal reinforcement = 20 mm. So, the diameter of
bars used as lateral ties = 6 mm.

The pitch of lateral ties, as per cl.26.5.3.2 C-1 of IS 456, should be not
more than the least of

0] the least lateral dimension of the column = 400 mm

(i) sixteen times the smallest diameter of longitudinal reinforcement
bar to be tied = 16(16) = 256 mm

(i) 300 mm
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Fig. 10.22.1: Problem 1

Let us use p = pitch of lateral ties = 250 mm. The arrangement of
longitudinal and transverse reinforcement of the column is shown in Fig. 10.22.1.

Problem 2:

Design the column of Problem 1 employing the chart of SP-16.
Solution 2:

Steps 1 and 2 are the same as those of Problem 1.
Step 3: Area of steel

PJ/Ay = 3000(10%/(600)(400) = 12.5 N/mm?
From the lower section of Chart 25 of SP-16, we get p = 0.95% when P /Ay =
12.5 N/mm? and concrete grade is M 25. This gives As. = 0.95(400)(600)/100 =
2288 mm?. The results of both the problems are in good agreement. Marginally
higher value of Asc while using the chart is due to parallax error while reading the

value from the chart. Here also, 6-20 mm diameter bars + 2-16 mm diameter
bars (Asc provided = 2287 mm?) is o.k., though it is 1 mm? less.

Step 4 is the same as that of Problem 1. Figure 10.22.1, thus, is also the
figure showing the reinforcing bars (longitudinal and transverse reinforcement) of
this problem (same column as that of Problem 1).

Problem 3:
Design a circular column of 400 mm diameter with helical reinforcement
subjected to an axial load of 1500 kN under service load and live load. The

column has an unsupported length of 3 m effectively held in position at both ends
but not restrained against rotation. Use M 25 concrete and Fe 415 steel.
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Solution 3:

Step 1: To check the slenderness ratio

Given data are: unsupported length | = 3000 mm, D = 400 mm. Table 28
of Annex E of IS 456 gives effective length I = = 3000 mm. Therefore, |c/D = 7.5
< 12 confirms that it is a short column.
Step 2: Minimum eccentricity

emin = Greater of (/500 + D/30) or 20 mm = 20 mm

0.05 D = 0.05(400) = 20 mm
As per cl.39.3 of IS 456, emin should not exceed 0.05D to employ the equation
given in that clause for the design. Here, both the eccentricities are the same.
So, we can use the equation given in that clause of IS 456 i.e., Eq.10.8 for the
design.
Step 3: Area of steel
From Eq.10.8, we have

Py

Ac = Ag—Asc =125714.29 - A
Substituting the values of Py, fc, Ag and fy in Eq.10.8,

1.5(1500)(10%) = 1.05{0.4(25)(125714.29 — As) + 0.67(415) Asc}
we get the value of A = 3304.29 mm?. Provide 11 nos. of 20 mm diameter bars
(= 3455 mm?) as longitudinal reinforcement giving p = 2.75%. This p is between
0.8 (minimum) and 4 (maximum) per cents. Hence o.k.
Step 4: Lateral ties

It has been mentioned in sec.10.22.4 that the pitch p of the helix
determined from EQ.10.11 automatically takes care of the cl.39.4.1 of IS 456.
Therefore, the pitch is calculated from Eq.10.11 selecting the diameter of helical
reinforcement from cl.26.5.3.2 d-2 of IS 456. However, automatic satisfaction of

cl.39.4.1 of IS 456 is also checked here for confirmation.

Diameter of helical reinforcement (cl.26.5.3.2 d-2) shall be not less than
greater of (i) one-fourth of the diameter of largest longitudinal bar, and (ii) 6 mm.
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Therefore, with 20 mm diameter bars as longitudinal reinforcement, the diameter
of helical reinforcement = 6 mm.

From Eq.10.11, we have
Pitch of helix p < 11.1(Dc - 4,,) asp fy/(D2 - D?) f, ... (10.11)

where Dc = 400 — 40 — 40 = 320 mm, ¢, = 6 mm, as, = 28 mm?, f, = 415
N/mm?, D = 400 mm and fy = 25 N/mm?.

So, p < 11.1(320 - 6) (28) (415)/(400% — 320%) (25) < 28.125 mm

As per cl.26.5.3.2 d-1, the maximum pitch is the lesser of 75 mm and 320/6 =
53.34 mm and the minimum pitch is lesser of 25 mm and 3(6) = 18 mm. We
adopt pitch = 25 mm which is within the range of 18 mm and 53.34 mm. So,
provide 6 mm bars @ 25 mm pitch forming the helix.

Checking of cl. 39.4.1 of IS 456

The values of helical reinforcement and core in one loop are obtained from
Eqgs.10.8 and 9, respectively. Substituting the values of D¢, 4, asp and pitch p in

the above two equations, we have
Volume of helical reinforcement in one loop = 27632 mm® and
Volume of core in one loop = 2011428.571 mm®.
Their ratio = 27632/2011428.571 = 0.0137375

0.36(Ag/Ac — 1) (fuf,) = 0.012198795

It is, thus, seen that the above ratio (0.0137375) is not less than 0.36(Ag/Ac — 1)
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Fig. 10.22.2: Problem 3

Hence, the circular column of diameter 400 mm has eleven longitudinal
bars of 20 mm diameter and 6 mm diameter helix with pitch p = 25 mm. The
reinforcing bars are shown in Fig.10.22.2.

F'

10.22.6 Practice Questions and Problems with Answers

Q.1: State and explain the values of design strengths of concrete and steel to be
considered in the design of axially loaded short columns.

A.l: Seesec. 10.22.2.

Q.2: Derive the governing equation for determining the dimensions of the
column and areas of longitudinal bars of an axially loaded short tied
column.

A.2: See sec. 10.22.2.

Q.3: Derive the governing equation for determining the diameter and areas of
longitudinal bars of an axially loaded circular spiral short column.

A.3: First and second paragraph of sec. 10.22.4.

Q.4: Derive the expression of determining the pitch of helix in a short axially
loaded spiral column which satisfies the requirement of IS 456.

A.4: See third paragraph onwards up to the end of sec. 10.22.4.

Q.5: Design a short rectangular tied column of b = 300 mm having the maximum
amount of longitudinal reinforcement employing the equation given in
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cl.39.3 of IS 456, to carry an axial load of 1200 kN under service dead
load and live load using M 25 and Fe 415. The column is effectively held
in position at both ends and restrained against rotation at one end.
Determine the unsupported length of the column.

A.5:

Step 1: Dimension D and area of steel Asc

Substituting the values of P, = 1.5(1200) = 1800 kN and As: = 0.04(300)D
in Eq.10.4, we have

1800(10°%) = 0.4(25)(300D)(1 — 0.04) + 0.67(415)(0.04)(300D)
we getD = 496.60 mm. Use 300 mm x 500 mm column.

Asc = 0.04(300)(500) = 6000 mm?, provide 4-36 mm diameter + 4-25 mm
diameter bars to give 4071 + 1963 = 6034 mm? > 6000 mm>.

Step 2: Lateral ties

s ol e
i _ 10T (@ 300 cle
% ‘_i F J__.--"’“J
\ N, / 1 10T @ 300 cle
|II "\\_‘% Jr'" T e e
400 II|2-3-E~T ‘:{ 4.35T {x
! " ®
) I.-_f' -\.
x &
. :
120 124 120
5040
- -

Fig. 10.22.3: Q.5

Diameter of lateral ties shall not be less than the larger of (i) 36/4 = 9 mm
and (ii) 6 mm. Use 10 mm diameter bars as lateral ties.

Pitch of the lateral ties p shall not be more than the least of (i) 300 mm, (ii)
16(25) = 400 mm and (iii) 300 mm.

So, provide 10 mm diameter bars @ 300 mm c/c. The reinforcement bars
are shown in Fig.10.22.3.
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The centre to centre distance between two corner longitudinal bas along
500 mm direction is 500 — 2(4) + 10 + 18) = 364 mm which is less than 48
(diameter of lateral tie). Hence, the arrangement is satisfying Fig.9 of cl. 26.5.3.2
b-2 of IS 456.

Step 3: Unsupported length

As per the stipulation in cl. 25.1.2 of IS 456, the column shall be
considered as short if lex = 12(D) = 6000 mm and ley = 12(300) = 3600 mm. For
the type of support conditions given in the problem, Table 28 of IS 456 gives
unsupported length is the least of (i) | = lex/0.8 = 6000/0.8 = 7500 mm and (ii)
ley/0.8 = 3600/0.8 = 4500 mm. Hence, the unsupported length of the column is
4.5 m if the minimum eccentricity clause (cl. 39.3) is satisfied, which is checked
in the next step.

Step 4: Check for minimum eccentricity

According to cl. 39.4 of IS 456, the minimum eccentricity of 0.05b or 0.05D
shall not exceed as given in cl. 25.4 of IS 456. Thus, we have

() 0.05(500) = 1/500 + 500/30 giving | =4165 mm
(i) 0.05(300) = I/500 + 300/10 giving | =2500 mm
Therefore, the column shall have the unsupported length of 2.5 m.

Q.6: (@) Suggest five alternative dimensions of square short column with the
minimum longitudinal reinforcement to carry a total factored axial load of
3000 kN using concrete of grades 20, 25, 30, 35 and 40 and Fe 415.
Determine the respective maximum unsupported length of the column if it
is effectively held in position at both ends but not restrained against
rotation. Compare the given factored load of the column with that obtained
by direct computation for all five alternative columns.

(b) For each of the five alternative sets of dimensions obtained in (a),
determine the maximum factored axial load if the column is having
maximum longitudinal reinforcement (i) employing SP-16 and (ii) by direct
computation.
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Fig. 10.22.4: Q.6, Chart 25 of SP-16

(not to scale)
Solution of Part (a):

Step 1: Determination of Ag and column dimensions b (= D)

Chart 25 of SP-16 gives all the dimensions of five cases. The two input
data are P, = 3000 kN and 100 As/Aq = 0.8. In the lower section of Chart 25, one
horizontal line AB is drawn starting from A where p = 0.8 (Fig.10.22.4) to meet
the lines for M 20, 25, 30, 35 and 40 respectively. In Fig.10.22.4, B is the meeting
point for M 20 concrete. Separate vertical lines are drawn from these points of
intersection to meet another horizontal line CD from the point C where P, = 3000
kN in the upper section of the figure. The point D is the intersecting point. D
happens to be on line when Ay = 3000 cm?. Otherwise, it may be in between two
liens with different values of Ay. For M 20, Aq = 3000 cm®. However, in case the
point is in between two lines with different values of Ag, the particular Ay has to
be computed by linear interpolation. Thus, all five values of Ay are obtained.

The dimension b = D = /300000 = 550 mm. Other four values are

obtained similarly. Table 10.1 presents the values of Ay and D along with other
results as explained below.
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Step 2: Unsupported length of each column
The unsupported length | is determined from two considerations:

(i) Clause 25.1.2 of IS 456 mentions that the maximum effective length lex
is 12 times b or D (as b = D here for a square column). The unsupported length is
related to the effective length depending on the type of support. In this problem
Table 28 of IS 456 stipulates | = lex. Therefore, maximum value of | =12 D.

(i) The minimum eccentricity of cl. 39.3 should be more than the same as
given in cl. 25.4. Assuming them to be equal, we get /500 + D/30 = D/20, which
gives | = 8.33D. For the column using M 20 and Fe 415, the unsupported length
= 8.33(550) = 4581 mm. All unsupported lengths are presented in Table 10.1
using the equation

| = 833D
1)

Step 3: Area of longitudinal steel

Step 1 shows that the area provided for the first case is 550 mm x 550 mm
= 302500 mm?, slightly higher than the required area of 300000 mm? for the
practical aspects of construction. However, the minimum percentage of the
longitudinal steel is to the calculated as 0.8 per cent of area required and not
area provided (vide cl. 26.5.3.1 b of IS 456). Hence, for this case A =
0.8(300000)/100 = 2400 mm?. Provide 4-25 mm diameter + 4-12 mm diameter
bars (area = 1963 + 452 = 2415 mm?). Table 10.1 presents this and other areas
of longitudinal steel obtained in a similar manner.

Step 4: Factored load by direct computation

Equation 10.4 is employed to calculate the factored load by determining Ac
from Ag and Ag. With a view to comparing the factored loads, we will use the
values of Ag as obtained from the chart and not the Ay actually provided. From
Eq.10.4, we have

Py from direct computation = 0.4(fck)(0.992 Ag) + 0.67(fy)(0.008)Aq

of Py = Ag(0.3968 fe + 0.00536 f,)
)
For the first case when Ay = 300000 mm?, fy = 20 N/mm?, and f, = 415 N/mm?,

Eq.(2) gives P, = 3048.12 kN. This value and other values of factored loads
obtained from the direct computation are presented in Table 10.1.
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Table 10.1 Results of Q.6a (Minimum Longitudinal Steel), given factored P, =
3000 kN

Gross area of Area of steel (Asc)

Concret concrete (Ay) b=D Py by direct I

e grade | Require | Provide | (cm) | Require | Provide Bars | computation | (m)

d(cm? | d(cmd d(cm? | d(cmd

M 20 3000 3025 55 24 24.15 | 4-25+ 3048.12 4.58
4-12 1

M 25 2500 2500 50 20 20.60 | 4-20 + 3036.10 4.16
4-16 5

M 30 2200 2209 47 17.60 17.85 2.25 + 3108.25 3.91
4-16 5

M 35 1800 1806 42.5 14.40 14.57 2-28 + 2900.23 3.54
2-12 0

M 40 1600 1600 40 12.80 13.06 2-20 + 2895.42 3.33
6-12 2

Solution of Part (b):
Step 1: Determination of P

Due to the known dimensions of the column section, the Aq is now known.
With known Ay and reinforcement percentage 100As/Ay as 4 per cent, the
factored P, shall be determined. For the first case, when b = D = 550 mm, Aq =
302500 mm?. In Chart 25, we draw a horizontal line EF from E, where 100As/Ag =
4 in the lower section of the chart (see Fig.10.22.4) to meet the M 20 line at F.
Proceeding vertically upward, the line FG intersects the line Ag = 302500 at G. A
horizontal line towards left from G, say GH, meets the load axis at H where P, =
5600 kN. Similarly, P, for other sets are determined and these are presented in
Table 10.2, except for the last case when M 40 is used, as this chart has ended
at p = 3.8 per cent.

Step 2: Area of longitudinal steel

The maximum area of steel, 4 per cent of gross area of column =
0.04(550)(550) = 12100 mm?. Provide 12-36 mm diameter bars to have the
actual area of steel = 12214 mm? > 12100 mm?, as presented in Table 10.2.

Step 3: Factored P, from direct computation

From Eq,10.4, as in Step 4 of the solution of Part (a) of this question, we
have

Pu = 0.4 fck (Ag_ Asc) + 0.67 fy Asc
3)
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Substituting the values of Ay and Asc actually provided, we get the maximum P,
of the same column when the longitudinal steel is the maximum. For the first
case when Ay = 302500 mm?, Asc = 12214 mm?, fo = 20 N/mm? and f, = 415
N/mm?, we get P, = 5718.4 kN. This value along with other four values are
presented in Table 10.2.

Remarks:

Tables 10.1 and 10.2 reveal that two sets of results obtained from charts
of SP-16 and by direct computation methods are in good agreement. However,
values obtained from the chart are marginally different from those obtained by
direct computation both on the higher and lower sides. These differences are
mainly due to personal error (parallax error) while reading the values with eye
estimation from the chart.

Table 10.2 Results of Q.6(b) (Maximum Longitudinal Steel) given the respective
Ag

Concret | b= | Gross Area of steel (Asc) P, = Factored load
e grade D |[concret | Require | Provide | Bars | SP-chart | Direct
(cm) | e area d(m? | d(em? | (No. | (kN) | Computatio
(As) ) n
(cm?) (kN)
M 20 55 3025 121 122.14 12- 5600 5718.4
36
M 25 50 2500 100 101.06 | 8-36 | 5200 5208.9
+ 4-
25
M 30 47 2209 88.36 88.97 8-32 5000 5017.8
+ 4-
28
M 35 42.5 | 1806.25 72.25 73.69 12- 4500 4474.5
28
M 40 40 1600 64 64.46 8-28 | Not 4249.2
+ 4- | availabl
32 |e

Q.7: Design a short, helically reinforced circular column with minimum amount of
longitudinal steel to carry a total factored axial load of 3000 kN with the
same support condition as that of Q.6, using M 25 and Fe 415. Determine
its unsupported length. Compare the results of the dimension and area of
longitudinal steel with those of Q.6(a) when M 25 and Fe 415 are used.

A.7:

Step 1. Diameter of helically reinforced circular column
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As per cl. 39.4 of IS 456, applicable for short spiral column, we get from
Eq.10.8

Given data are: P, = 3000 kN, A. = 7 /4 (D?)(0.992), Asc = 0.008( 7 /4) D?, fy = 25
N/mm? and f, = 415 N/mm?. So, we have

3000(10%) = 1.05(12.1444)(z 14)D?
giving D =547.2 mm and Ay =235264.2252 mm?. Provide diameter of 550 mm.
Step 2: Area of longitudinal steel

Providing 550 mm diameter, the required Ay has been exceeded. Clause
26.5.3.1b stipulates that the minimum amount of longitudinal bar shall be
determined on the basis of area required and not area provided for any column.
Accordingly, the area of longitudinal steel = 0.008 Ay = 0.008(235264.2252) =
1882.12 mm?. Provide 6-20 mm diameter bars (area = 1885 mm?) as longitudinal
steel, satisfying the minimum number of six bar (cl. 26.5.3.1c of IS 456).

Step 3: Helical reinforcement

BT @ 25 cfe

; < 470 »
- i -
Fig. 10.22.5. Q.7

Minimum diameter of helical reinforcement is greater of (i) 20/4 or (ii) 6
mm. So, provide 6 mm diameter bars for the helical reinforcement (cl. 26.5.3.2d-
2 of IS 456). The pitch of the helix p is determined from Eqg.10.11 as follows:

p < 11.1(Dc- ¢,,) asp fy/(D* - D?) fux .... (10.12)
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Using D¢ =550 — 40 — 40 = 470 mm, ¢, =6 mm, asp =28 mm?, D = 550 mm,
foc = 25 N/mm? and f, = 415 N/mm?, we get

p < 11.1(470 — 6)(28)(415)/(550% — 470%)(25) < 29.34 mm
Provide 6 mm diameter bar @ 25 mm c/c as helix. The reinforcement bars are
shown in Fig. 10.22.5. Though use of EQg.10.11 automatically checks the
stipulation of cl. 39.4.1 of IS 456, the same is checked as a ready reference in
Step 4 below.
Step 4: Checking of cl. 39.4.1 of IS 456

Volume of helix in one loop = 7 (D¢ - ¢,) asp .... (10.9)
Volume of core = (z/4) DZ (p) .... (10.10)
The ratio of Eq.10.9 and Eq.10.10 = 4(Dc - ¢,,) asp/ DZp

= 4(470 — 6)(28)/(470)(470)(25) = 0.009410230874

This ratio should not be less than 0.36(Ag/Ac — 1)(fei/fy)

= 0.36{(D?/D?) — 1)} (f«/f,) = 0.008011039177

Hence, the stipulation of cl. 39.4.1 is satisfied.
Step 5. Unsupported length

The unsupported length shall be the minimum of the two obtained from (i)
short column requirement given in cl. 25.1.2 of IS 456 and (i) minimum
eccentricity requirement given in cls. 25.4 and 39.3 of IS 456. The two values are
calculated separately:

@)1 =1 = 12D = 12(550) = 6600 mm

(ii) I/500 + D/30 = 0.05 D gives |=4583.3 mm
So, the unsupported length of this column = 4.58 m.
Step 6: Comparison of results

Table 10.3 presents the results of required and actual gross areas of

concrete and area of steel bars, dimensions of column and number and diameter
of longitudinal reinforcement of the helically reinforced circular and the square
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columns of Q.6(a) when M 20 and Fe 415 are used for the purpose of
comparison.

Table 10.3 Comparison of results of circular and square columns with minimum
longitudinal steel (P, = 3000 kN, M 25, Fe 415)

Column Gross concrete area Area of steel
shape Required | Provided | Dimension | Required | Provided | Bar dia.
and (cm?) (cm?) D (cm) (cm?) (cm?) and No.
Q.No. (mm,No.)
Circular | 2352.64 | 2376.78 55 18.82 18.85 6-20
(Q.7)
Square 2500 2500 50 20 20.6 4-20 +
(Q.6(a) 4-16
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10.22.8 Test 22 with Solutions

Maximum Marks = 50, Maximum Time = 30 minutes

Answer all questions carrying equal marks.

TQ.1: Derive the expression of determining the pitch of helix in a short axially
loaded spiral column which satisfies the requirement of IS 456.
(20 marks)

A.TQ.1l: See third paragraph onwards up to the end of sec. 10.22.4.

TQ.2: Design a square, short tied column of b = D = 500 mm to carry a total
factored load of 4000 kN using M 20 and Fe 415. Draw the reinforcement
diagram.

(30 marks)

A.TQ.2:

Step 1. Area of longitudinal steel
Assuming p as the percentage of longitudinal steel, we have A. =

(500)(500)(1 — 0.01p), Asc = (500)(500)(0.01p), fo = 20 N/mm? and f, = 415

N/mm?. Using these values in Eq.10.4

or 4000000 = 0.4(20)(250000)(1 — 0.01p) + 0.67(415)(250000)(0.01p)

we getp = 2.9624, which gives As: = (2.9624)(500)(500)/100 = 7406 mm?. Use

4-36 + 4-25 + 4-22 mm diameter bars (4071 + 1963 + 1520) = 7554 mm? > 7406
mm? as longitudinal reinforcement.
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Fig. 10.22.6: TQ.2
Step 2: Lateral ties

Diameter of tie is the greater of (i) 36/4 and (i) 6 mm. Provide 10 mm
diameter lateral ties.

The pitch of the lateral ties is the least of (i) 500 mm, (ii) 16(22) = 352 mm,
and (iii) 300 mm. Provide 10 mm diameter @ 300 mm c/c. The reinforcement
bars are shown in Fig.10.22.6. It is evident that the centre to centre distance
between two corner bars = 364 mm is less than 48 times the diameter of lateral
ties = 480 mm (Fig.9 of cl. 26.5.3.2b-2 of IS 456).

10.22.9 Summary of this Lesson

This lesson illustrates the additional assumptions made regarding the
strengths of concrete and steel for the design of short tied and helically
reinforced columns subjected to axial loads as per IS 456. The governing
equations for determining the areas of cross sections of concrete and longitudinal
steel are derived and explained. The equation for determining the pitch of the
helix for circular columns is derived. Several numerical examples are solved to
illustrate the applications of the derived equations and use of charts of SP-16 for
the design of both tied and helically reinforced columns. The results of the same
problem by direct computation are compared with those obtained by employing
the charts of SP-16 are compared. The differences of results, if any, are
discussed. Understanding the illustrative examples and solving the practice and
test problems will explain the applications of the equation and use of charts of
SP-16 for designing these two types of columns.
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Instructional Objectives:
At the end of this lesson, the student should be able to:

e state the two types of problems that can be solved using the design charts
of SP-16,

e mention the three sets of design charts specifying their parameters,

e state the approximations, limitations and usefulness of the design charts
of SP-16,

e mention the different steps of solving the analysis type of problems using
the design charts of SP-16,

e mention the different steps of solving the design type of problems using
the design charts of SP-16,

e apply the methods in solving both types of problems using the design
charts of SP-16.

10.25.1 Introduction

Lesson 24 explains the procedure of preparing the design charts of short
rectangular reinforced concrete columns under axial load with uniaxial bending. It
is also mentioned that similar design charts can be prepared for circular and
other types of cross-sections of columns by dividing the cross-section into
several strips. This lesson explains the design of rectangular and circular short
columns with the help of design charts.

It is known that the design of columns by direct computations involves
several trials and hence, time taking. On the other hand, design charts are very
useful in getting several alternative solutions quickly. Further, design charts are
also used for the analysis of columns for safety etc. However, there are
limitations of using the design charts, which are mentioned in this lesson. Several
numerical problems are solved in this lesson for the purpose of illustration
covering both analysis and design types of problems using the design charts of
SP-16.
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Fig.10.25.1: Rectangular column section -
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10.25.2 Design Charts of SP-16

SP-16 has three sets of design charts prepared by following the procedure
explained in Lesson 24 for rectangular and circular types of cross-sections of
columns. The three sets are as follows:

(i) Charts 27 to 38 are the first set of twelve charts for rectangular columns
having symmetrical longitudinal steel bars in two rows (Fig.10.25.1) for three
grades of steel (Fe 250, Fe 415 and Fe 500) and each of them has four values of
d’/D ratios (0.05, 0.10, 0.15 and 0.20).
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Fig.10.25.2: Rectangular column section -
reinforcement distributed equally on four sides

(i) Charts 39 to 50 are the second set of twelve charts for rectangular
columns having symmetrical longitudinal steel bars (twenty numbers) distributed
equally on four sides (in six rows, Fig.10.25.2) for three grades of steel (Fe 250,
Fe 415 and Fe 500) and each of them has four values of d’/D ratios (0.05, 0.10,
0.15 and 0.20).
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Fig.10.25.3: Circular column section -
reinforcement uniformly distributed circumferencially

(iif) The third set of twelve charts, numbering from 51 to 62, are for circular
columns having eight longitudinal steel bars of equal diameter and uniformly
spaced circumferentially (Fig.10.25.3) for three grades of steel (Fe 250, Fe 415
and Fe 500) and each of them has four values of d'/D ratios (0.05, 0.10, 0.15 and
0.20).

All the thirty-six charts are prepared for M 20 grade of concrete only. This
is a justified approximation as it is not worthwhile to have separate design charts
for each grade of concrete.

10.25.3 Approximations and Limitations of Design Charts of
SP-16
(i) Approximations

The following are the approximations of the design charts of SP-16:
(a) Grade of concrete

As mentioned in the earlier section, all the design chars of SP-16 assume
the constant grade M 20 of concrete. However, each chart has fourteen plots
having different values of the parameter p/f« ranging from zero to 0.26 at an
interval of 0.02. The designer, thus, can make use of the actual grade of concrete

by multiplying the p/fcx obtained from the plot with the actual fe for the particular
grade of concrete to partially compensate the approximation.
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(b) The d’/D ratio

The three sets of charts have four fixed values of d'/D ratios (0.05, 0.10,
0.15 and 0.20). However, in the practical design, the d’/D ratio may be different
from those values. In such situations intermediate values are determined by
making linear interpolations.

(c) Equal distribution of twenty longitudinal steel bars on four sides of rectangular
columns

In spite of the above consideration, the design charts may be used without
significant error for any number of bars greater than eight provided the bars are
distributed equally on four sides.

(d) Longitudinal bars in circular columns

Though the design charts are prepared considering eight bars uniformly
placed circumferentially, they may generally be used for any number of bars
greater than six, uniformly placed circumferentially.

(i) Limitations

Axis of bending
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o
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b
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Fig.10.25.4: Six-bars arrangement

The following are the limitations of the design chars of SP-16:
(a) Longitudinal bars equally distributed on four sides of rectangular columns

Twenty bars, when equally placed on four sides, are placed in six rows
avoiding any bar on the two axes. However, there will be bars on the axes for
odd number of rows. A very common type is the 6-bar arrangement (Fig.10.25.4).
Such arrangements, though symmetrical, are not covered in the design charts of
SP-16. In such cases, the designer has to make his own assumptions judiciously
in order to use the available charts of SP-16. Alternatively, he has to prepare the
actual design chart depending on the bar arrangement to get accurate results.
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(b) Unsymmetrical arrangement of longitudinal bars in rectangular cross-sections
It is not covered in the charts.

(c) Non-uniform placing of longitudinal bars in circular cross-sections
It is not covered in the charts.

(d) Cross-sections other than rectangular or circular like, I, T, H, X etc.
These are not covered in the charts.

The items under b, ¢ and d, though rare, should be taken care of by
preparing the respective design chars as and when needed.

(e) Concluding remarks

In spite of the above approximations and limitations, use of SP-16 has
several advantages even by making some more approximations if the charts are
not directly applicable. In the note of cl.39.5 of IS 456, the following is
recommended, which is worth reproducing:

“The design of members subject to combined axial load and uniaxial
bending will involve lengthy calculation by trial and error. In order to overcome
these difficulties interaction diagrams may be used. These have been prepared
and published by BIS in “SP-16 Design aids for reinforced concrete to IS 456'.”

Accordingly, the use of SP-16 is explained in the following sections for the
solutions of both analysis and design types of problems.

10.25.4 Use of Design Charts in the Analysis Type of
Problems

In many situations, it becomes necessary to assess the safety of a
column with known cross-section dimensions, and longitudinal and transverse
steel reinforcing bars. The objective is to examine if the column can resist some
critical values of P, or M, or pairs of P, and M, as may be expected to be
applied on the column. This is done by comparing if the given values of pair of P,
and M, are less than the respective strength capacities pair of P, and M,. The
word “given” shall be used in the suffix of pairs of P, and M, to indicate that they
are the given values for which the column has to be examined. The strength
capacities of the column, either P, or M, alone or pair of P, and M,, will not have
any suffix. Thus, the designer shall assess
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(pair of Py and My)given < pair of Py, and My, as strength capacities
(10.53)

This type of problem is known as analysis type of problem. The three
steps are given below while using design charts of SP-16 for solving such
problems.

Step 1. Selection of the design chart

The designer has to select a particular design chart, specified by the chart
number, from the known value of d’/D and the grade of steel for circular columns;
and considering also the distribution of longitudinal steel bars equally on two or
four sides for the rectangular columns.

Step 2: Selection of the particular curve

The designer shall select the particular curve out of the family of fourteen
curves in the chart selected in Step 1. The selection of the curve shall be made
from the value of p/fex parameter which is known.

Step 3: Assessment of the column

This can be done in any of the three methods selecting two of the three
parameters as known and comparing the third parameter to satisfy Eq.10.53. The
parameters are Py/fa bD, Mu/fo« bD? and p/fe for rectangular columns. For circular
columns the breadth b shall be replaced by D (the diameter of the column).

10.25.5 Use of Design Charts in the Design Type of
Problems

It is explained in sec.10.24.2 of Lesson 24 that the design of columns
mainly involves with the determination of percentage of longitudinal steel p, either
assuming or knowing the dimensions b and D, grades of concrete and steel,
distribution of longitudinal bars in two or multiple rows and d'/D from the analysis
or elsewhere. However, the designer has to confirm the assumed data or revise
them, if needed. The use of design charts of SP-16 is explained below in four
steps while designing columns:

Step 1. Selection of the design chart
As in step 1 of sec.10.25.4, the design chart is selected from the assumed

values of the parameter as explained in step 1 of sec.10.25.4. The only
difference is that, here the assumed parameter may be revised, if required.
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Step 2: Determination of the percentage of longitudinal steel

A, (Needs Interpolation for p/f, )

I_,;'H : L)
P,/ f.bD o R =

Ty

M, / f.bD*

Fig.10.25.5: Determination of p/ f,, by linear interpolation
(not to scale)

The two parameters (Py/fe bD) and (My/foc bD?) are known and the point A
is located on the design chart with these two coordinates (Fig.10.25.5). The point
may be like Al, on a particular curve of specified p/fc, or like A2, in between two
such curves having two values of p/fs, the difference between the two values of
p/fe is 0.02. In the first case, the corresponding p/f is obtained directly as
specified on the curve. While, in the second case, liner interpolation is to be done
by drawing a line KL perpendicular to the two curves and passing through the
point A2.

The percentage of longitudinal steel is obtained by multiplying the p/f., so
obtained, by the actual grade of concrete (which may be different from M 20
though the chart is prepared assuming M 20 only). Thus, percentage of
longitudinal steel,

p = (p/fe) (Actual fey)
(10.54)

This percentage of longitudinal steel (obtained from EQ@.10.54) is a
tentative value and shall be confirmed after finalizing the assumed data, i.e., d'/D,
b, D etc.

Step 3: Design of transverse reinforcement
This should be done before confirming d'/D as the diameter of the lateral
tie has a role in finalizing d’. The design of transverse reinforcement shall be

done following the procedure explained in secs.10.21.8 and 10.21.9 of Lesson
21.
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Step 4: Revision of the design, if required

If the value of d’/D changes in step 3 requiring any change of other
dimension etc., the repetition of steps 1 to 3 are needed. Otherwise, the design is
complete.

10.25.6 lllustrative Examples
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Fig. 10.25.6: Tied column of Problem 1
Problem 1:

Figure 10.25.6 shows a rectangular short reinforced concrete column
using M 25 and Fe 415. Analyse the safety of the column when subjected to P, =
1620 kN and M, = 170 kNm.

Solution 1:

This is an analysis type of problems. The data given are: b = 300 mm, D =
450 mm, d’ = 56 mm, Asc = 4021 mm? (20 bars of 16 mm diameter), fo = 25
N/mm?, f, = 415 N/mm?, P, = 1620 kN and M, = 170 kNm. So, we have d'/D =
56/450 = 0.1244, P /f4«bD = 0.48, M /f4xbD? = 0.111934 and p/fe = 0.11914.
Step 1. Selection of design chart

From the given data: d'/D = 0.1244, f, = 415 N/mm? and longitudinal steel
bars are equally distributed on four sides, the charts selected are 44 (for d’'/D =
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0.1) and 45 (for d’/D = 0.15). Linear interpolation has to done with the values
obtained from these two charts.

Step 2: Selection of the particular curve

From the given value of p/fex = 0.11914, the two curves having p/fi = 0.1
and 0.12 are selected from both the charts (No. 44 and 45). Here also, linear
interpolation has to be done.

Step 3: Assessment of the column

In order to assess the column, we select the two given parameters p/fcx
and Py/fubd? to determine the third parameter Mu/f4bD? to compare its value
with the given parameter M/fobD?. However, the value of My/fubD? is obtained
by doing linear interpolation two times: once with respect to p/fc« and the second
time with respect to d’/D. The results are furnished in Table 10.9 below:

Table 10.9: Values of My/fx«bD?* when (Py/fubD?)gven = 0.48 and (p/fek)given =
0.11914; and d’/D = 0.1244

Sl. No. p/fex d’/D
0.1 0.15 0.1244
1 0.1 0.1* 0.09** 0.09512***
2 0.12 0.12* 0.107** 0.113656***
3 0.11914 0.1194**=* 0.10649*** 0.113094 1 ***
Note: * Values obtained from chart 44

** Values obtained from chart 45
*** | inearly interpolated values

Thus, the moment capacity of the column is obtained from the final value
of My/fakbD? = 0.1130941 as

M, = (0.1130941)(25)(300)(450)(450) Nmm

which is higher than the given

= 171.762 kNm,

My, = 170 kNm. Hence, the column can be

subjected to the pair of given P, and M, as 1620 kN and 170 kNm, respectively.

Problem 2:

Design a short spiral column subjected to P, = 2100 kN and M, = 187.5
kNm using M 25 and Fe 415. The preliminary diameter of the column may be
taken as 500 mm.

Solution 2:
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Step 1. Selection of design chart

With the given f, = 415 N/mm? and assuming d/D = 0.1, the chart
selected for this problem is Chart 56.

Step 2: Determination of the percentage of longitudinal steel

With the given fg = 25 N/mm? and assuming the given D = 500 mm, we
have:

PJ/f«D? = 2100000/25(500)(500) = 0.336, and

Mu/faD? = 187.5(10°)/25(500)(500)(500) = 0.06

The particular point A (Fig.10.25.5) having coordinates of P/fuD? =
0.336 and My/faD® = 0.06 in Chart 56 gives: p/fo = 0.08. Hence, p = 0.08(25) =
2 per cent (see Eq.10.54).

Asc = 0.02(7)(500)(500)/4 = 3928.57 mm?
Provide 8-25 mm diameter bars to have As actually provided = 3927 mm?.
Marginally less amount of steel than required will be checked considering the

enhancement of strength for spiral columns as stipulated in cl.39.4 of IS 456.

Step 3: Design of transverse reinforcement

BT @ 25 cic (spiral)
b

8-257 (= 3927 mm’ )

40 (cover) -
B (spiral dia)—

= F £
1.0 | halt tia

Fig. 10.25.7: Spiral column of Problem 2
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The diameter of the helical reinforcement is taken as 8 mm (> 25 mm/4).
The pitch p of the spiral is determined from EqQ.10.11 of Lesson 22, which
satisfies the stipulation in cl.39.4.1 of IS 456. From Eq.10.11, we have the pitch
of the spiral p as:

p < 11.1(Dc- ¢,,) asp fy/(D* - D?) fu
(10.11)

where, D = 500 — 40 — 40 = 420 mm, D = 500 mm, fy = 25 N/mm?, f, =
415 N/mm?, ¢, =8 mmand asp = 50 mm’.

Using the above values in Eq.10.11, we have p < 25.716 mm. As per
cl.26.5.3.2d1, regarding the pitch of spiral: p ¥ 420/6 (= 70 mm), p ¢ 25 mm
and p £ 24 mm. So, pitch of the spiral = 25 mm is o.k. Figure 10.25.7 presents
the cross-section with reinforcing bars of the column.

Step 4: Revision of the design, if required

Providing 25 mm diameter longitudinal steel bars and 8 mm diameter
spirals, we have d’' = 40 + 8 + 12.5 = 60.5 mm. This gives d’/D = 60.5/500 =
0.121. In step 1, d'/D is assumed as 0.1. So, the revision of the design is needed.

However, as mentioned in step 2, the area of steel required is not
provided and this may be offset considering the enhanced strength of the spiral
column, as stipulated in cl.39.4 of IS 456.

We, therefore, assess the strength of the designed column, when d’/D =
0.121 and Asc = 3927 mm?, if it can be subjected to P, = 2100 kN and M, = 187.5
KNm.

For the purpose of assessment, we determine the capacity P, of the
column when M, = 187.5 kNm. Further, the revised d/D = 0.121 needs to
interpolate the values from Charts 56 (for d’/D = 0.1) and 57 (for d’/D = 0.15). The
value of p/fe = 0.08 and My/f«bD* = 0.06. Table 10.10 presents the results.

Table 10.10: Value of P /fabD? when My/fD® = 0.06 and p/fy = 0.08

SI.No. d'/D Pu/fekD?
1 0.1 0.336 (from Chart 56)
2 0.15 0.30 (from Chart 57)
3 0.121 0.32088 (Interpolated value)

From Table 10.10, thus, we get,
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P./f«D? = 0.32088, which gives P, = (0.32088)(25)(500)(500) = 2005.5
kN.

Considering the enhanced strength as 1.05 times as per cl.39.4 of IS 456,
the actual capacity of this column is (1.05)(2005.5) = 2105 kN > 2100 kN.

Thus, the design is safe to carry P, = 2100 kN and M, = 187.5 kNm.

10.25.7 Practice Questions and Problems with Answers

Q.1: Name the two types of problems that can be solved using the design
charts of SP-16.

A.1l: See sec. 10.25.1.

Q.2: Mention the three different sets of design charts available in SP-16
mentioning the number of charts and the parameters for their identification.

A.2: See sec. 10.25.2.

Q.3: State the approximations, limitations and usefulness of the design charts of
SP-16 in solving the analysis and design type of problems of short columns.

A.3: See sec. 10.25.3.

Q.4:

40 (cover) R
& (spiral dig)—w}

1 half dia )

Fig. 10.25.8; Spiral column of Q. 4
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Assess the safety of the spiral column shown in Fig.10.25.8 using M 20 and
Fe 415 when subjected to P, = 1200 kN and M, = 64 kNm, considering the
enhanced strength of the spiral column.

A.4: In this problem, the given data are: D = 400 mm, d’ =40 + 6 + 10 = 56 mm,
Asc = 2513 mm? (8-20 mm diameter bars), f« = 20 N/mm?, f, = 415 N/mm?,
P, =1200 kN and M, = 64 KNm.
Step 1: Selection of the design charts
With f, = 415 N/mm? and d’/D = 56/400 = 0.14, we select two charts nos.
56 (for d’/D = 0.1) and 57 (for d’/D = 0.15). We have to interpolate the values
obtained from these two charts.

Step 2: Selection of the particular curve

From the given data we have p/fec = 0.0999488 =~ 0.1. So, we select the
curve for p/fex = 0.1 in the two charts (Nos. 56 and 57).

Step 3: Assessment of the column
For the purpose of assessment, we select the two parameters p/fex and
Mu/f«D* and determine the values of P/f,D? from the two charts for interpolation.

The results are presented in Table 10.11 below.

Table 10.11: Values of p/fyD? and Mu/f4«D?® and p/fy = 0.1

SI.No. d’/D Pu/fexD?
1 0.1 0.444 (from Chart 56)
2 0.15 0.422 (from Chart 57)
3 0.14 0.4264 (Interpolated value)

From Table 10.11, thus, we get Py/foD? = 0.4264, which gives P, = 1364.48 kN.

It may be noted that for more accuracy another set of values of d’/D = 0.08
is required. The interpolated value, thus obtained, shall be strictly applicable
when p/fx = 0.0999488. However, for all practical designs, such accuracy is not
required.

Further, as per cl.39.4 of IS 456, the enhanced capacity of the spiral
column = 1.05(1364.48) = 1432.704 kN, which is more than 1200 kN. It is also

seen that the column is safe even without considering the enhanced capacity as
the P, = 1364.48 kN > 1200 kN.

Q.5:
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Fig .10.25.9: Square column of Q. 5

Design a short square tied column to carry P, = 2240 kN and M, = 112
kNm using M 25 and Fe 415, and assuming the dimension b = D = 400
mm, as shown in Fig.10.25.9.

A.5: The data given are: b = D = 400 mm, P, = 2240 kN, M, = 112 kKNm, f =
25 N/mm?® and fy = 415 N/mm?.

Step 1: Selection of the design chart

With the given data of f, = 415 N/mm? and assuming d'/D = 0.15, we have
to refer to Chart 45.

Step 2: Determination of percentage of longitudinal steel

Using the values of fy = 25 N/mm? and assuming b = D = 400 mm as
given, we have P /f4D? = 0.56 and M/f4D° = 0.07.

From Chart 45, we get p/fex = 0.1, giving p = 2.5 per cent. Accordingly,

Asc = 2.5(400)(400)/100 = 4000 mm?. Provide 20 bars of 16 mm diameter
(Asc(provide) = 4021 mmz).
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Step 3: Design of lateral tie

The arrangement of lateral tie shall be like Fig.18 of IS 456 as the
longitudinal bars are not spaced more than 75 mm on either side (cl.26.5.3.2b1
of IS 456). The pitch of the lateral tie of diameter 8 mm is kept at 250 mm c/c
satisfying the stipulation in ¢l.26.5.3.2c1 of IS 456. Figure 10.25.9 presents the
cross-section with reinforcing bars of the column.

Step 4: Revision of the design, if required

The value of d’ is now 56 mm which gives d’/D = 0.14. Accordingly, the
assumed value of d'/D in step 1 as 0.15 is not valid. So, we have to check the
capacity of the column interpolating the values when d’/D = 0.1 and 0.15 from
Charts 44 and 45, respectively. Further, the longitudinal steel provided gives
p/fe = 0.100525, which also is different from 0.1 as obtained in step 2 of this
problem. Though the difference is marginal, both the interpolations are done for
the academic interest and results are presented in Table 10.12 below. In
assessing the capacity of this column, we keep p/fa = 0.100125 and P /f4D? =
0.56 as constants and determine the value of M/f4«D® by two linear
interpolations.

Table 10.12: Values of M/fo«D* when Py/fobD? = 0.56 and p/fe = 0.10025

SI. No. p/fex d’/D
0.1 0.15 0.14
1 0.1 0.1* 0.07** 0.072***
2 0.12 0.08* 0.09** 0.092***
3 0.100525 0.080525*** 0.070525*** 0.072525***

Note: * Values obtained from Chart 44
** Values obtained from Chart 45
*** | inearly interpolated values

So, the capacity of the column M, = (0.072525)(25)(400)(400)(400) Nmm
= 116 kKNm > 112 kKNm.

Hence, the design of the column is o.k.
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10.25.9 Test 25 with Solutions

Maximum Marks = 50, Maximum Time = 30 minutes

Answer all questions.

TQ.1: Mention the three different sets of design charts available in SP-16
mentioning the number of charts and the parameters for their
identification. (20 marks)

A.TQ.1: See sec. 10.25.2.

TQ.2: State the approximations, limitations and usefulness of the design charts

of SP-16 in solving the analysis and design type of problems of short
columns. (10 marks)
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A.TQ.2: See sec. 10.25.3.

TQ.3:
. - 45 (cover )
20-20T (= 6283 mm’ r} 10 %Iateralltie )
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74 10T @ 250 clc
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Fig .10.25.10: Square column of TQ. 3
Check the short square column of Fig.10.25.10 to carry P, = 3250 kN and
My = 250 KNm using M 25 and Fe 415.
(30 marks)

A.TQ.3: Given data are: b = D = = 500 mm, As; = 6283 mm? (20 bars of 20 mm
diameter), fy = 25 N/mm?, f, = 415 N/mm?, P, = 3250 kN and M, = 250
KNm.

Step 1: Selection of design chart

From Fig.10.25.10, we get d’ = 65 mm giving d’/D = 0.13, and given f, =
415 N/mm?, we select Charts 44 (for d’/D = 0.1) and 45 (for d’/D = 0.15). We
have to interpolate the values to get the result when d’/D = 0.13.
Step 2: Selection of the particular curve

With p = 628300/(500)(500) = 2.5132 per cent, we get p/fex = 0.100528 =
0.1. Accordingly, the curve for p/fex = 0.1 is to be used in Charts 44 and 45.
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Step 3: Assessment of the column

For the assessment, we keep P./fxD? = 3250/25(500)(500) = 0.52 and
p/f« = 0.1 as constants to determine My/foD*> from two charts. The results are
given in Table 10.13 below.

Table 10.13: Values of My/fuD? when Py/foD? = 0.52 and p/fy = 0.1

SI.No. d'/D My/foD>
1 0.1 0.09 (from Chart 44)
2 0.15 0.08 (from Chart 45)
3 0.13 0.084 (Interpolated value)

So, we get M,/f4D° = 0.084, giving M, = (0.084)(25)(500)(500)(500) =
262.5 KNm > 250 kNm.

Hence, the column is safe to carry P, = 3250 kN and M, = 250 kNm.

10.25.10 Summary of this Lesson

This lesson explains the approximations, limitations and usefulness of the
three sets of design charts available in SP-16 for the purpose of solving analysis
and design types of reinforced concrete columns. The use of design charts has
been illustrated in several steps for the solution of both analysis and design types
of problems.

Several numerical problems in illustrative examples, practice problem and

test will help in understanding the use of design charts to solve the two types of
problems.
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Instructional Objectives:

At the end of this lesson, the student should be able to:

e understand the behaviour of short columns under axial load and biaxial
bending,

e understand the concept of interaction surface,

e identify the load contour and interaction curves of Py,-M, in a interaction
surface,

e mention the limitation of direct application of the interaction surface in
solving the problems,

e explain the simplified method of design and analysis of short columns
under axial load and biaxial bending,

e apply the IS code method in designing and analysing the reinforced
concrete short columns under axial load and biaxial bending.

10.26.1 Introduction

Beams and girders transfer their end moments into the corner columns of
a building frame in two perpendicular planes. Interior columns may also have
biaxial moments if the layout of the columns is irregular. Accordingly, such
columns are designed considering axial load with biaxial bending. This lesson
presents a brief theoretical analysis of these columns and explains the difficulties
to apply the theory for the design. Thereafter, simplified method, as
recommended by IS 456, has been explained with the help of illustrative
examples in this lesson.
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10.26.2 Biaxial Bending
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Fig. 10.26.1(a}:
é Uniaxial bending
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Fig. 10.26.1{c):
Biaxial bending
about inclined axis

Fig. 10.26.1(d):
Failure strain profile

3 Fig. 10.26.1{e):
s Failure stress block

Fig. 10.26.1: Column under uniaxial and biaxial bending

Figures 10.26.1a and b present column section under axial load and
uniaxial bending about the principal axes x and vy, respectively. Figure 10.26.1c
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presents the column section under axial load and biaxial bending. The
eccentricities e, and ey of Fig.10.26.1c are the same as those of Fig.10.26.1a (for
ex) and Fig.10.26.1b (for ey), respectively. Thus, the biaxial bending case (case
c) is the resultant of two uniaxial bending cases a and b. The resultant
eccentricity e, therefore, can be written as (see Fig.10.26.1c):

e= (e +e)"”
(10.55)

Designating the moments of cases a, b and ¢ by My, My and M,, respectively,
we can write:

2 2 /12
M, = (M2 +M2)!
(10.56)

and the resultant M, is acting about an inclined axis, so that

tand = edey, = My/Myx
(10.57)

the angle of inclination @ is measured from y axis.

This inclined resultant axis shall also be the principal axis if the column
section including the reinforcing bars is axisymmetric. In such a situation, the
biaxial bending can be simplified to a uniaxial bending with the neutral axis
parallel to the resultant axis of bending.

The reinforced concrete column cross-sections are, in general, non-
axisymmetric with reference to the longitudinal axis and, therefore, the neutral
axis is not parallel to the resultant axis of bending (€ is not equal to A in
Fig.10.26.1c). Moreover, it is extremely laborious to find the location of the
neutral axis with successive trials. However, failure strain profile and stress block
can be drawn for a given location of the neutral axis. Figs.10.25.1d and e present
the strain profile and stress block, respectively, of the section shown in
Fig.10.25.1c.
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10.26.3 Interaction Surface
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Fig. 10.26.2: Interaction diagram under axial load and biaxial bending

Figure 10.26.2 can be visualised as a three-dimensional plot of Py-Mx-
Muy, Wherein two two-dimensional plots of P,-Myy and P,-M,s are marked as case
(a) and case (b), respectively. These two plots are the interaction curves for the
columns of Figs.10.26.1a and b, respectively. The envelope of several interaction
curves for different axes will generate the surface, known as interaction surface.

The interaction curve marked as case (c) in Fig.10.26.2, is for the column
under biaxial bending shown in Fig.10.26.1c. The corresponding axis of bending
is making an angle @ with the y axis and satisfies Eq.10.57. It has been
explained in Lesson 24 that a column subjected to a pair of P and M will be safe
if their respective values are less than P, and My, given by its interaction curve.
Extending the same in the three-dimensional figure of interaction surface, it is
also acceptable that a column subjected to a set of Py, My, and My is safe if the
set of values lies within the surface. Since P, is changing in the direction of z, let
us designate the moments and axial loads as mentioned below:

Muxz = design flexural strength with respect to major axis xx under biaxial
loading, when Py = Py,
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Mw. = design flexural strength with respect to minor axis yy under biaxial
loading, when P, = Py,

Mux1 = design flexural strength with respect to major axis xx under uniaxial
loading, when P, = P, and

Mw: = design flexural strength with respect to minor axis yy under uniaxial
loading, when P, = Py;.

The above notations are also shown in Fig.10.26.2.

All the interaction curves, mentioned above, are in planes perpendicular to
Xy plane. However, the interaction surface has several curves parallel to xy
plane, which are planes of constant P,. These curves are known as load contour,
one such load contour is shown in Fig.10.26.2, when P, = P,,. Needless to
mention that the load is constant at all points of a load contour. These load
contour curves are also interaction curves depicting the interaction between the
biaxial bending capacities.

10.26.4 Limitation of Interaction Surface

The main difficulty in preparing an exact interaction surface is that the
neutral axis for the case (c) of Fig.10.26.1c will not, in general, be perpendicular
to the line joining the loading point P, and the centre of the column
(Fig.10.26.1c). This will require several trials with ¢ and A, where c is the
distance of the neutral axis and 4 angle made by the neutral axis with the x axis,
as shown in Fig.10.26.1c. Each trial will give a set of P,, Myx and Myy. Only for a
particular case, the neutral axis will be perpendicular to the line joining the load
point P, to the centre of the column. This search makes the process laborious.
Moreover, several trials with ¢ and A, giving different values of h (see
Fig.10.26.1c), may result in a failure surface with wide deviations, particularly as
the value of P, will be increasing.

Accordingly, the design of columns under axial load with biaxial bending is
done by making approximations of the interaction surface. Different countries
adopted different approximate methods. Clause 39.6 of IS 456 recommends one
method based on Bresler's formulation, also known as "Load Contour Method",
which is taken up in the following section. (For more information, please refer to:
"Design Criteria for Reinforced Columns under Axial Load and Biaxial Bending",
by B. Bresler, J. ACI, Vol.32, No.5, 1960, pp.481-490).

10.26.5 IS Code Method for Design of Columns under Axial
Load and Biaxial Bending
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Fig. 10.26.3: Exponent a, versus P, /P

IS 456 recommends the following simplified method, based on Bresler's
formulation, for the design of biaxially loaded columns. The relationship between
Mux. and Myy, for a particular value of Py = Py, expressed in non-dimensional
form is:

UL

(I\/qu/'\/luxl)an + (Ivluy/'\/luyl)arI < 1
(10.58)

where My, and M,y = moments about x and y axes due to design loads, and

a, isrelated to Py/Pyz, (Fig.10.26.3), where

n

I:)UZ

0.45 fck AC + 0.75 fy Asc

= 0.45 Ag + (0.75 fy = 0.45 fck) Asc
(10.59)

where Ag = gross area of the section, and

Asc = total area of steel in the section

Muxz, Muyz, Muxa and Myy1 are explained in sec.10.26.3 earlier.

It is worth mentioning that the quantities M, My and P, are due to
external loadings applied on the structure and are available from the analysis,
whereas My, My and Py, are the capacities of the column section to be
considered for the design.

Equation 10.58 defines the shape of the load contour, as explained earlier

(Fig.10.26.2). That is why the method is also known as "Load Contour Method".
The exponent ¢, of Eq.10.58 is a constant which defines the shape of the load

Version 2 CE IIT, Kharagpur



contour and depends on the value of P,. For low value of the axial load, the load
contour is approximated as a straight line and, in that case, «, = 1. On the other

hand, for high values of axial load, the load contour is approximated as a
quadrant of a circle, when ¢, = 2. For intermediate load values, the value of «,

lies between 1 and 2. Chart 64 of SP-16 presents the load contour and
Fig.10.26.3 presents the relationship between «, and P, /P,,. The mathematical

relationship between ¢, and Py /Py is as follows:
a, = 1.0, when P /P, <0.2
a, =0.67 +1.67 Py/Py;, when 0.2 < (Pu/Py;) < 0.8

a, = 2.0, when (P/Py;) > 0.8
(10.60)

10.26.6 Solution of Problems using IS Code Method

The IS code method, as discussed in sec.10.26.5, can be employed to
solve both the design and analysis types of problems. The only difference
between the design and analysis type of problems is that a trial section has to be
assumed including the percentage of longitudinal reinforcement in the design
problems. However, these data are available in the analysis type of problems.
Therefore, a guide line is given in this section for assuming the percentage of
longitudinal reinforcement for the design problem. Further, for both types of
problems, the eccentricities of loads are to be verified if they are more than the
corresponding minimum eccentricities, as stipulated in cl.25.4 of IS 456.
Thereafter, the relevant steps are given for the solution of the two types of
problems.

(a) Selection of trial section for the design type of problems

As mentioned in sec.10.24.2(i) of Lesson 24, the preliminary dimensions
are already assumed during the analysis of structure (mostly statically
indeterminate). Thus, the percentage of longitudinal steel is the one parameter to
be assumed from the given Py, My, My, fok @and fy. Pillai and Menon (Ref. No. 4)
suggested a simple way of considering a moment of approximately 15 per cent in
excess (lower percentage up to 5 per cent if Py/Py; is relatively high) of the
resultant moment

/
M, = (L15) (M2 +M2)"?
(10.61)

as the uniaxial moment for the trial section with respect to the major principal axis
xx, If Myx = Myy; otherwise, it should be with respect to the minor principal axis.
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The reinforcement should be assumed to be distributed equally on four sides of
the section.

(b) Checking the eccentricities ex and ey for the minimum eccentricities
Clause 25.4 of IS 256 stipulates the amounts of the minimum
eccentricities and are given in Eq.10.3 of sec.10.21.11 of Lesson 21. However,

they are given below as a ready reference.

exmin > greater of (I/500 + b/30) or 20 mm
... (10.3)

eymin = greater of (/500 + D/30) or 20 mm
where |, b and D are the unsupported length, least lateral dimension and larger
lateral dimension, respectively. The clause further stipulates that for the biaxial
bending, it is sufficient to ensure that the eccentricity exceeding the minimum
value about one axis at a time.

(c) Steps for the solution of problems

The following are the steps for the solution of both analysis and design
types of problems while employing the method recommended by IS 456.

() Verification of eccentricities

It is to be done determining eyx = My/P, and ey = M,/P, from the given
data of Py, Myx and Myy; and eymin and eymin from Eq.10.3 from the assumed b and
D and given I.

(i) Assuming a trial section including longitudinal reinforcement

This step is needed only for the design type of problem, which is to be
done as explained in (a) above.

(iii) Determination of Myx1 and Mgy

Use of design charts should be made for this. Mya and My,
corresponding to the given Py, should be significantly greater than My and Myy,
respectively. Redesign of the section should be done if the above are not
satisfied for the design type of problem only.

(iv) Determination of P,; and «,

The values of P,; and «, can be determined from Eqgs.10.59 and 10.60,
respectively. Alternatively, P,, can be obtained from Chart 63 of SP-16.
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(v) Checking the adequacy of the section

This is done either using Eq.10.58 or using Chart 64 of SP-16.

10.26.7 lllustrative Example

5
2 — e | X 40E1D 58
. ¥ 1
N i:f'._+ ¥
ﬁﬂﬁé_ v
Y | b = 400
N A_ = 3768 mm® 2
) p=1.8845 % =
— 8T @ 250 clc
."J = (alternate )
¥
d'=58 Ly» D|= 500
- s [
! X
Given: b = 400, D = 500, P, = 2000 kN, M, = 120 kNm, M_, = 100 kNm
M 20, Fe 415 and | = 3200
Fig. 10.26.4: Problem 1
Problem 1:

Design the reinforcement to be provided in the short column of Fig.10.26.4
is subjected to P, = 2000 kN, Myx = 130 kNm (about the major principal axis) and
Muy = 120 kNm (about the minor principal axis). The unsupported length of the
column is 3.2 m, width b = 400 mm and depth D = 500 mm. Use M 25 and Fe
415 for the design.

Solution 1:
Step 1: Verification of the eccentricities

Given: I = 3200 mm, b = 400 mm and D = 500 mm, we have from Eq.10.3
of sec.10.26.6b, the minimum eccentricities are:

exmin = greater of (3200/500 + 400/30) and 20 mm = 19.73 mm or 20 mm = 20
mm
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eymin = Qreater of (3200/500 + 500/30) and 20 mm = 23.07 mm or 20 mm
23.07 mm

Again from P, = 2000 kN, My = 130 kNm and My = 120 KNm, we have ey =
Mu/Py = 130(10°)/2000(10% = 65 mm and e, = M,,/P,, = 120(10%)/2000(10%) = 60
mm. Both e, and ey are greater than eymin and eymin, respectively.

Step 2: Assuming a trial section including the reinforcement

We have b = 400 mm and D = 500 mm. For the reinforcement,
M, = L15(Mj +M3)"?, from Eq.10.61 becomes 203.456 kNm. Accordingly, we

get
Pu/faD = 2000(10%/(25)(400)(500) = 0.4
Mu/fubD? = 203.456(10%)/(25)(400)(500)(500) = 0.0814

Assuming d' = 60 mm, we have d'/D = 0.12. From Charts 44 and 45, the value of
p/fc is interpolated as 0.06. Thus, p = 0.06(25) = 1.5 per cent, giving Asc = 3000
mm?. Provide 12-20 mm diameter bars of area 3769 mm?, actual p provided =
1.8845 per cent. So, p/fek = 0.07538.

Step 3: Determination of Myx1 and Myy1

We have P /fbD = 0.4 and p/fex = 0.07538 in step 2. Now, we get
Mua/fabD? from chart corresponding to d' = 58 mm (Fig.10.26.4) i.e., d'/D
0.116. We interpolate the values of Charts 44 and 45, and get Mya/febD?
0.09044. So, My, = 0.0944(25)(400)(500(500)(10°) = 226.1 kNm.

For Mux, d/b = 58/400 = 0.145. In a similar manner, we get My
0.0858(25)(400)(400)(500)(10°) = 171.6 kNm.

As Mya and Myy; are significantly greater than My, and My, respectively,
redesign of the section is not needed.

Step 4: Determination of Py, and «,

From EQ.10.59, we have P,; = 0.45(25)(400)(500) + {0.75(415) -
0.45(25)}(3769) = 3380.7 kN.
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Fig. 10.26.5: Chart 63 of SP-16 in Problem 1
(not to scale)

Alternatively, Chart 63 may be used to find P,, as explained. From the upper
section of Chart 63, a horizontal line AB is drawn at p = 1.8845, to meet the Fe
415 line B (Fig.10.26.5). A vertical line BC is drawn from B to meet M 25 line at
C. Finally, a horizontal line CD is drawn from C to meet P /A4 at 17. This gives
Puz = 17(400)(500) = 3400 kN. The difference between the two values, 19.3 kN is
hardly 0.57 per cent, which is due to the error in reading the value from the chart.
However, any one of the two may be employed.

Now, the value of ¢, is obtained from Eq.10.60 for P,/P,, = 2000/3380.7 =
0.5916, i.e., 0.2 < P,/Py; < 0.8, which gives, «, = 0.67 + 1.67 (P./P.;) = 1.658.
Alternatively, «, may be obtained from Fig.10.26.3, drawn to scale.

Step 5: Checking the adequacy of the section

Using the values of My, Mux1, My, My and «, in Eq.10.58, we have
(130/226.1)*%°® + (120/171.6)*%°® = 0.9521 < 1.0. Hence, the design is safe.
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Alternatively, Chart 64 may be used to determine the point (My/Mux1),
(Myy/Myy1) is within the curve of Py/Py, = 0.5916 or not.

Here, Mu/Mux1 = 0.5749 and M,/Myy1 = 0.6993. It may be seen that the
point is within the curve of Py /P, = 0.5916 of Chart 64 of SP-16.

Step 6: Design of transverse reinforcement

As per cl.26.5.3.2c of IS 456, the diameter of lateral tie should be > (20/4)
mm diameter. Provide 8 mm diameter bars following the arrangement shown in
Fig.10.26.4. The spacing of lateral tie is the least of :

(a) 400 mm = least lateral dimension of column,

(b) 320 mm = sixteen times the diameter of longitudinal reinforcement (20
mm),

(c) 300 mm

Accordingly, provide 8 mm lateral tie alternately @ 250 c/c (Fig.10.26.4).

10.26.8 Practice Questions and Problems with Answers

Q.1: Explain the behaviour of a short column under biaxial bending as the
resultant of two uniaxial bending.

A.l: Seesec.10.26.2

Q.2: Draw one interaction surface for a short column under biaxial bending and
show typical interaction curves and load contour curve. Explain the safety
of a column with reference to the interaction surface when the column is
under biaxial bending.

A.2: See sec.10.26.3 and Fig.10.26.2.

Q.3: Discuss the limitation of the interaction curve.

A.3: Seesec.10.26.4.

Q.4: lllustrate the IS code method of design of columns under biaxial bending.

A.4: See sec.10.26.5.
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Given: b = 450, D = 500, P, = 1600 kN, M_ = 120 kNm, M,, = 100 kNm,
M 20, Fe 415, | = 3200, A_= 2412 mm’, tie 8T @ 250 c/c (alternate)

Fig. 10.26.6: Q.5

Analyse the safety of the short column of unsupported length 3.2 m, b =
450 mm, D = 500 mm, as shown in Fig.10.26.6, having 12-16 mm
diameter bars as longitudinal reinforcement and 8 mm diameter bars as
lateral tie @ 250 mm c/c, when subjected to P, = 1600 kN, Myx = 120 kKNm
and Myy = 100 kNm. Use M 25 and Fe 415.

Step 1: Verification of the eccentricities

From the given data: | = 3200 mm, b = 450 mm and D = 500 mm,

€xmin
eymin
ex =

ey =

Muy/Pu

120(10%/1600 = 75 mm

100(10°)/1600

62.5 mm

3200/500 + 450/30 = 21.4 > 20 mm, so, 21.4 mm

3200/500 + 5000/30 = 23.06 > 20 mm, so, 23.06 mm

So, the eccentricities ex and ey are >> eymin and eymin.

Step 2: Determination of Myx1 and Myy1
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Given data are: b = 450 mm, D = 500 mm, fy = 25 N/mm?, f, = 415
N/mm?, P, = 1600 kN, My, = 120 kNm, M,y = 100 kNm and A = 2412 mm? (12-
16 mm diameter bars).

We have p = (100)(2412)/(450)(500) = 1.072 per cent, and d'/D = 56/500 =
0.112, d'/b = 56/450 = 0.124, P,/f.kbD = 1600/(25)(450)(500) = 0.2844 and p/fe =
1.072/25 = 0.043. We get Mya/fabD? from Charts 44 and 45 as 0.09 and 0.08,
respectively. Linear interpolation gives Muy/fabD? for d'/D = 0.112 as 0.0876.
Thus,

Mua = (0.0876)(25)(450)(500)(500) = 246.376 kNm

Similarly, interpolation of values (0.09 and 0.08) from Charts 44 and 45, we get
Muy1/fadb?® = 0.085 for d'/b = 0.124. Thus

My: = (0.085)(25)(500)(450)(450) = 215.156 kNm

Step 3: Determination of Py; and «,

From Eq.10.59, Py, = 0.45(25)(450)(500) + {0.75(415) - 0.45(25)}(2412)
3254.85 kN. This gives Py/P,; = 1600/3254.85 = 0.491574.

From Eq.10.60, «, = 0.67 + 1.67(Py/Py) = 0.67 + 1.67(0.491574)
1.4900.

Step 4: Checking the adequacy of the section

From Eq.10.58, we have: (120/246.376)**°% + (100/215.156)"*% =
0.6612 < 1.

Hence, the section is safe to carry P, = 1600 kN, My = 120 kKNm and Myy
= 100 kNm.
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10.26.10 Test 26 with Solutions

Maximum Marks = 50, Maximum Time = 30 minutes

Answer all questions.
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M 20, Fe 415, 1= 3500, A_= 2412 mm’, tie 8T @ 250 clc (alternate)

Fig. 10.26.7: TQ.1

Analyse the safety of the short square column of unsupported length =
35 m, b =D =500 mm, as shown in Fig.10.26.7, with 12-16 mm
diameter bars as longitudinal reinforcement and 8 mm diameter bars as
lateral tie @ 250 mm c/c, when subjected to P, = 1800 kN, My, = 160
kNm and Myy = 150 KNm.

A.TQ.1:

Step 1: Verification of the eccentricities

From the given data: | = 3500 mm, b = D = 500 mm, we have

emin In both directions (square column) = (3500/500) + (500/30) = 23.67
mm

ex = 160(10%/1800 = 88.88 mm and e, = 150(10°)/1800 = 83.34 mm

Therefore, e, and ey >> epin.
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Step 2: Determination of Myx1 and Myy1

We have the given data: b = D = 500 mm, fo = 25 N/mm?, f, = 415 N/mm?,
u = 1800 kN, Myx = 160 kNm, Myy = 150 KNm and Asc = 2412 mm? (12-16 mm
diameter bars).

The percentage of longitudinal reinforcement p = 241200/(500)(500) =
0.9648 per cent, and d'/D = 56/500 = 0.112 and p/f = 0.9648/25 = 0.03859.
Linear interpolation of values of Mya/fbD? from Charts 44 and 45 for d'/D =
0.112 is obtained as 0.08. Thus,

Mua = (0.08)(25)(500)(500)(500) = 250 kNm

Mu1 = Mua =250 KNm (square column)

Step 3: Determination of Py, and «,

From Eq.10.59,
Puz = 0.45(25)(500)(500) + {0.75(415) - 0.45(25)}(2415) = 3536.1 kN.
Pu/Py; = 1800/3536.1 = 0.509.

From Eq.10.60, «, = 0.67 + 1.67(0.509) = 1.52.

Step 4: Checking the adequacy of the section

From Eq.10.58, we have: (160/250)*? + (150/250)*°% = 0.967 < 1.

Hence, the section can carry P, = 1800 kN, Myx = 160 kNm and My, = 150
KNm.

10.26.11 Summary of this Lesson

This lesson explains the behaviour of short columns under axial
load and biaxial bending with the help of interaction surface, visualised as a
three-dimensional plot of P,-M-My. The interaction surface has a set of
interaction curves of P,-M, and another set of interaction curves of My,-M.y, at
constant P,;, also known as load contour. The design and analysis of short
columns are also explained with the help of derived equations and design charts
of SP-16. Numerical examples in the illustrative example, practice problems and
test will help in understanding the application of the theory in solving the analysis
and design types of problems of short columns under axial load and biaxial
bending.
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Instructional Objectives:
At the end of this lesson, the student should be able to:

e identify a design chart and understand the differences between a design
chart and interaction diagram of P and M,

e name the major design parameters of short columns subjected to axial
loads and uniaxial bending,

e state the design parameters assumed before the design,
e state the design parameter actually designed for the column,

e explain the roles of each of the design parameters in increasing the
strength capacities of column,

e name the two non-dimensional design parameters to prepare the design
charts,

e derive the governing equations in four separate cases while preparing the
design charts,

e mention the various points at which the values of the two non-dimensional
parameters are determined to prepare the design charts,

e prepare the design chart of any short and rectangular column subjected to
axial loads and uniaxial moment.

10.24.1 Introduction

Lesson 23 illustrates the different steps of determining the capacities of a
short, rectangular, reinforced with steel bars, concrete column. Several pairs of
collapse strengths P, and M, are to be determined for a column with specific
percentage of longitudinal steel bars assuming different positions of the neutral
axis. A designer has to satisfy that each of the several pairs of P, and My,
obtained from the structural analysis, is less than or equal to the respective
strengths in form of pairs of P, and M, obtained from determining the capacities
for several locations of the neutral axis. Thus, the design shall involve several
trials of a particular cross-section of a column for its selection.

On the other hand, it is also possible to prepare non-dimensional

interaction diagram selecting appropriate non-dimensional parameters. This
would help to get several possible cross-sections with the respective longitudinal
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steel bars. This lesson explains the preparation of such non-dimensional
interaction diagrams which are also known as design charts.

Similar design charts of circular and other types of cross-sections can be
prepared following the same procedure as that of rectangular cross-section.
However, the stress block parameters, explained in Lesson 23, are to be
established separately by summing up the forces and moment of several strips
by dividing the cross-section of columns into the strips. This lesson is restricted
to columns of rectangular cross-section which are symmetrically reinforced.

10.24.2 Design Parameters

The following are the four major design parameters to be determined for
any column so that it has sufficient pairs of strengths (P, and M,) to resist all
critical pairs obtained from the analysis:

(i) dimensions b and D of the rectangular cross-section,

(i) longitudinal steel reinforcing bars - percentage p, nature of distribution
(equally on two or four sides) and d'/D,

(iif) grades of concrete and steel, and
(iv) transverse reinforcement.

The roles and importance of each of the above four parameters are
elaborated below:

(i) Dimensions b and D of the rectangular cross-section

The strength of column depends on the two dimensions b and D.
However, preliminary dimensions of b and D are already assumed for the
analysis of structure, which are usually indeterminate statically. In the
subsequent redesign, these dimensions may be revised, if needed, inviting re-
analysis with the revised dimensions.

(i) Longitudinal steel reinforcing bars

It is a very important consideration to utilise the total area of steel bars
effectively. The total area of steel, expressed in percentage p ranges from the
minimum 0.8 to the maximum 4 per cent of the gross area of the cross-section.
The bars may be distributed either equally on two sides or on all four sides
judiciously having two or multiple rows of steel bars. The strain profiles of
Fig.10.23.2 reveals that the rows of bars may be all in compression or both
compression and tension depending on the location of the neutral axis.
Accordingly, the total strength of the longitudinal bars is determined by adding all
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the individual strengths of bars of different rows. The effective cover d', though
depends on the nominal cover, has to be determined from practical
considerations of housing all the steel bars.

(ili) Grades of concrete and steel

The dimensions b and D of the cross-section and the amount of
longitudinal steel bars depend on the grades of concrete and steel.

(iv) Transverse reinforcement

The transverse reinforcement, provided in form of lateral ties or spirals,
are important for the following advantages in

(a) preventing premature / local buckling of the longitudinal bars,

(b) improving ductility and strength by the effect of confinement of the core
concrete,

(c) holding the longitudinal bars in position during construction, and
(d) providing resistance against shear and torsion, if present.

However, the transverse reinforcement does not have a major contribution
in influencing the capacities of the column. Moreover, the design of transverse
reinforcement involves selection of bar diameter and spacing following the
stipulations in the design code. The bar diameter of the transverse reinforcement
also depends on the bar diameter of longitudinal steel. Accordingly, the
transverse reinforcement is designed after finalizing other parameters mentioned
above.

It is, therefore, clear that the design of columns mainly involves the
determination of percentage of longitudinal reinforcement p, either assuming or
knowing the dimensions b and D, grades of concrete and steel, distribution of
longitudinal bars in two or multiple rows and d'/D ratio from the analysis or
elsewhere. Needless to mention that any designed column should be able to
resist several critical pairs of P, and M, obtained from the analysis of the
structure. It is also a fact that several trials may be needed to arrive at the final
selection revising any or all the assumed parameters. Accordingly, the design
charts are prepared to give the results for the unknown parameter quickly
avoiding lengthy calculations after selecting appropriate non-dimensional
parameters.

Based on the above considerations and making the design simple, quick
and fairly accurate, the following are the two non-dimensional parameters:
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For axial load: P./febD
For moment: M,/fbD?

The characteristic strength of concrete fe has been associated with the
non-dimensional parameters as the grade of concrete does not improve the
strength of the column significantly. The design charts prepared by SP-16 are
assuming the constant value of fy for M 20 to avoid different sets of design
charts for different grades of concrete. However, separate design charts are
presented in SP-16 for three grades of steel (Fe 250, Fe 415 and Fe 500), four
values of d/D (0.05, 0.1, 0.15 and 0.2) and two types of distribution of
longitudinal steel (distributed equally on two and four sides). Accordingly there
are twenty-four design charts for the design of rectangular columns. Twelve
separate design charts are also presented in SP-16 for circular sections covering
the above mentioned three grades of steel and for values of d'/D ratio.

However, the unknown parameter p, the percentage of longitudinal
reinforcement has been modified to p/f in all the design charts of SP-16, so that
for grades other than M 20, the more accurate value of p can be obtained by
multiplying the p/fe with the actual grade of concrete used in the design of that
column.

However, this lesson explains that it is also possible to prepare design
chart taking into consideration the actual grade of concrete. As mentioned earlier,
the design charts are prepared getting the pairs of values of P, and M, in non-
dimensional form from the equations of equilibrium for different locations of the
neutral axis. We now take up the respective non-dimensional equations for four
different cases as follows:

(&) When the neutral axis is at infinity, i.e., kD = o, pure axial load is
applied on the column.

(b) When the neutral axis is outside the cross-section of the column, i.e.,
o >kD > D.

(c) When the neutral axis is within the cross-section of the column, i.e.,
kD < D.

(d) When the column behaves like a steel beam.

10.24.3 Non-dimensional Equation of Equilibrium when k =
», (Pure Axial Load)

Figures 10.23.2b and c of Lesson 23 present the strain profile EF and the
corresponding stress block for this case. As the load is purely axial, we need to
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express the terms C.; and Cs of Eg.10.35 of sec.10.23.10 of Lesson 23. The total
compressive force due to concrete of constant stress of 0.446 fg is:

Cc = 0.446fy b D
(10.37)

However, proper deduction shall be made for the compressive force of concrete
not available due to the replacement by steel bars while computing Cs.

The force of longitudinal steel bars in compression is now calculated. The
steel bars of area pbD/100 are subjected to the constant stress of fsc when the
strain is 0.002. Subtracting the compressive force of concrete of the same area
pbD/100, we have,

(10.38)

Thus, we have from Eq.10.35 of sec.10.23.10 of Lesson 23 after substituting the
expressions of C; and Cs from Egs.10.37 and 10.38,

(10.39)

Dividing both sides of Eq.10.39 by f bD, we have

(Pu/fck bD) = 0.446 + (p/loo fck) (fsc - 0.446 fck)
(10.40)

Thus, Eq.10.40 is the only governing equation for this case to be considered.

10.24.4 Non-dimensional Equations of Equilibrium when
Neutral Axis is Outside the Section (» > kD 2z D)

Figures 10.23.3b and c of Lesson 23 present the strain profile JK and the
corresponding stress block for this case. The expressions of C., Cs and
appropriate lever arms are determined to write the two equations of equilibrium
(Egs.10.35 and 36) of Lesson 23. While computing C., the area of parabolic
stress block is determined employing the coefficient C; from Table 10.4 of
Lesson 23. Similarly, the coefficient C,, needed to write the moment equation, is
obtained from Table 10.4 of Lesson 23. The forces and the corresponding lever
arms of longitudinal steel bars are to be considered separately and added for
each of the n rows of the longitudinal bars. Thus, we have the first equation as,
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n

Pu = CifabD+ > (p bD/100)(fy - fy)

i=1

(10.41)

where C; = coefficient for the area of stress block to be taken from Table 10.4
of Lesson 23,

pi = As/bD where As;is the area of reinforcement in the i row,

f = stress in the i™ row of reinforcement, taken positive for compression
and negative for tension,

fei stress in concrete at the level of the i row of reinforcement, and

n number of rows of reinforcement.

Here also, the deduction of the compressive force of concrete has been made for
the concrete replaced by the longitudinal steel bars.

Dividing both sides of Eq.10.41 by fibD, we have

n

(PufbD) = Ci+ Y (p, /100 f) (f, - f,)
i=1

(10.42)

Similarly, the moment equation (Eq.10.36) becomes,

My = CifgbD (D/2-CD)+ Y (p, bD/100)(f, - f.)y.

n
i=1

(10.43)

where C, = coefficient for the distance of the centroid of the compressive stress
block of concrete measured from the highly compressed right edge
and is taken from Table 10.4 of Lesson 23, and

yi = the distance from the centroid of the section to the i row of
reinforcement, positive towards the highly compressed right edge
and negative towards the least compressed left edge.

Dividing both sides of Eq.10.43 by fybD? we have

(My/fabD?) = C1(0.5-C)) + (p, /200 f ) (f, - f ) (y/D)

n
i=1

(10.44)
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Equations 10.42 and 10.44 are the two non-dimensional equations of
equilibrium in this case when oo<kD<D.

10.24.5 Non-dimensional Equations of Equilibrium when the
Neutral Axis is within the Section (kD < D)

The strain profile IN and the corresponding stress block of concrete are
presented in Figs.10.23.4b and c for this case. Following the same procedure of
computing C., Cs and the respective lever arms, we have the first equation as

Py = 0.36 fackbD + > (p, bD/100) (f4 - fy)
i=1

(10.45)

Dividing both sides of Eq.10.45 by f«bD, we have

PufabD = 0.36k + > (p, /100 f ) (f, - )
i=1

(10.46)

and the moment equation (Eq.10.36) as

My = 0.36 fy kbD(.5 - 042 k) D + (p, bD /100) (f, - f.) (y/D)

n
i
i=1

(10.47)

Dividing both sides of Eq.10.47 by fybD? we have

(M/f4bD?) = 0.36 k(0.5 - 0.42 k) + (p, /200 f ) (fg - fy) (yi/D)
i=1
(10.48)
where k = Depth of the neutral axis/Depth of column, mentioned earlier in

sec.10.21.10 and Fig.10.21.11 of Lesson 21.

Equations 10.46 and 10.48 are the two non-dimensional equations of
equilibrium in this case.

10.24.6 Non-dimensional Equation of Equilibrium when the
Column Behaves as a Steel Beam

This is a specific situation when the column is subjected to pure moment
My = M, only (Point 6 of the interaction diagram in Fig.10.23.1 of Lesson 23).
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Since the column has symmetrical longitudinal steel on both sides of the
centroidal axis of the column, the column will resist the pure moment by yielding
of both tensile and compressive steel bars (i.e., fsi = 0.87 f, = f,4). Thus, we have
only one equation (Eg.10.36 of Lesson 23), which becomes

My = 3 (p, bD100) (087f,) (y/D)

(10.49)

Dividing both sides of Eq.10.49 by fy bD?, we have

n

(Mu/febD?) = > (p, /100 f,,) (0.87f,) (yi/D)

(10.50)

Equation 10.50 is the equation of equilibrium in this case.

10.24.7 Preparation of Design Charts

Design charts are prepared employing the equations of four different
cases as given in secs.10.24.3 to 6. The advantage of employing the equations
is that the actual grade of concrete can be taken into account, though it may not
be worthwhile to follow this accurately. However, preparation of interaction
diagram will help in understanding the behaviour of column with the change of
neutral axis depth for the four cases mentioned in sec.10.24.2. The step by step
procedure of preparing the design charts is explained below. It is worth
mentioning that the values of (Pu/fubD) and (M. /f4bD?) are determined
considering different locations of the neutral axis for the four cases mentioned in
sec.10.24.2.

Step 1: When the neutral axis is at infinity

The governing equation is EQ.10.40. The strain profile EF and the
corresponding stress block are in Fig.10.23.2b and ¢ of Lesson 23, respectively.

Step 2: When the column is subjected to axial load considering minimum
eccentricity

Lesson 22 presents the design of short columns subjected to axial load
only considering minimum eccentricity as stipulated in cl.29.3 of IS 456,
employing Eqg.10.4, which is as follows:

P, = 04fwbD + (pbD/100) (0.67 fy - 0.4 fe) .... (10.4)
Dividing both sides of Eq.10.4 by f bD, we have
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(10.51)

The P, obtained from Eq.10.51 can also resist My as per cl.39.3 of IS 456.
From the stipulation of cl. 39.3 of IS 456 and considering the maximum value of
the minimum eccentricity as 0.05D, we have

My = (Py) (0.05)D = 0.02 fy bD? + (0.05 pbD?/100) (0.67 fy - 0.4 fci)
Dividing both sides of the above equation by f4bD?, we have

(My/fo bD?) = 0.02 + (0.05p/100 fei) (0.67 f, - 0.4 fey)
(10.52)

Equations 10.51 and 10.52 are the two equations to be considered in this
case.

Step 3: When the neutral axis is outside the section

Figures 10.23.3b and c of Lesson 23 present one strain profile JK and the
corresponding stress block, respectively, out of a large number of values of k
from 1 to infinity, only values up to about 1.2 are good enough to consider, as
explained in sec.10.23.5 of Lesson 23. Accordingly, we shall consider only one
point, where k = 1.1, in this case. With the help of Egqs.10.42 and 10.44, Table
10.4 for the values of C; and C,, Table 10.5 for the values of fs; and Eq.10.23 or
EqQ.10.27 for the values of f;, the non-dimensional parameters P,/fo« bD and
Mu/f bD? are determined.

Step 4: When the neutral axis is within the section

One representative strain profile IU and the corresponding stress block
are presented in Fig.10.23.4b and c, respectively, of Lesson 23. The following six
points of the interaction diagram are considered satisfactory for preparing the
design charts:

(&) Where the tensile stress of longitudinal steel is zero i.e., KD =D - d',

(b) Where the tensile stress of longitudinal steel is 0.4f,d = 0.4(0.87 fy),

(c) Where the tensile stress of longitudinal steel is) 0.8f,d = 0.8(0.87 fy)

(d) Where the tensile stress of longitudinal steel is f,d
= 0.871,/Es, 1.e., the initial yield point,

0.87fy and strain

(e) Where the tensile stress of longitudinal steel is f,d
= 0.87f,/Es + 0.002, i.e., the final yield point,

0.87f, and strain

Version 2 CE IIT, Kharagpur



() When the depth of the neutral axis is 0.25D.

For all six points, the respective strain profile and the corresponding stress
blocks can be drawn. Therefore, values of (Pu/fa bD) and (My/fu bD?) are
determined from Eqs.10.46 and 10.48, using Table 10.5 for fsc and Eq.10.34 for
fci.

Step 5: When the column behaves like a steel beam

As explained in sec.10.24.6, Eq.10.50 is used to compute My/fec bD? in this
case.

Step 6: Preparation of design chart

The ten pairs of (Pu/fe« bD) and (Mu/fe bD?) (one set each in steps 1, 2, 3
and 5 and six sets in step 4) can be plotted to prepare the desired design chart.

One illustrative example is taken up in the next section.

10.24.8 lllustrative Example
Problem 1:

Prepare a design chart for a rectangular column with 3 per cent
longitudinal steel distributed equally on two faces using M 25 and Fe 415, and
considering d'/D = 0.15.

Solution 1:

The solution of this problem is explained in six steps of the earlier section.
Step 1: When the neutral axis is at infinity

Figures 10.23.2b and c¢ present the strain profile EF and the
corresponding stress block, respectively. Using the values of p = 3 per cent, fe =
25 N/mm? and determining the value of fi = 327.7388 N/mm? (using linear
interpolation from the values of Table 10.5 of Lesson 23), we get the value of
(Pu/fek bD) from EqQ.10.40 as

(Pu/fexbD) = 0.8259.

Step 2: When the column is subjected to axial load considering minimum
eccentricity

Using the value of p = 3 per cent, fo = 25 N/mm? and fy = 415 N/mm? in
EQgs.10.51 and 10.52 of sec.10.24.6, we have
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(Pu/febD) = 0.7217

(MJ/f4bD?) = 0.0361
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Fig.10.24.1: Problem 1 and Q. 3 (step 3, k=1.1)
Step 3: When the neutral axis depth =1.1D

Figures 10.24.1a, b and c show the section of the column, strain profile JK
and the corresponding stress block, respectively, for this case. We use
Eqgs.10.42 and 10.44 for determining the value of (Pu/fe bD) and (My/fe bD? ) for
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this case using k = 1.1, fg = 25 N/mm?, p1 = p2 = 1.5, y1/D = 0.35 and y»/D = -
0.35. Values of C;, C,, fs; and fs, fci and f,, are obtained from equations
mentioned in Step 3 of sec.10.24.6. The values of all the quantities are presented
in Table 10.6A, mentioning the source equation no., table no. etc. to get the two
non-dimensional parameters as given below:

(Pu/f«bD) = 0.67405
(MJ/f4bD?) = 0.06370
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Fig. 10.24.2: Problem 1 and Q. 3 (step 4, fs2 = 0)
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Fig. 10.24.7: Problem 1 and Q.3 (step 4, k = 0.25)

Step 4. When the neutral axis is within the section

In Step 4 of section 10.24.6, six different locations of neutral axis are
mentioned; five of them (a to e) are specified by the magnitude of fs; (tensile) of
longitudinal steel and one of them is specified by the value of k = 0.25. The
values of all the quantities are presented in Tables 10.6A and B, mentioning the
source equation no., table no. etc.
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Figures 10.24.2 to 10.24.7 present the respective strain profiles and the
corresponding stress block separately for all six different locations of the neutral

axis.

Table 10.6A Parameters and results of Problem 1 of Section 10.24.8

Given data: fy = 25 N/mm?, f, = 415 N/mm?, p = 3 per cent, p; = p; = 1.5 per

cent,
d'/D = 0.15
Note: Units of fs, fsc and f. are in N/mm?, (-) minus sign indicates tensile strain
or stress.
SI.No. Given k=11 fso=0 fso =-0.4fyq | fs2 = 0.8 fyq
Description
1 Sec. No. 10.24.7 10.24.7 10.24.7 10.24.7
2 Step No. 3 4 4 4
3 Fig. No. 10.24.1 10.24.2 10.24.3 10.24.4
4 €s1 = €c1 0.002829 0.00288 0.00275 0.00263
5 €s2 = €c2 0.000744 0.0 -0.00072 -0.00144
6 Table No. 10.5 10.5 10.5 10.5
of fs and
fSC
7 fs1 352.407 352.871 351.669 348.392
8 fso 148.914 0.0 -144.42 -288.84
9 fsc NA NA NA NA
10 Eq.Nos. of | 10.23 and 10.34 10.34 10.34
fei 10.27
11 fe1 11.15 11.15 11.15 11.15
12 feo 6.757 0.0 0.0 0.0
13 Table No. 10.4 NA NA NA
of C; and
C,
14 C; 0.384 NA NA NA
15 Co 0.443 NA NA NA
16 y1/D +0.35 +0.35 +0.35 +0.35
17 yo/D -0.35 -0.35 -0.35 -0.35
18 Kk 11 0.85 0.7046 0.6017
19 Eq.No. of 10.42 10.46 10.46 10.46
Pu/fek bD
20 Pu/fek bD 0.6740 0.5110 0.3713 0.2457
21 Eq.No. of 10.44 10.48 10.48 10.48
My/fei bD?
22 Mu/fo bD? 0.0643 0.1155 0.1536 0.1850
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Table 10.6B Parameters and results of Problem 1 of Section 10.24.8

Given data: fo = 25 N/mm?, f, = 415 N/mm? p = 3 per cent, p; = p2 = 1.5 per
cent,

d’/D = 0.15
Note: Units of fs, fsc and fg are in N/mm?, (-) minus sign indicates tensile strain
or stress.
SI.No. Given fso = - fyq fso = - fyq k =0.25
Description | (Initial yield) | (Final yield)
1 Sec. No. 10.24.7 10.24.7 10.24.7
2 Step No. 4 4 4
3 Fig. No. 10.24.5 10.24.6 10.24.7
4 €s1 = €c1 0.00256 0.00221 0.0014
5 €s2 = €2 -0.00180 -0.00380 -0.0084
6 Table No. 10.5 10.5 10.5
of fsiand
fsc
7 fs1 346.754 335.484 281.0
8 fso -361.05 -361.05 -361.05
9 fsc NA NA NA
10 Eq.Nos. of 10.34 10.34 10.34
fc:i
11 fo1 11.15 11.15 10.146
12 feo 0.0 0.0 0.0
13 Table No. NA NA NA
of C; and
C,
14 Cy NA NA NA
15 C, NA NA NA
16 y1/D +0.35 +0.35 +0.35
17 y,/D -0.35 -0.35 -0.35
18 Kk 0.5607 0.4072 0.25
19 Eq.No. of 10.46 10.46 10.46
Pu/fek bD
20 Pu/fex bD 0.1866 0.1246 0.0353
21 Eqg.No. of 10.48 10.48 10.48
My/fex bD?
22 Mu/fo bD? 0.1997 0.1921 0.1680

Step 5: When the column behaves like a steel beam
For this case, the parameter (Mu/f« bD?) is determined from Eq.10.50

using p1 = p2 = 1.5 per cent, fy = 25 N/mm?, f, = 415 N/mm?, y,/D = 0.35 and
y»/D = -0.35. Thus, we get
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(MJ/ff4«bD?) = 0.15164

Step 6: Final results of design chart

The values of ten pairs of (Pu/fsbD) and (My/foc bD?) as obtained in steps

1 to 5 are presented in Sl. Nos. 1 to 10 of Table 10.6C. The design chart can be
prepared by plotting these values.

Table 10.6C Final values of P /fe« bD and My/fek bD? of Problem 1 of Section

10.24.8
Sl. No. Particulars about the point Pu/fe bD Mu/fe bD?

1 k=« 0.8259 0.0

2 Minimum eccentricity 0.7217 0.0361

3 k=1.1 0.6740 0.0643

4 fs2=0 0.5110 0.1155

5 fs2 = (-)0.4 fyq 0.3713 0.1536

6 fs2 = (-)0.8 fyq 0.2457 0.1850

7 fs2 = (=) fya 0.1866 0.1997
(Initial yield)

8 fs2 = (=) fya 0.1246 0.1921
(Final yield)

9 k=0.25 0.0353 0.1680

10 Steel Beam 0.0 0.1516

10.24.9 Practice Questions and Problems with Answers

Q.1:

A.l:

Q.2

A.2:

Q.3:

A3

Why do we need to have non-dimensional design chart?
See sec. 10.24.1

Name the different design parameters while designing a column. Mention
which one is the most important parameter.

See sec. 10.24.2.

Prepare a design chart for a rectangular column within three per cent
longitudinal steel, equally distributed on two faces, using M 25 and Fe 250
and considering d'/D = 0.15.

The solution of this problem is obtained following the same six steps of
Problem 1 of sec.10.24.8, except that the grade of steel here is Fe 250.
Therefore, the final results and all the parameters are presented in Table
10.7 avoiding explaining step by step again.
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Table 10.7 Final values of Py/fe bD and My/fo bD? of Q.3 of Section 10.24.9

Sl. No. Particulars about the point Pu/f bD Mu/fe bD?
1 k=« 0.6936 0.0
2 Minimum eccentricity 0.5890 0.0295
3 k=11 0.5931 0.0354
4 fs2=0 0.4298 0.0871
5 fs2 = (-)0.4 fyq 0.3438 0.1113
6 fs2 = (-)0.8 fyq 0.2645 0.1323
7 fs2 = (=) fya 0.2268 0.1421

(Initial yield)
8 fs2 = (=) fya 0.1559 0.1395
(Final yield)
9 k=0.25 0.0839 0.1248
10 Steel Beam 0.0 0.0914
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10.24.11 Test 24 with Solutions

Maximum Marks =

50, Maximum Time = 30 minutes

Answer all questions.

TQ.1:

(a) when fs,
(b) when fs; =

(c) when fs;

A.TQ.1:

Determine the parameters including the two non-dimensional
parameters, Pu and Mu of a rectangular reinforced concrete short
column of b = 370 mm, D = 530 mm, d/D = 0.1 and having 8-25 mm
diameter bars as longitudinal steel distributed equally on two sides
using M 20 and Fe 415 for each of the following three cases:

- 0.4 fyq

- fyq (at final yield)
(16 + 17 + 17 = 50)

This problem can be solved following the same procedure of explained
in Step 4b, c and d of sec.10.24.7. The step by step calculations are
not shown here and the final results are presented in Table 10.8.

Table 10.8 Parameters and results of TQ.1 of Section 10.24.11

Given data: f =20 N/mm?, f, =415 N/mm? b =370 mm, D =530 mm,

Longitudinal steel = 8-25 mm diameter equally distributed on
two sides, d'/D =0.15

SI.No. Given fs2=-0414 | f2=0.8fy | fso=-fyqg
Description (Final yield)
1 Sec. No. 10.24.7 10.24.7 10.24.7
2 Step No. 4 4 4
3 Fig. No. 10.24.3 10.24.4 10.24.6
4 €s1 = Ecl 0.0030 0.0029 0.0027
5 €s2 = €2 -0.00072 -0.00144 -0.0038
6 Table No. 10.5 10.5 10.5
of fs and
fSC
7 fs1 354.1702 353.468 349.956
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8 fso -144.42 -288.84 -361.05
9 fsc NA NA NA
10 Eq.Nos. of 10.34 10.34 10.34
fci
11 fe1 11.15 11.15 11.15
12 feo 0.0 0.0 0.0
13 Table No. NA NA NA
of C; and
C,
14 Ci1 NA NA NA
15 Co NA NA NA
16 y1/D +0.4 +0.4 +0.4
17 yo/D -0.4 -0.4 -0.4
18 k 0.7461 0.6371 0.4311
19 Eqg.No. of 10.46 10.46 10.46
Pu/fe bD
20 Pu/fe bD 0.3690 0.2572 0.1452
21 Pu (KN) 1447.225 1008.792 569.568
22 Eq.No. of 10.48 10.48 10.48
Mu/fo bD?
23 M,/fex bD? 0.1481 0.1799 0.1899
24 My (KNm) 307.777 374.125 394.779

10.24.12 Summary of this Lesson

This lesson explains the procedure of the preparation of design
charts of rectangular reinforced concrete short columns subjected to axial load
and uniaxial moment. Different positions of the neutral axis due to different pairs
of P, and M, give rise to different strain profiles and stress blocks. Accordingly,
the column may collapse when subjected to any pair of axial load and moment
exceeding the capacities of the column. Design charts are very much useful to
design the column avoiding lengthy numerical computations. lllustrative example,
practice and test problems will help in understanding each step of the procedure
to prepare the design chart.
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Lesson
27

Slender Columns
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Instructional Objectives:

At the end of this lesson, the student should be able to:
e define a slender column,
e give three reasons for its increasing importance and popularity,
e explain the behaviour of slender columns loaded concentrically,

e explain the behaviour of braced and unbraced single column or a part of
rigid frame, bent in single or double curvatures,

e roles and importance of additional moments due to P- A effect and
moments due to minimum eccentricities in slender columns,

e identify a column if sway or nonsway type,

e understand the additional moment method for the design of slender
columns,

e apply the equations or use the appropriate tables or charts of SP-16 for
the complete design of slender columns as recommended by IS 456.

11.27.1 Introduction

Slender and short are the two types of columns classified on the basis of
slenderness ratios as mentioned in sec.10.21.5 of Lesson 21. Columns having
both le,/D and ley/b less than twelve are designated as short and otherwise, they
are slender, where lex and lgy are the effective lengths with respect to major and
minor axes, respectively; and D and b are the depth and width of rectangular
columns, respectively. Short columns are frequently used in concrete structures,
the design of such columns has been explained in Lessons 22 to 26, loaded
concentrically or eccentrically about one or both axes. However, slender columns
are also becoming increasingly important and popular because of the following
reasons:

() the development of high strength materials (concrete and steel),

(i) improved methods of dimensioning and designing with rational and
reliable design procedures,
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(i) innovative structural concepts — specially, the architect's expectations
for creative structures.

Accordingly, this lesson explains first, the behaviour of slender elastic
columns loaded concentrically. Thereafter, reinforced concrete slender columns
loaded concentrically or eccentrically about one or both axes are taken up. The
design of slender columns has been explained and illustrated with numerical
examples for easy understanding.

10.27.2 Concentrically Loaded Columns

It has been explained in Lessons 22 to 26 that short columns fail by
reaching the respective stresses indicating their maximum carrying capacities.
On the other hand, the slender or long columns may fail at a much lower value of
the load when sudden lateral displacement of the member takes place between
the ends. Thus, short columns undergo material failure, while long columns may
fail by buckling (geometric failure) at a critical load or Euler’s load, which is much
less in comparison to that of short columns having equal area of cross-section.
The buckling load is termed as Euler’s load as Euler in 1744 first obtained the
value of critical load for various support conditions. For more information, please
refer to Additamentum, “De Curvis elasticis”, in the “Methodus inveiendi Lineas
Curvas maximi minimive proprietate gaudentes” Lausanne and Geneva, 1744.
An English translation of this work is given in Isis N0.58, Vol.20, p.1, November
1933.

The general expression of the critical load P, at which a member will fail
by buckling is as follows:

P = mEl/(kl)?

where E is the Young's modulus | is the moment of inertia about the axis of
bending, | is the unsupported length of the column and k is the coefficient whose
value depends on the degree of restraints at the supports. Expressing moment of
inertia | = Ar?, where A is the area of cross-section of the column and r is the
radius of gyration, the above equations can be written as,

Po = 1PEA /(KlIr)?
(10.62)

Thus, P of a particular column depends upon Kl/r or slenderness ratio. It is worth
mentioning that kl is termed as effective length I of the column.
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Fig.10.27.3: Column supported on cross-beams
(05<k<1)
Figures 10.27.1 and 2 show two elastic slender columns having hinge
supports at both ends and fixed supports against rotation at both ends,
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respectively. Figure 10.27.3 presents a column of real structure whose end
supports are not either hinged or fixed. It has supports partially restrained against
rotation by the top and bottom beams. Each of the three figures shows the
respective buckled shape, points of inflection Pls (points of zero moment), the
distance between the Pls and the value of k. All the three columns, having
supports at both ends, have the k values less than one or at most one. By
providing supports at both ends, one end of the column is prevented from
undergoing lateral movement or sidesway with respect to the other end.

P =0.25P,

P =0.25P,,
I = 2|

v
P i

F.l. = Point of Inflection

Fig. 10.27.4: Column - fixed at one end and
free at other end, (k = 2)
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However, cantilever columns are entirely free at one end, as shown in
Fig.10.27.4. Figure 10.27.5 shows another type of column, rotationally fixed at

both ends but one end can move laterally with respect to the other. Like that of
Fig.10.27.3, a real column, not hinged, fixed or entirely free but restrained by top

and bottom beams, where sideway can also take place. Each of these three
figures, like those of Figs.10.27.1 to 3, presents the respective buckled shape,

points of inflection (PIs), if any, the distance between the Pls and the value of k.
All these columns have the respective k values greater than one or at least one.
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Fig. 10.27.8: Unbraced portal frame (k> 2)

Figures 10.27.7 and 8 present two reinforced concrete portal frames, a
typical reinforced concrete rigid frame. Columns of Fig.10.27.7 are prevented
from sidesway and those of Fig.10.27.8 are not prevented from sidesway,
respectively, when subjected to concentric loadings. The buckled configuration of
the frame, prevented from sidesway (Fig.10.27.7) is similar to that of Fig.10.27.3,
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except that the lower ends of the portal frame are hinged. One of the two points
of inflection (PIs) is at the lower end of the column, while the other PI is slightly
below the upper end of the column, depending on the degree of restraint. The
value of k for such a frame is thus less than 1. The critical load is, therefore,
slightly more than P of the hinge-hinge column of Fig.10.27.1. The buckled
configuration of the other portal frame of Fig.10.27.8, where sidesway is not
prevented, is similar to the column of Fig.10.27.4 when it is made upside down,
except that the upper end is not fixed but partially restrained by the supporting
beam. In this case, the value of k exceeds 2, depending on the degree of
restraint. One of the two Pls is at the bottom of the column. The critical load of
the column of Fig.10.27.8 is much less than that of the column of Fig.10.27.1.

Table 10.14: Critical loads in terms of P of hinge-hinge column and effective
lengths | = kI of elastic and reinforced concrete columns with different boundary
conditions and for a constant unsupported length |

Sl. Support conditions Critical load Effective length Fig. No.
No. Per le = K
(A) Elastic single columns
1. | Hinged at both ends, no Per [ 10.27.1
sidesway
2. | Fixed against rotation at 4P, 0.51 10.27.2
both ends — no sidesway
3. | Partially restrained Between P, I >kl >1/2 10.27.3
against rotation by top and 4P,

and bottom cross-
beams, no sidesway

4. | Fixed at one end and 0.25 P, 21, one Plison 10.27.4
entirely free at other end imaginary
— sidesway not extension
prevented

5. | Rotationally fixed at both Per [, one Plis on 10.27.5
ends — sidesway not imaginary
prevented extension

6. | Partially restrained Between zero l<kl< 10.27.6
against rotation at both and slightly
ends — sidesway not less than P *
prevented

(B) Reinforced concrete columns

7. | Hinged portal frame — no > P kl <1 10.27.7
sidesway

8. | Hinged portal frame — << P Kl > 21| 10.27.8

sidesway not prevented

Notes: 1. Buckled shapes are half sine wave between two points of inflection
(Pls).
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2. * The critical load is slightly less than P. of hinge-hinge column
(SI.No.1), when cross-beams are very rigid compared to columns, i.e.,
the case under SI.No.6 approaches the case under SI.No.1.

The critical load is zero when cross-beams are very much
flexible compared to columns, i.e., the case under SI.No.6 approaches
to hinge-hinge column of SI.No.1, allowing sidesway. In that case, it
becomes unstable and hence, carries zero load.

P, NP

- .,
Crushing ;| Buckling ™.
g 9 ™.
a4z -

Y

( kifr) (I
Fig. 10.27.9: Effect of slenderness on strength

Table 10.14 presents the critical load in terms of that of hinge-hinge
column P and effective lengths le (equal to the distance between two points of
inflection Pls = kl) of elastic and reinforced concrete columns for a constant value
of the unsupported length I.

The stress-strain curve of concrete, as shown in Fig.1.2.1 of Lesson 2,
reveals that the initial tangent modulus of concrete E; is much higher than E;
(tangent modulus at higher stress level). Taking this into account in Eg.10.62,
Fig.10.27.9 presents a plot of buckling load P, versus kl/r. It is evident from the
plot that the critical load is reducing with increasing slenderness ratio. For very
short columns, the limiting factored concentric load estimated from Eq.10.39 of
Lesson 24 will be found to be less than the critical load, determined from
EQ.10.62. The column, therefore, will fail by direct crushing and not by buckling.
We can also find out the limiting value of kl/r when the crushing load and the
buckling load are the same. The (kl/r)in is shown in Fig.10.27.9. The limiting
value of kl/r also indicates that a column having kl/r more than (kl/r);m will fail by

Version 2 CE IIT, Kharagpur



buckling, while columns having any value of kl/r less than (kl/r)jm will fail by
crushing of concrete.

The following are the observations of the discussions about the
concentrically loaded columns:

1. As the slenderness ratio kl/r increases, the strength of concentrically
loaded column decreases.

2. The effective length of columns either in single members or parts of
rigid frames is between 0.5l and |, if the columns are prevented from sidesway by
bracing or otherwise. The actual value depends on the degree of end restraints.

3. The effective length of columns either in single members or parts of
rigid frames is always greater than one, if the columns are not prevented from
sidesway. The actual value depends on the degree of end restraints.

4. The critical load of braced frame against sidesway is always
significantly larger than that of the unbraced frame.
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Fig. 10.27.10{a): Deflections Fig. 10.27.10(b): Moments
Fig. 10.27.10: Column bent in single curvature, (H = 0)

Version 2 CE IIT, Kharagpur



10.27.3 Slender Columns under Axial Load and Uniaxial
Moment

(A) Columns bent in single curvature

Figure 10.27.10a shows a column bent in single curvature under axial load
P less than its critical load P. with constant moment Pe. The deflection profile
marked by dotted line is due to the constant moment. However, there will be
additional moment of Py at a distance z from the origin (at the bottom of column)
which will deflect the column further, as shown by the solid line. The constant
moment Pe and additional moment Py are shown in Fig.10.27.10b. Thus, the
total moment becomes

M = Mo+Py = P(e+y)
(10.63)

The maximum moment is P(e + A) at the mid-height of the column. This, we can
write

Mmax = Mo+ PA = P(e + A)
(10.64)

This is known as P - A effect.
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Fig. 10.27.11(a): Deflections Fig. 10.27.11({b): Moments

Fig. 10.27.11: Column bent in single curvature, (H = H)
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Figure 10.27.11a shows another column whose bending is caused by a
transverse load H. The bending moment at a distance z from the origin (bottom
of the column) is Hz/2 causing deflection of the column marked by dotted line in
the figure. The axial load P, less than its critical load P, causes additional
moment resulting in further deflection, marked by solid line in the figure. This
additional deflection produces additional moment of Py at a section z from the
origin. The two bending moment diagrams are shown in Fig.10.27.11b. Here
again, the total moment is

M = Mo+ Py = Hz/2 + Py
(10.65)

The maximum moment at the mid-height of the column is

Mmax = Mo,max"' PA = HI/4+PA
(10.66)

The total moment in Eqs.10.63 and 10.65 consists of the moment M, that
acts in the presence of P and the additional moment caused by P (= Py). The
deflections y can be computed from y,, the deflections without the axial load
from the expression

Y = Yo[1/{1 - (P/Pc)}]
(10.67)

From Eq.10.64, we have

Mmax = Mo+ PA = Mo+ P AG[LA1 — (P/Pg)}]
(10.68)

Equation 10.68 can be written as

M = M, 1+ yw(P/PR,)
1_(P/R:r)
(10.69)

where  depends on the type of loading and generally varies between + 0.20.
Since P/P; is always less than one, we can ignore  (P/P) term of Eq.10.69, to
have

Mmax = Mo/{1 — (P/Per)}
(10.70)

where 1/{1 — (P/P¢)} is the moment magnification factor. In both the cases above
(Figs.10.27.10 and 11), a direct addition of the maximum moment caused by
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transverse load or otherwise, to the maximum moment caused by P gives the
total maximum moment as that is the most unfavourable situation. However, this
is not the case for situation taken up in the following.

(B) Columns bent in double curvature

P=P,
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(a) Slender column  (b) M, diagram  {c) Py diagram (d) M, + Py (e} Alternative
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Fig. 10.27.12: Slender column under axial load and bending, bent in double curvature

Figure 10.27.12a shows a column subjected to equal end moment of
opposite signs. From the moment diagrams M, and Py (Figs.10.27.12b and c), it
is clear that though My, moments are maximum at the ends, the Py moments are
maximum at some distance from the ends. The total moment can be either as
shown in d or in e of Fig.10.27.12. In case of Fig.10.27.12d, the maximum
moment remains at the ends and in Fig.10.27.12e, the maximum moment is at
some distance from the ends, where M, is comparatively smaller than M, max at
the ends. Accordingly, the total maximum moment is moderately higher than M,

max-

From the above, it is evident that the moment M, will be magnified most
strongly if the section of M, max coincides with the section of maximum value of y,
as in the case of column bent in single curvature of Figs.10.27.10 and 11.
Similarly, if the two moments are unequal but of same sign as in Fig.10.27.10,
the moment M, will be magnified but not so much as in Fig.10.27.10. On the
other hand, if the unequal end moments are of opposite signs and cause bending
in double curvature, there will be little or no magnification of M, moment.

This dependence of moment magnification on the relative magnitudes of
the two moments can be expressed by modifying the earlier Eq.10.70 as
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Mmax = Mo C/{1 — (P/Pc)}
(10.71)

where C, = 0.6 + 0.4(M;/My) > 0.4
(10.72)

The moment M, is smaller than M, and M1/M;, is positive if the moments produce
single curvature and negative if they produce double curvature. It is further seen
from EQ.10.72 that C,, = 1, when M; = M, and in that case, Eq.10.71 becomes
the same as EQq.10.70.

For the column of Fig.10.27.12a, the deflections caused by M, are
magnified when axial load P is applied. The deflection can be obtained from

Y = Yo [1f1 - (P/AP)}]

(10.73)
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Fig. 10.27.13: Fixed portal frame - laterally unbraced
(C) Portal frame laterally unbraced and braced

Here, the sidesway can occur only for the entire frame simultaneously. A
fixed portal frame, shown in Fig.10.27.13a, is under horizontal load H and
compression force P. The moments due to H and P and the total moment
diagrams are shown in Fig.10.27.13b, c and d, respectively. The deformations of
the frame due to H are shown in Fig.10.27.13a by dotted curves, while the solid
curves are the magnified deformations. It is observed that the maximum values
of positive and negative M, are at the ends of the column where the maximum
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values of positive and negative moments due to P also occur. Thus, the total
moment shall be at the ends as the two effects are fully additive.
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(a) Portal frame

(b) M, moment {c) Moment due to P

Fig. 10.27.14: Fixed portal frame - laterally braced
Figure 10.27.14a shows a fixed portal frame, laterally braced so that no
sidesway can occur. Figures 10.27.14b and ¢ show the moments M, and due to

P It is seen that the maximum values of the two different moments do not occur
at the same location. As a result, the magnification of the moment either may not
be true or shall be small.

(D) Columns with different slenderness ratios
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Fig. 10.27.15: Behaviour of slender column

Figure 10.27.15 shows the interaction diagram of P and M at the mid-
height section of the column shown in Fig.10.27.10. Three loading paths OA, OB
and OC are also shown in the figure for three columns having the same cross-
sectional area and the eccentricity of loads but with different slenderness ratios.
The three columns are loaded with increasing P and M (at constant eccentricity)
up to failure. The loading path OA is linear indicating A = 0, i.e., for a very short
column. It should be noted that A should be theoretically zero only when either
the effective length or the eccentricity is zero. In a practical short column,
however, some lateral deflection shall be there, which, in turn will cause
additional moment not more than five per cent of the primary moment and may
be neglected. The loading path OA terminates at point A of the interaction
diagram, which shows the failure load Ps. of the short column with moment Mg, =
Psc €. The short column fails by crushing of concrete at the mid-height section.
This type of failure is designated as material failure, either a tension failure or a
compression failure depending on the location of the point A on the interaction
curve.

The load path OB is for a long column, where the deflection A caused by
increasing value of P is significant. Finally, the long column fails at load P,. and
moment M. = Pc(e + A). The loading path OB further reveals that the secondary
moment PicA is comparable to the primary moment P, e. Moreover, the failure
load and the primary moment of the long column P, and P, e, respectively, are
less than those of the short column (Psc and P €, respectively), though both the
columns have the same cross-sectional areas and eccentricities but different
slenderness ratios. Here also, the mid-height section of the column undergoes
material failure, either a compression failure or a tension failure, depending on
the location of the point B on the interaction diagram.
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The loading path OC, on the other hand, is for a very long column when
the lateral deflection A is so high that the slope of the path dP/dM at C is zero.
The column is so slender that the failure is due to buckling (instability) at a
comparatively much low value of the load P, though this column has the same
cross-sectional area and the eccentricity of load as of the other two columns.
Such instability failure occurs for very slender columns, specially when they are
not braced.

The following points are summarised from the discussion made in
sec.10.27.3.

1. Additional deflections and moments are caused by the axial
compression force P in columns. The additional moments increase with the
increase of kl/r, when other parameters are equal.

2. Laterally braced compression members and bent in single curvature
have the same or nearby locations of the maxima of both M, and Py. Thus, being
fully additive, they have large moment magnification.

3. Laterally braced compression members and bent in double curvature
have different locations of the maxima of both M, and Py. As a result, the
moment magnification is either less or zero.

4. Members of frames not braced laterally, the maxima of M, and Py
mostly occur at the ends of column and cause the maximum total moment at the
ends of columns only. Additional moments and additional deflections increase
with the increase of Ki/r.

10.27.4 Effective Length of Columns

Annex E of IS 456 presents two figures (Figs.26 and 27) and a table
(Table 26) to estimate the effective length of columns in frame structures based
on a research paper, “Effective length of column in multistoreyed building” by
R.H. Wood in The Structural Engineer Journal, No.7, Vol.52, July 1974. Figure
26 is for columns in a frame with no sway, while Fig.27 is for columns in a frame
with sway. These two figures give the values of k (i.e., l¢/l) from two parameters
S, and S, which are obtained from the following expression:

B =D KD K A+DK,
(10.74)

where K; and Ky, are flexural stiffnesses of columns and beams, respectively. The
quantities g, and S, at the top and bottom joints A and B, respectively, are
determined by summing up the K values of members framing into a joint at top
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and bottom, respectively. Thus g, and g, for the frame shown in Fig.10.27.16 are
as follows:

" Top beam
- | .Il:lll".

1 A E

k.

Bottom beam
y

1 H‘ ] hI. | j."rl- E:
4 B E

K.

LTI

Fig. 10.27.16: Stiffness of columns in Wood's chart

ﬂl = (Kc + Kct)/(Kc + Kot + Kp1 + sz)
(10.75)

Br = (Ke + Kep)/(Ke + Kep + Kbz + Kba)
(10.76)

However, assuming idealised conditions, the effective length in a given
plane may be assessed from Table 28 in Annex E of IS 456, for normal use.

10.27.5 Determination of Sway or No Sway Column

Clause E-2 of IS 456 recommends the stability index Q to determine if a
column is a no sway or sway type. The stability index Q is expressed as:

Q = > PuAHyh,

(20.77)

where Z Pu. = sum of axial loads on all columns in the storey,
A, = elastically computed first-order lateral deflection,
Hy = total lateral force acting within the storey, and
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h, = height of the storey.

The column may be taken as no sway type if the value of Q is < 0.4,
otherwise, the column is considered as sway type.

10.27.6 Design of Slender Columns

The design of slender columns, in principle, is to be done following the
same procedure as those of short columns. However, it is essential to estimate
the total moment i.e., primary and secondary moments considering P-A effects.
These secondary moments and axial forces can be determined by second-order
rigorous structural analysis — particularly for unbraced frames. Further, the
problem becomes more involved and laborious as the principle of superposition
is not applicable in second-order analysis.

However, cl.39.7 of IS 456 recommends an alternative simplified method
of determining additional moments to avoid the laborious and involved second-
order analysis. The basic principle of additional moment method for estimating
the secondary moments is explained in the next section.

10.27.7 Additional Moment Method

In this method, slender columns should be designed for biaxial
eccentricities which include secondary moments (Py of EQ.10.63 and 10.65)
about major and minor axes. We first consider braced columns which are bent
symmetrically in single curvature and cause balanced failure i.e., Py, = Pyp.

(A) Braced columns bent symmetrically in single curvature and undergoing
balanced failure

For braced columns bent symmetrically in single curvature, we have from
EQgs.10.63 and 10.65,

M= Mo+Py = Mo+Pes = Mg+ M,
(10.78)

where P is the factored design load P,, M are the total factored design moments
Mux and My about the major and minor axes, respectively; M, are the primary
factored moments Mgy and Mg,y about the major and minor axes, respectively;
Ma are the additional moments M and M, about the major and minor axes,
respectively and e, are the additional eccentricities eax and e,y along the minor
and major axes, respectively. The quantities M, and P of Eq.10.78 are known
and hence, it is required to determine the respective values of e,, the additional
eccentricities only.
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Let us consider the columns of Figs.10.27.10 and 11 showing A as the
maximum deflection at the mid-height section of the columns. The column of
Fig.10.27.10, having a constant primary moment M,, causes constant curvature
¢, while the column of Fig.10.27.11, having a linearly varying primary moment

with a maximum value of M, max at the mid-height section of the column, has a
linearly varying curvature with the maximum curvature of ¢max at the mid-height

section the column. The two maximum curvatures can be expressed in terms of
their respective maximum deflection A as follows:

The constant curvature (Fig.10.27.10) 4, = 8A/l2
(10.79)

The linearly varying curvature (Fig.10.27.11) ¢, = 12A/l?
(10.80)

where |e are the respective effective lengths kl of the columns. We, therefore,
consider the maximum ¢ as the average value lying in between the two values of

EQgs.10.79 and 80 as

B = 10A/2
(10.81)

Accordingly, the maximum additional eccentricities e,, which are equal to
the maximum deflections A, can be written as

€a = A = ¢12/10
(10.82)
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Fig. 10.27.17: Maximum curvature at mid-height section whenP, = P,,

Assuming the column undergoes a balanced failure when P, = Py, the
maximum curvature at the mid-height section of the column, shown in
Figs.10.27.17a and b, can be expressed as given below, assuming (i) the values
of &, = 0.0035, ¢, = 0.002 and d'/D = 0.1, and (ii) the additional moment

capacities are about eighty per cent of the total moment.

¢ = eighty per cent of {(0.0035 + 0.002)/0.9D}(see Fig.10.27.17c)
or ¢ = 1/200D
(10.83)

Substituting the value of ¢ in Eq.10.82,

ea = D(l/D)?/2000
(10.84)

Therefore, the additional moment M, can be written as,
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Ma = Py = PA = Pe, = (PD/2000) (l/D)?
(10.85)

Thus, the additional moments Max and Mg about the major and minor axes,
respectively, are:

Max = (PuD/2000) (lex/D)?
(10.86)

May = (Pyb/2000) (ley/b)?
(10.87)

where P, = axial load on the member,

effective length in respect of the major axis,

Iex

effective length in respect of the minor axis,

ley
D = depth of the cross-section at right angles to the major axis, and
b = width of the member.

Clause 39.7.1 of IS 456 recommends the expressions of Egs.10.86 and 87 for
estimating the additional moments Max and M,, for the design. These two
expressions of the additional moments are derived considering the columns to be
braced and bent symmetrically undergoing balanced failure. Therefore, proper
modifications are necessary for different situations like braced columns with
unequal end moments with the same or different signs, unbraced columns and
columns causing compression failure i.e., when P, > Py,

(B) Braced columns subjected to unequal primary moments at the two
ends

For braced columns without any transverse loads occurring in the height,

the primary maximum moment (M, max Of EQ.10.64), with which the additional
moments of Egs.10.86 and 87 are to be added, is to be taken as:

Mo max = 0.4 M]_ + 0.6 M2
(10.88)

and further Mgmax = 0.4 M»
(10.89)

where M is the larger end moment and M;j is the smaller end moment, assumed
to be negative, if the column is bent in double curvature.
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To eliminate the possibility of total moment My max becoming less than M,
for columns bent in double curvature (see Fig.10.27.12) with M; and M, having
opposite signs, another condition has been imposed as

IVlumax 2 IV|2
(10.90)

The above recommendations are given in notes of cl.39.7.1 of IS 456.
(C) Unbraced columns

Unbraced frames undergo considerable deflection due to P-A effect. The
additional moments determined from EQs.10.86 and 87 are to be added with the
maximum primary moment My max at the ends of the column. Accordingly, we
have

Mo max = M2+ Ma
(10.91)

The above recommendation is given in the notes of cl.39.7.1 of IS 456.
(D) Columns undergoing compression failure (Py > Pyp)

It has been mentioned in part A of this section that the expressions of
additional moments given by EQs.10.86 and 10.87 are for columns undergoing
balanced failure (Fig.10.27.17). However, when the column causes compression
failure, the e/D ratio is much less than that of balanced failure at relatively high
axial loads. The entire section may be under compression causing much less
curvatures. Accordingly, additional moments of Eqs.10.86 and 10.87 are to be
modified by multiplying with the reduction factor k as given below:

(l) FOI' Pu > Pubx: kax = (Puz - Pu)/(Puz - Pubx)
(10.92)

(”) FOf Pu > Puby kay = (PUZ - PU)/(PUZ - Puby)
(10.93)

with a condition that kax and kay should be < 1
(10.94)

where P, = axial load on compression member
Puz is given in EQ.10.59 of Lesson 26 and is,

Pu; = 0.45 fy Ac + 0.75 f, Ag ... (10.59)

Version 2 CE IIT, Kharagpur



Pux, Pwy = axial loads with respect to major and minor axes,
respectively, corresponding to the condition of maximum compressive strain of
0.0035 in concrete and tensile strain of 0.002 in outermost layer of tension steel.

It is seen from EQs.10.92 and 10.93 that the values of k (kax and kay) vary
linearly from zero (when P, = Py,) to one (when P, = Py,). Since Egs.10.92 and
10.93 are not applicable for P, < Py, another condition has been imposed as
given in Eq.10.94.

The above recommendations are given in cl.39.7.1.1 of IS 456.

The following discussion is very important for the design of slender
columns.

Additional moment method is one of the methods of designing slender
columns as discussed in A to D of this section. This method is recommended in
cl.39.7 of IS 456 also. The basic concept here is to enhance the primary
moments by adding the respective additional moments estimated in a simple way
avoiding laborious and involved calculations of second-order structural analysis.
However, these primary moments under eccentric loadings should not be less
than the moments corresponding to the respective minimum eccentricity, as
stipulated in the code. Hence, the primary moments in such cases are to be
replaced by the minimum eccentricity moments. Moreover, all slender columns,
including those under axial concentric loadings, are also to be designed for
biaxial bending, where the primary moments are zero. In such cases, the total
moment consisting of the additional moment multiplied with the modification
factor, if any, in each direction should be equal to or greater than the respective
moments under minimum eccentricity conditions. As mentioned earlier, the
minimum eccentricity consideration is given in cl.25.4 of IS 456.

10.27.8 lllustrative Example

The following illustrative example is taken up to explain the design of
slender columns. The example has been solved in step by step using (i) the
equations of Lessons 21 to 27 and (ii) employing design charts and tables of SP-
16, to compare the results.
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Fig. 10.27.18: Problem 1
Problem 1:

Determine the reinforcement required for a braced column against
sidesway with the following data: size of the column = 350 x 450 mm
(Fig.10.27.18); concrete and steel grades = M 30 and Fe 415, respectively;
effective lengths lex and ley = 7.0 and 6.0 m, respectively; unsupported length | = 8
m; factored load P, = 1700 kN; factored moments in the direction of larger
dimension = 70 kNm at top and 30 kNm at bottom; factored moments in the
direction of shorter dimension = 60 kNm at top and 30 kNm at bottom. The
column is bent in double curvature. Reinforcement will be distributed equally on
four sides.

Solution 1:
Step 1: Checking of slenderness ratios

lex/D = 7000/450 = 15.56 > 12,

ley/b = 6000/350 = 17.14 > 12.

Hence, the column is slender with respect to both the axes.

Step 2: Minimum eccentricities and moments due to minimum
eccentricities (Eq.10.3 of Lesson21)

exmin = 1/500 + D/30 = 8000/500 + 450/30 = 31.0 > 20 mm

eymin = 1/500 + b/30 = 8000/500 + 350/30 = 27.67 > 20 mm
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Mox (Min. ecc.) = Pu(exmin) = (1700) (31) (103 = 52.7 kNm
Moy (Min. ecc.) = Py(eymin) = (1700) (27.67) (10°) = 47.04 kNm
Step 3: Additional eccentricities and additional moments

Method 1: Using Eq. 10.84

eax = D(le/D)?/2000 = (450) (7000/450)%/2000 = 54.44 mm

b(lex/b)%/2000 = (350) (6000/350)%/2000 = 51.43 mm
Max = Pu(ea) = (1700) (54.44) (10°%) = 92.548 kNm
May = Py(ea) = (1700) (51.43) (10°%) = 87.43 kNm
Method 2: Table | of SP-16
For lex/D = 15.56, Table | of SP-16 gives:
eadD = 0.1214, which gives ea = (0.1214) (450) = 54.63 mm
For ley/D = 17.14, Table | of SP-16 gives:
ea/b = 0.14738, which gives ea = (0.14738) (350) = 51.583 mm

It is seen that values obtained from Table | of SP-16 are comparable with
those obtained by Eq. 10.84 in Method 1.

Step 4: Primary moments and primary eccentricities (Eqs.10.88 and 89)

Mox = 0.6M; —0.4M; = 0.6(70) — 0.4(30) = 30 kNm, which should be >
0.4 M, (=28 kNm). Hence, o.k.
Moy = 0.6M; —0.4M; = 0.6(60) — 0.4(30) = 24 kNm, which should be >

0.4 M; (= 24 kNm). Hence, o.k.
Primary eccentricities:

ex = Mo/Py = (30/1700) (10%) = 17.65 mm

ey = My/Py = (24/1700) (10° = 14.12 mm
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Since, both primary eccentricities are less than the respective minimum
eccentricities (see Step 2), the primary moments are revised to those of Step 2.
S0, Moy =52.7 kNm and Moy = 47.04 kNm.

Step 5: Modification factors

To determine the actual modification factors, the percentage of
longitudinal reinforcement should be known. So, either the percentage of
longitudinal reinforcement may be assumed or the modification factor may be
assumed which should be verified subsequently. So, we assume the modification
factors of 0.55 in both directions.
Step 6: Total factored moments

Mux = Mox + (Modification factor) (Max)

52.7 + (0.55) (92.548)

52.7 +50.9 = 103.6 kNm

My = Moy + (Modification factor) (May) = 47.04 + (0.55) (87.43)

47.04 + 48.09 = 95.13 kNm
Step 7: Trial section (Eq.10.61 of Lesson 26)

The trial section is determined from the design of uniaxial bending with P,
= 1700 kN and My = 1.15 (M2 +M2)"?. So, we have M, = (1.15){(103.6)" +

(95.13)%¥? = 161.75 kNm. With these values of P, (= 1700 kN) and M, (= 161.75
kNm), we use chart of SP-16 for the d'/D = 0.134. We assume the diameters of
longitudinal bar as 25 mm, diameter of lateral tie = 8 mm and cover = 40 mm, to
get d' =40+ 8 + 12.5 = 60.5 mm. Accordingly, d'/D = 60.5/450 = 0.134 and
d'/b =60.5/350 = 0.173. We have:

Pu/fa bD = 1700(10%)/(30)(350)(450) = 0.3598
Mu/foc bD? = 161.75(10%)/(30)(350)(450)(450) = 0.076

We have to interpolate the values of p/fec for d’'/D = 0.134 obtained from
Charts 44 (for d'/D = 0.1) and 45 (d'/D = 0.15). The values of p/f are 0.05
and 0.06 from Charts 44 and 45, respectively. The corresponding values of p are
1.5 and 1.8 per cent, respectively. The interpolated value of p for d'/D = 0.134
is 1.704 per cent, which gives Asc = (1.704)(350)(450)/100 = 2683.8 mm?*. We
use 4-25 + 4-20 (1963 + 1256 = 3219 mm?), to have p provided = 2.044 per cent
giving p/fe = 0.068.

Step 8: Calculation of balanced loads Py,
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The values of Py and Pyy are determined using Table 60 of SP-16. For
this purpose, two parameters k; and k, are to be determined first from the table.
We have p/fex = 0.068, d'/D = 0.134 and d'/b = 0.173. From Table 60, k; =
0.19952 and k, = 0.243 (interpolated for d'/D = 0.134) for Pyy. So, we have:
Pox/febD = k1 + Kz (p/fek) = 0.19952 + 0.243(0.068) = 0.216044, which gives Py, =
0.216044(30)(350)(450)(10%) = 1020.81 kN.

Similarly, for Ppy: d'/b =0.173, p/fec = 0.068. From Table 60 of SP-16, ki
=0.19048 and k, = 0.1225 (interpolated for d’/b = 0.173). This gives Py /fcebD =
0.19048 + 0.1225(0.068) =  0.19881, which gives Py =
(0.19881)(30)(350)(450)(10°%) = 939.38 kN.

Since, the values of Py and Pyy are less than P, the modification factors
are to be used.

Step 9: Determination of Py,

Method 1: From EQ.10.59 of Lesson 26

Puz 0.45 fck Ag + (0.75 fy - 0.45 fck) ASC

0.45(30)(350)(450) + {0.75(415) — 0.45(30)}(3219) = 3084.71 kN
Method 2: Using Chart 63 of SP-16

We get P /Aq = 19.4 N/mm? from Chart 63 of SP-16 using p = 2.044 per
cent. Therefore, Py, = (19.4)(350)(450)(10%) = 3055.5 kN, which is in good
agreement with that of Method 1.
Step 10: Determination of modification factors
Method 1: From EQs.10.92 and 10.93

Kax = (Puz = Pu)/(Puz — Pubx) ... (10.92)
or kax = (3084.71 — 1700)/(3084.71 — 1020.81) = 0.671 and

Kay = (Puz — Pu)/(Puz — Puby) ... (10.93)
or ks = (3084.71—1700)/(3084.71 — 939.39) = 0.645

The values of the two modification factors are different from the assumed

value of 0.55 in Step 5. However, the moments are changed and the section is
checked for safety.
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Method 2: From Chart 65 of SP-16

From Chart 65 of SP-16, for the two parameters, Pu/Py; =
1020.81/3084.71 = 0.331 and P,/P,; = 1700/3084.71 = 0.551, we get kax = 0.66.
Similarly, for the two parameters, Ppy/P,, = 939.38/3084.71 = 0.3045 and P/Py; =
0.551, we have kay = 0.65. Values of kax and kay are comparable with those of
Method 1.

Step 11: Total moments incorporating modification factors

Mux = Moy (from Step 4) + (Kax) Max (from Step 3)

52.7 + 0.671(92.548) = 114.8 kNm

Muy = Mgy (from Step 4) + Kay (May) (from Step 3)
= 47.04 + (0.645)(87.43) = 103.43 kKNm.

Step 12: Uniaxial moment capacities

The two uniaxial moment capacities Mya and My, are determined as
stated: (i) For Myx1, by interpolating the values obtained from Charts 44 and 45,
knowing the values of P /f.bD = 0.3598 (see Step 7), p/fe = 0.068 (see Step 7),
d'/D =0.134 (see Step 7), (ii) for Myy1, by interpolating the values obtained from
Charts 45 and 46, knowing the same values of Py /f.bD and p/fcx as those of (i)
and d'/D =0.173 (see Step 7). The results are given below:
(i) Mua/fabD? = 0.0882 (interpolated between 0.095 and 0.085)
(i) Muyl/fckbb2 = 0.0827 (interpolated between 0.085 and 0.08)
So, we have, My = 187.54 kNm and Myy1 = 136.76 KNm.

Step 13: Value of «,

Method 1: From Eq.10.60 of Lesson 26

We have P, /P,; = 1700/3084.71 = 0.5511. From EQ.10.60 of Lesson 26,
we have «, =0.67 + 1.67 (Pu/Pyz) = 1.59.

Method 2: Interpolating the values between (Py/Py;) = 0.2 and 0.6

The interpolated value of «, = 1.0 + (0.5511 — 0.2)/0.6 = 1.5852. Both the
values are comparable. We use «, = 1.5852.

Version 2 CE IIT, Kharagpur



Step 14: Checking of column for safety
Method 1: From EQ.10.58 of Lesson 26

We have in Lesson 26:

My /My)™ +(My, IM)™ <1 ... (10.58)

Here, putting the values of My, Mua, My, My and ¢«,, we get:

(114.8/187.54)1°%2 + (103.43/136.76)>°%%2 = 0.4593 + 0.6422 = 1.1015. Hence,
the section or the reinforcement has to be revised.

Method 2: Chart 64 of SP-16

The point having the values of (Mx/Mux) = 114.8/187.54 = 0.612 and
(Myy/Myy1) = 103.43/136.76 = 0.756 gives the value of P,/P, more than 0.7. The
value of Py /Py, here is 0.5511 (see Step 13). So, the section needs revision.

We revise from Step 7 by providing 8-25 mm diameter bars (= 3927 mm?,
p = 2.493 per cent and p/fex = 0.0831) as the longitudinal reinforcement keeping
the values of b and D unchanged. The revised section is checked furnishing the
repeated calculations from Step 8 onwards. The letter R is used before the
number of step to indicate this step as revised one.

Step R8: Calculation of balanced loads Py,

Table 60 of SP-16 gives k; = 0.19952, and k., = 0.243. We have p/fc
0.0831 now. So, Ppx = {0.19952 + (0.243)(0.0831)} (30)(350)(450)(10°3)
1038.145 kN. Similarly, k; = 0.19048, k, = 0.1225 and p/fex = 0.0831 give Ppy
{0.19048 + (0.1225)(0.0831)} (30)(350)(450)(10°) = 948.12 kN.

The values of Py and Pyy are less than Py (= 1700 kN). So, modification
factors are to be incorporated.

Step R9: Determination of Py; (Eg. 10.59 of Lesson 26)
Puz = 0.45(30)(350)(450) + {0.75(415) — 0.45(30)}(3927) = 3295.514 kN.
Step R10: Determination of modification factors (Egqs.10.92 and 10.93)
kax = (3295.514 — 1700)/(3295.514 — 1038.145) = 0.707
kay = (3295.514 — 1700)/(3295.514 — 948.12) = 0.68

Step R11: Total moments incorporating modification factors
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My = 52.70 + 0.707(92.548) = 118.13 kNm

My = 47.04 +0.68(87.43) = 106.49 kNm
Step R12: Uniaxial moment capacities

Using Charts 44 and 45 for My, and Charts 45 and 46 for M1, we get (i)
the coefficient 0.1032 (interpolating 0.11 and 0.10) and (ii) the coefficient 0.0954
(interpolating 0.1 and 0.09) for Myx1 and Myy1, respectively.

Mua = (0.1032)(30)(350)(450)(450)(10°) = 219.429 kNm

My1 = (0.0954)(30)(450)(350)(350)(10°) = 157.77 kNm

Step R13: Value of «, (Eq.10.60 of Lesson 26)

Pu/Py; = 1700/3295.514 = 0.5158 which gives

a, = 1+(0.5158 -0.2)/0.6 = 1.5263

Step R14: Checking of column for safety (Eq.10.58 of Lesson 26)

(118.13/219.424)*%%%3 + (106.49/157.77)*°%%* = 0.3886 + 0.5488 =
0.9374<1.0

Hence, the revised reinforcement is safe. The section is shown in
Fig.10.27.18.

10.27.9 Practice Questions and Problems with Answers

Q.1: Define a slender column. Give three reasons for its increasing importance
and popularity.

A.1l: See sec. 10.27.1.

Q.2: Explain the behaviour of a slender column subjected to concentric loading.
Explain Euler’s load.

A.2: See sec.10.27.3.
Q.3: Choose the correct answer.
(A) As the slenderness ratio increases, the strength of concentrically

loaded column:
(i) increases (i) decreases
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(B) For braced columns, the effective length is between
(i) l'and 2I (ii) 0.5l and 2I (iii) 0.5l and |
(C) The critical load of a braced frame is
() always larger than that of an unbraced column
(i) always smaller than that of an unbraced column

(iif) sometimes larger and sometimes smaller than that of an unbraced
column

A3 A. (i), B. (i), C.()

Q.4: Explain the behaviour of slender columns under axial load and uniaxial
bending, bent in single curvature.

A.4: Part (A) of sec. 10.27.3.

Q.5: Explain the behaviour of slender columns under axial load and uniaxial
bending, bent in double curvature.

A.5: Part (B) of sec. 10.27.3.

Q.6: Explain the behaviour of columns in portal frame both braced and
unbraced.

A.6: Part (C) of sec. 10.27.3.
8T @ 250 (alternate) 8-25T(=3927 mm*)

300
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Fig. 10.27.19: Q.7
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Q.7: Check the column of Fig.10.27.19, if subjected to an axial factored load of
Py = 1500 kN only when the unsupported length of the column =1= 8.0 m,
lex = ley = 6.0 m, D = 400 mm, b = 300 mm, using concrete of M 20 and
steel grade in Fe 415.

A.7: Solution:

Step 1. Slenderness ratios
Lex/D = 6000/400 = 15 > 12
Ley/b = 6000/300 = 20 > 12

The column is slender about both the axes.

Step 2: Minimum eccentricities and moments due to minimum
eccentricities (Eq.10.3 of Lesson 21)

exmin = 1/500 + D/30 = 8000/500 + 400/30 = 29.33 mm > 20 mm

eymin = 8000/500 + 300/30 = 26 mm > 20 mm

My due to min. ecc. = Py (éxmin) = 1500(29.33) = 43.995 kNm

My due to min. ecc. = Py (éymin) = 1500(26.0) = 39.0 kKNm
Step 3: Primary moments

Since the column is concentrically loaded, the primary moments are zero.
Therefore, the additional moments must be greater than the respective moments
due to minimum eccentricity.
Step 4: Additional eccentricities and moments (Eq.10.84)

eax = D(lex/D)?/2000 = 400(6000/400)%/2000 = 45 mm > eymin (= 29.23
mm)

€ay = b(ley/b)?/2000 = 300(6000/300)%/2000 = 60 mm > €y, min (= 26
mm)

Step 5: Calculation of balance loads Pyyx and Pyy

Given Asc = 3927 mm? (8 bars of 25 mm diameter give p = 3.2725 per
cent. So, pl/f = 0.1636. Using 8 mm diameter lateral tie, d" =40 + 8 + 12.5 =
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60.5 mm giving d'/D = 60.5/400 = 0.15125 = 0.15 and d’/b = 60.5/300 = 0.2017
= 0.20.

From Table 60 of SP-16, we get k; = 0.196 and k, = 0.061. Thus, we
have:

Pox = {0.196 + (0.061)(0.1636)}(20)(300)(400)(10°%) = 494.35 kN
Similarly, for Ppy: k1 = 0.184 and k; = -0.011, we get
Py, = {0.184 - (0.011)(0.1636)}(20)(300)(400)(10°) = 437.281 kN

Since, Ppx and Pyy are less than P, (= 1500 kN), modification factors are to
be incorporated.

Step 6: Determination of Py, (Eq.10.59 of Lesson 26)

Pu: = 0.45(20)(300)(400) + {0.75(415) — 0.45(20)}(3927)(10°) = 2266.94
kN

Step 7: Determination of modification factors
Kax = (2266.94 — 1500)/(2266.94 — 494.35) = 0.433 and
Kay = (2266.94 — 1500)/(2266.94 — 437.281) = 0.419

Step 8: Additional moments and total moments

Max 29.2275 KNm

1500(0.433)(45)

37.71 kNm

1500(0.419)(60)

May

Since, primary moments are zero as the column is concentrically loaded,
the total moment shall consist of the additional moments. But, as both the
additional moments are less than the respective moment due to minimum
eccentricity, the revised additional moments are: Max = 43.995 kNm and My =
39.0 kNm, which are the total moments also.

Thus, we have:

Mux = 43.995 kNm, My = 39.0 kNm and P, = 1500 kN.

Step 9: Uniaxial moment capacities

Version 2 CE IIT, Kharagpur



We have, P/fe bD = {1500/(20)(300)(400)}(1000) = 0.625, p/fe = 0.1636
and d'/D = 0.15 for Myx; and d'/b = 0.2 for Myy:. The coefficients are 0.11 (from
Chart 45) and 0.1 (from Chart 46) for Myx: and Myy1, respectively. So, we get,

Mua = 0.11(20)(300)(400)(400)(10°) = 225.28 kNm, and

My: = 0.1(20)(300)(300)(400)(10°) = 72.0 kNm

Step 10: Value of «, (Eq.10.60 of Lesson 26)

Here, Py/Py; = 1500/2266.94 = 0.6617. So, we get

a, =1.0+(0.4617/0.6) = 1.7695
Step 11: Checking the column for safety (Eq.10.58 of Lesson 26)
My /M) +(M, M )" <1

Here, (43.995/225.28)%7%% + (39.0/72.0)%"*® = 0.0556 + 0.3379 =
0.3935 < 1

Hence, the column is safe to carry P, = 1500 kN.
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11.27.11 Test 27 with Solutions

Maximum Marks = 50, Maximum Time = 30 minutes

Answer all questions.
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Fig. 10.27.20: TQ.1

d' = 60 5> D = 500
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TQ.1: Determine the primary, additional and total moments of the column shown
in Fig.10.27.20 for the three different cases:

() When the column is braced against sidesway and is bent in single
curvature.

(i) When the column is braced against sidesway and is bent in double
curvature.

(i) When the column is unbraced.

Use the following data: P, = 2000 kN, concrete grade = M 20, steel grade
= Fe 415, unsupported length | = 8.0 m, lex = 7.0 m, ley = 6.0 m, As = 6381 mm?
(12-25 mm diameter bars), lateral tie = 8 mm diameter @ 250 mm c/c, d’ = 60.5
mm, D = 500 mm and b = 400 mm. The factored moments are: 70 kNm at top
and 40 kNm at bottom in the direction of larger dimension and 60 kNm at top and
30 kNm at bottom in the direction of shorter dimension.
A.TQ.1: Solution

The following are the common steps for all three cases.
Step 1. Slenderness ratios

lex/D = 7000/500 = 14 > 12 and ls,/b = 6000/400 = 15 > 12

The column is slender about both axes.

Step 2: Minimum eccentricities and moments due to minimum
eccentricities (Eq.10.3 of Lesson 21)

exmin = 1/500 + D/30 = 8000/500 + 500/30 = 32.67 mm > 20 mm, and

eymin = /500 + b/30 = 8000/500 + 400/30 = 29.34 mm > 20 mm

My (min. ecc.) = 2000(32.67)(10°) = 65.34 kNm, and

M, (min. ecc.) = 2000(29.34)(10°) = 58.68 kNm

Step 3: Additional eccentricities and moments due to additional
eccentricities (£Eq.10.84)

eax = D(lex/D)?/2000 = 500(7000/500)%/2000 = 49 mm > ey min (= 32.67
mm)
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€ay = b(le,/b)’/2000 = 400(6000/400)*/2000 = 45 mm > ey min (= 29.34
mm)

Max = Pu(€a) = (2000)(49)(10°%) = 98 kNm, and

May = Pu(eay) = (2000)(45)(10°) = 90 kNm

Step 4: Calculation of balanced loads

Using d'/D = 0.121 and p/fe = 3.1905/20 = 0.159525 in Table 60 of SP-
16, we have k; = 0.20238 and k, = 0.2755 (by linear interpolation). This gives

Pex = {0.20238 + 0.2755(0.159525)}(20)(400)(500)(10%) = 983.32 kN

Similarly, d'/b = 0.15125 and p/f, = 0.159525 in Table 60 of SP-16 gives
ki = 0.1957 and k, = 0.198625 (by linear interpolation). So, we get

P, = {0.1957 + 0.198625(0.159525)}(20)(400)(500)(10%) = 909.54 kN

Both Ppx and Py, are smaller than P, (= 2000 kN). Hence, modification
factors are to be incorporated.

Step 5: Calculation of Py, (Eq.10.59 of Lesson 26)
Puz = 0.45 fck Ag + (0.75 fy - 0.45 fck) ASC
= 0.45(20)(400)(500) + {0.75(415) — 0.45(20)}(6381) = 3728.66 kN

Step 6: Modification factors and revised additional moments (Eqs.10.92
and 10.93)

Kax = (3728.66 - 2000)/(3728.66 — 983.32)

0.6297, and

Kay = (3728.66 - 2000)/(3728.66 — 909.54) = 0.6132

The revised additional moments are:

Max = 98(0.6297) = 61.71 kNm, and

May

90(0.6132) = 55.19 kNm
Now, the different cases are explained.

Case (i): Braced column in single curvature
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Primary moments = 0.4 M; + 0.6 M, but should be equal to or greater
than 0.4 M, and moment due to minimum eccentricities. So, we get,

MOX

largest of 58 kNm, 28 kNm and 65.34 KNm = 65.34 kNm

Moy

largest of 48 kNm, 24 kNm and 58.68 kNm = 58.68 kNm

Additional moments are My = 61.71 kKNm and M, = 55.19 kNm
(incorporating the respective modification factors).

Total moments = Myx = Mox + Max = 65.34 + 61.71 = 127.05 KkNm >
65.34 kKNm (moment due to minimum eccentricity), and

My = Mgy + Mgy = 58.68 + 55.19 = 113.87 KNm > 58.68 kNm (moment
due to minimum eccentricity).

Case (ii): Braced column in double curvature

Primary moments = - 0.4 M; + 0.6 My, but should be equal to or greater
than 0.4M, and the moment due to minimum eccentricity. So, we get,

MOX

largest of 26 kNm, 28 kNm and 65.34 KNm = 65.34 kNm

Moy = largest of 24 kNm, 24 kNm and 58.68 kNm = 58.68 kNm
Additional moments are Max = 61.71 KNm and My, = 55.19 kNm

Final moments = Myx = Mo + Max = 65.34 + 61.71 = 127.05 kNm >
65.34 kKNm (moment due to minimum eccentricity), and

My = 58.68 + 55.19 = 113.87 KNm > 58.68 kKNm (moment due to
minimum eccentricity).

Case (iii): Unbraced column

Primary moments = M, and should be greater than or equal to moment
due to minimum eccentricity.

Mox = 70 kNm > 65.34 kNm (moment due to minimum eccentricity), and
Moy = 60 KNm > 58.68 KNm (moment due to minimum eccentricity).
Additional moments are May = 61.71 KNm and May = 55.19 KNm

Final moments = My = Mo + Moy = 70.0 + 61.71 = 131.71 kNm >
65.34 KNm (moment due to minimum eccentricity), and
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My = Mgy + Max = 60.0 +55.19 = 115.19 kNm > 58.68 KNm (moment
due to minimum eccentricity).

10.27.12 Summary of this Lesson

This lesson mentions the reasons of increasing importance and popularity
of slender columns and explains the behaviour of slender columns loaded
concentrically or eccentrically. The role of minimum eccentricity that cannot be
avoided in any practical column is explained for slender columns. The moments
due to minimum eccentricities in both directions should be taken into account for
a slender column loaded concentrically as it should be designed under biaxial
bending. On the other hand, the given primary moments are also to be checked
so that they are equal to or greater than the respective moments due to minimum
eccentricity for all slender columns.

Both braced and unbraced columns, bent in single or double curvatures,
are explained. The importance of modification factors of the additional moments
due to P-A effect is explained. Effective lengths and important parameter to
determine the slenderness ratios are illustrated for different types of support
conditions either in single column or when the column is a part of rigid frames.
Additional moment method, a simple method for the design of slender columns,
is explained, which is recommended in IS 456. Numerical problems in illustrative
example, practice problem and test questions will help in understanding and
applying the method for the design of slender columns, as stipulated in 1S 456.
Direct computations from the given equations as well as use of design charts and
tables of SP-16 are illustrated for the design.
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A beam is generally supported on a hinge at one end and a roller beaning at the other end. The reactions
are determined by using static equilibrium equations. Such as beam is a statically determinate structure.
If the ends of the beam are restrmined/clamped/encastre/fixed then the moments are included at the
ends by these resirmnts and this moments make the structural clement 1o be a statically indeterminate
structure or a redundant structure, These restraints make the slopes at the ends zero and hence in a fixed
beam, the deflection and slopes are zero at the supports.

A continuous beam is one having more than one span and it i1s carned by several supports (minimum
of three supports). Continuous beams are widely used in brndge construction. Consider a three bay of a
building which carries the loads Wy, W and W in two ways.

LW L. I,
t ft i t

FIG. 11a Simply supported beam

ZAVAN

FIG. 11b Bendmg moment diagrams




FIG. 11¢ Continuous beam

BN

FIG. 11d Bending moment diagram

If the load 1s carned by the first case then the reactions of individual beams can be obtained by
equilibrium equations alone. The beam deflects i the respective span and does not depend on the
influence of adjacent spans.

In the second case, the equlibnum equations alonc would not be sufficient to determine the end
moments. The slope at an intenor support B must be same on cither side of the support. The magnitude
of the slope can be influenced by not only the load on the spans erther side of it but the entire loads on
the span of the continuous beam. The redundants could be the reactions or the bending moments
over the support. Clapeyron (1857) obtamned the compatibility equation 1 term of the end slopes
of the adjacent spans. This equation is called theorem of three moments which contain three of the

unknowns. It gives the relationship between the loading and the moments over three adjacent supports
at the same level

111 DERIVATION OF CLAPEYRON'S THEOREM (THEOREM
OF THREE MOMENTS)

Figure | le shows two adjacent spans A8 and BC of a continuous beam with two spans. The settlement
of the supports are Ay, Ay and A and the deflected shape of the beam 1s shown m A'B'C’ (Fig. 111).

7+ 1+ 1




The primary structure is consisting of samply supported beams with imaginery hinges over cach
support (Fig 11g). Fig 11h shows the simply beam bending moment diagrams and Fig 111 shows the
support moment diagram for the supports.

A compatibility equation is derived based on the fact that the end slopes of adjacent spans are equal
in magnitude but opposite in sign. Using Fig 11f and the property similar tnangles

GD _ HF

DB" B'F

Ap—A4+8] Ac—Ag+

Iy I
. B B A-As Ac—As _
L. F-I—r_— fl -— f: {I}

The displacements are obtamned as follows.

< 1 1 _.
3 = ET {A.:, oM, g-3+2u q-zua} (ii)

| — i3 L1

Combining the equations (1) and (11)

Ml 1“.!( iy L)-—’J.: Iy ﬁ{ Arx 4 J"zf*_l}

Efy Edy .E.'vh Eu"w Eily  Exhl

zﬁ{a._.—erm-—aa}
T I

{11)

The above equation is called as Clapeyron’s equation of three moments.
In a simplificd form of an uniform beam section (E/ = constant); when there are no settlement of

supports

My +2My(l + b) + Ml = -f.('-*-}-’l T“*T{-) (iv)
[ -

It is to be mentioned here that x; and x; are measured outwards in each span from the loads to the ends.

11.1.1  Procedure for Analysing the Continuous Beams using Theorem of Three
Moments

(1) Draw simple beam moment diagram for cach span of the beam. Compute the area of the above
diagrams viz, 4|, 4;...4, and locate the centroid of such diagrams r;.x;...x,. It must be re-
membered that the distances x;, 13...x, arc the centrosdal distances measured towards the ends
of each span as shown i Fig. 11).



e ——
FIG. 11j Simple beam moment diagams

(2) ldentify the support moments which are to be determined viz, M My and M-

(3) Apply three moment equation for each pair of spans which results in an equation or equations
which are to be solved simultancously. If the beam 1s of uniform section (EJ = constant) and
no support scttlements apply equation (1v) and in case the beam 1s non-uniform and the support
scitles/raises apply equation (m).

(4) The solution of the equations gives the values of the support moments and the bending moment
diagram can be drawn.

(5) The reactions at the supports and the shear force diagram can be obtained by using equilibrium
equations.

11.2 APPLICATION OF THREE MOMENT EQUATION IN CASE OF BEAMS
WHEN ONE OR BOTH OF THE ENDS ARE FIXED

11.21 Propped Cantilever Beam

Consider the propped cantilever beam of span A8, which s fixed at A and supported on a propat 8. It
15 subjected to uniformly distributed load over the entire span. The fixed end moment at the support A4
can be determined by using theorem of three moments.

t ' >

A zero span A B
FIG. 11k Propped cantilever beam
As the A is fixed support. extend the beam form A to A" of span “zero length” and A" 1s simply
supported.

(1) The simple beam moment diagram is a parabola with a central ordinate of (wi®/8), The centroid
of this bending moment diagram (symmetnical parabola) 1s at a distance “/ /2" from the supports
A and B.
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{2} The support moment diagram is drawn as

.u,r -

]
FIG. 11m Purc moment diagram

A : 2 wi® wi?
Wsarcais 4 = ( ){J‘} (T) -

(3) Apply three moment theorem for the span A8.
g
M(0)+2M (041} +0=-6 (%) (%)

iV H,.q = —H'fzfﬂ
(4) The support reactions arc computed by drawing the free body diagram as

wi*/8 wim
N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ¥ ¥
G 1 ?
V FI

4

FIG. 11n Free body diagram

Y= Vy+Vg=wl
—wl® wi?
M,=0; ——¥al =0
E A M g 3 5
and hence
3wl
g = —
s
" _511'!
=g

(5) Using the reactions, the shear force diagram and bending moment diagrams are obtained as

Iwd
. B
' Iwd

A (3

FIG. 110 Shear force diagram



The point of contraflexure is determined by equating the bending moment expression to zero and
hence

SH'."I_ e i wi® a0
8 2 8
Fid4r —5lx=0

Solving the above equation we get x = [ and

x= 0251

The location of maximum positive bending moment from support 4 is obtained by equating the
shear force to zero.

Swi
—:-—HEI’=|]
51
X=—
8

At this location, the maximum positive bending moment is obtamed from
—wi® (5wl /51 wi{51/8)

wi® 25wl 25w 9wl
8 o4 128 128

= 0.07wil*

Me=—

FIG. 11p Bending moment diagram

11.2.2 Beams with Both the Ends Fixed
Consider a beam AR of span [ 1s fixed at both the ends. The beam s carrying a concentrated load of W
at a distance of *{ /3" from the hixed end A.

As the end A is a fixed support, extend this 4 to 4" of span (I') of zero length and is also simply
supported at A", Likewise the end 8 is extended to B’

The simply supported bending moment diagram is drawn with the maximum ordinate as
Wx (1/3) x (2/3) W19

The centroid of the unsymmetrical trniangle 1s shown in Fig. 11.3).
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FIG. 11q Fixcd beam
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FIG. 11r Simple beam moment dingram
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FiG. 118 Centroid of an unsymmetrical tnangle

The centroid of the simply supported BMD 15 obtained using the above as (g) from A4 and (%)

from B.

, . o £ 2 WE
The area of the bending moment diagram 1s (i) (1) ( )

9 ) 9
The support moment diagram can be drawn by dentifying the support moments as M, and M.
Thus

M, = M,

f
FIG. 11t Purc moment diagram

Applying three moment theorem for a pair of spans of A’ 4B {Ref Eq (1v))

M 0) +2M, (04 1)+ Mg (1) =0—6 ("%:-) (5?;) « 1/1

M, My = —0.3T Wi



Considering the next pair of spans ABE

Ml + 2My (1 +0) + M) = ,ﬁ(g) (g)

My+2My = —0.29 W/
Thus the support moments are obtained by solving the above equations

M, = —0.148 W]
My = —0.074 W/

Free body diagram to determine the reactions

n.lg Wi i3 1“’ 2113 ﬂ.l‘.'Sdl Wi
f ¢ /
v, .
FIG. 11u

Using the static equilibrium;
ZI-'=D: a+Vg=W

YMi=0:  —0148WI+W (%) —Val +0.074 W =0
Vs = 0.26W
" = 0.74W
0.74 W *
- 0.26 W

FIG. 11v Shearforce diagram

00986 W

—0.148 W -0.074 Wi

FIG. 11w Bending moment diagram



Curved Beams

Derivation of stress equations






Centroidal Axis

/ Neutral AXis —— |

dA

Note that y is measured
positive inward from the
neutral axis.




CURVED MEMBERS IN FLEXURE

The distribution of stress in a curved flexural member is determined by using the following
assumptions.

1 The cross section has an axis of symmetry in a plane along the length of the beam.
2 Plane cross sections remain plane after bending.
3 The modulus of elasticity is the same in tension as in compression.

It will be found that the neutral axis and the centroidal axis of a curved beam, unlike a straight beam,
are not coincident and also that the stress does not vary linearly from the neutral axis. The notation
shown in the above figures is defined as follows:

radius of outer fiber
radius of inner fiber

q
o
1

=
1

h = depth of section

C, = distance from neutral axis to outer fiber

C, = distance from neutral axis to inner fiber

r = radius of neutral axis

r = radius of centroidal axis

e= distance from centroidal axis to neutral axis

To begin, we define the element abcd by the angle ¢@. A bending moment M causes section bc to
rotate through d@to b’c’. The strain on any fiber at distance p from the center O is

_ad_(r-p)dg

| PP




The normal stress corresponding to this strain is

o= s = El=p)dg @
Py

Since there are no axial external forces acting on the beam, the sum of the normal
forces acting on the section must be zero. Therefore

jadA:Ed¢j(r_p)dA:o @
@ P
Now arrange Eq. (2) in the form
Edqa(r dA—J'dAj:O (3)
@ P
and solve the expression in parentheses. This gives
A
r d_A_A:O or r:—dA (4)
P hadh
P

This important equation is used to find the location of the neutral axis with respect to
the center of curvature O of the cross section. The equation indicates that the neutral
and the centroidal axes are not coincident.



Our next problem is to determine the stress distribution. We do this by balancing the
external applied moment against the internal resisting moment. Thus, from Eq. (2),

_do(r-p)dA_ (5)
r-p)\cdA)=E =M
J (= p)oua)=E" [ =
Since (r - ,0)2 =r°- 200 + ,02, Eqg. (5) can be written in the form
M = E(]|—¢(r2 %—rjdA—rjdA+jpdAj (6)
@ P

Note that r is a constant; then compare the first two terms in parentheses with Eq.
(4). These terms vanish, and we have left

M = E%(—rjdmjpdA)
@
The first integral in this expression is the area A, and the second is the product rA.
Therefore

M = E%(T— r)A= £9% o
@ @

Now, using Eqg. (1) once more, and rearranging, we finally obtain o = &
Ae(r - y)



This equation shows that the stress distribution is hyperbolic. The algebraic maximum
stresses occur at the inner and outer fibers and are

Mc Mc
g =—2" g. = 0 (7)
" Aer ° A

I (0]

The sign convention used is that M is positive if it acts to straighten on the beam. The
distance y is positive inwards to the center of curvature and is measured from the
neutral axis. It follows that c; is positive and c, is negative.

These equations are valid for pure bending. In the usual and more general case such
as a crane hook, the U frame of a press, or the frame of a clamp, the bending moment
is due to forces acting to one side of the cross section under consideration. In this case
the bending moment is computed about the centroidal axis, not the neutral axis. Also,
an additional axial tensile (P/A) or compressive (-P/A) stress must be added to the
bending stress given by Eq. (7) to obtain the resultant stress acting on the section.

Formulas for Some Common Sections

Sections most frequently encountered in the stress analysis of curved beams are shown

below.



t e .-"'.-_r-'."? ' __.-:'ﬂ__"" o
, 7 f i f’/ﬁ For the rectangular section shown in (a),
h e w;_—{r—; A 7 Z . the formulae are
| VT W h h
i | ¥ PopeZd . r F=r+— and  r=———
I —b; — | | 2 In(r, /)
R, el - 1t : L
(a) (b) For the trapezoidal section in (b), the
formulae are
+
e ror 4102,
s +
| ; -.-' "__'-'_?";,.-:,i: . '_"E“T —
Vgt o | r=
N7 /A b,-h +{(br, = b,r;)/h{In(r, /1)
b — | |
=S — X
{c)
For the T section in we have The equations for the solid round section
of Fig. (d) are
2 2
r=r + hcl + 2bOC1C2 + boCZ = d
2(boCZ + hCl) 2
2
hcl + boCZ d

T +6)/n] b, Il 1 + )



§ 36.21. DOMES

A dome consists of 0 shell which is generated by the |
ical curve about an axis. If a segment of nt;tcrlfv::T:;:h:
sbaut the vertical diameter, we get n spherical dome. A copical u-tr.-rn:;:
ebtained by revolving a triangle round a central pivor. Domes are brovided
te roof large circular arens. They are commonly used over temples
and mosques. They are also provided to roof Gt tn:rg:ul
circtilar suditoriums. Though domes can cover lurge areas, th oY naed
relatively very small thickness. [n most cases the thickness e Al
75 mm to 150 mm. From this point of view domes are economical. But
econamy may be offset by the costly curved shattering required. Domes
are most efficient structurally since they are subjected to compressive
stresses only. Domes provided for water tanks have a rise equal to 1/4 to

1/6 of the span.

Stresses in a spherical dome. Two types of stresses nro caused in u dome slab. They are:

@}  Meridional thrust, (ii) Hoop stress,
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Provide 10 mm ¢ vertical bars @ 160 mm ¢/c near each face. These vertaci  ba
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Base slab. The base slab will be 250 mm thick with a top mesh and & bot

at 200 mm centres
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