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Instructional Objectives: 
 

At the end of this lesson, the student should be able to: 
 

• explain the two major and other requirements of the design of foundation, 
 
• identify five points indicating the differences between the design of 

foundation and the design of other elements of the superstructure, 
 

• differentiate between footing and foundation, 
 

• differentiate between shallow and deep foundations, 
 

• identify the situations when a combined footing shall be used, 
 

• explain the safe bearing capacity of soil mentioning the difference 
between gross and net safe bearing capacities, 

 
• determine the minimum depth of foundation, 

 
• determine the critical sections of bending moment and shear in isolated 

footings, 
 

• draw the distributions of pressure of soil below the footing for concentric 
and eccentric loads with e ≤  L/6 and e > L/6, 

 
• determine the soil pressure in a foundation which is unsymmetrical. 

 
 
 

11.28.1   Introduction 
 

Till now we discussed the different structural elements viz. beams, slabs, 
staircases and columns, which are placed above the ground level and are known 
as superstructure. The superstructure is placed on the top of the foundation 
structure, designated as substructure as they are placed below the ground level. 
The elements of the superstructure transfer the loads and moments to its 
adjacent element below it and finally all loads and moments come to the 
foundation structure, which in turn, transfers them to the underlying soil or rock. 
Thus, the foundation structure effectively supports the superstructure. However, 
all types of soil get compressed significantly and cause the structure to settle. 
Accordingly, the major requirements of the design of foundation structures are 
the two as given below (see cl.34.1 of IS 456): 
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 1. Foundation structures should be able to sustain the applied loads, 
moments, forces and induced reactions without exceeding the safe bearing 
capacity of the soil. 
 
 2. The settlement of the structure should be as uniform as possible and it 
should be within the tolerable limits. It is well known from the structural analysis 
that differential settlement of supports causes additional moments in statically 
indeterminate structures. Therefore, avoiding the differential settlement is 
considered as more important than maintaining uniform overall settlement of the 
structure. 
 
 In addition to the two major requirements mentioned above, the foundation 
structure should provide adequate safety for maintaining the stability of structure 
due to either overturning and/or sliding (see cl.20 of IS 456). It is to be noted that 
this part of the structure is constructed at the first stage before other components 
(columns / beams etc.) are taken up. So, in a project, foundation design and 
details are completed before designs of other components are undertaken.  
 
 However, it is worth mentioning that the design of foundation structures is 
somewhat different from the design of other elements of superstructure due to 
the reasons given below. Therefore, foundation structures need special attention 
of the designers. 
 
 1. Foundation structures undergo soil-structure interaction. Therefore, the 
behaviour of foundation structures depends on the properties of structural 
materials and soil. Determination of properties of soil of different types itself is a 
specialized topic of geotechnical engineering. Understanding the interacting 
behaviour is also difficult. Hence, the different assumptions and simplifications 
adopted for the design need scrutiny. In fact, for the design of foundations of 
important structures and for difficult soil conditions, geotechnical experts should 
be consulted for the proper soil investigation to determine the properties of soil, 
strata wise and its settlement criteria.  
 
 2. Accurate estimations of all types of loads, moments and forces are 
needed for the present as well as for future expansion, if applicable. It is very 
important as the foundation structure, once completed, is difficult to strengthen in 
future. 
 
 3. Foundation structures, though remain underground involving very little 
architectural aesthetics, have to be housed within the property line which may 
cause additional forces and moments due to the eccentricity of foundation. 
 
 4. Foundation structures are in direct contact with the soil and may be 
affected due to harmful chemicals and minerals present in the soil and 
fluctuations of water table when it is very near to the foundation. Moreover, 
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periodic inspection and maintenance are practically impossible for the foundation 
structures. 
 
 5. Foundation structures, while constructing, may affect the adjoining 
structure forming cracks to total collapse, particularly during the driving of piles 
etc. 
 
 However, wide ranges of types of foundation structures are available. It is 
very important to select the appropriate type depending on the type of structure, 
condition of the soil at the location of construction, other surrounding structures 
and several other practical aspects as mentioned above. 
 

11.28.2  Types of Foundation Structures 
 
 Foundations are mainly of two types: (i) shallow and (ii) deep foundations. 
The two different types are explained below: 
 
(A) Shallow foundations 
 
 Shallow foundations are used when the soil has sufficient strength within a 
short depth below the ground level. They need sufficient plan area to transfer the 
heavy loads to the base soil. These heavy loads are sustained by the reinforced 
concrete columns or walls (either of bricks or reinforced concrete) of much less 
areas of cross-section due to high strength of bricks or reinforced concrete when 
compared to that of soil. The strength of the soil, expressed as the safe bearing 
capacity of the soil as discussed in sec.11.28.3, is normally supplied by the 
geotechnical experts to the structural engineer. Shallow foundations are also 
designated as footings. The different types of shallow foundations or footings are 
discussed below. 
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1. Plain concrete pedestal footings 
 

 
 Plain concrete pedestal footings (Fig.11.28.1) are very economical for 
columns of small loads or pedestals without any longitudinal tension steel (see 
cls.34.1.2 and 34.1.3 of IS 456). In Fig.11.28.1, the angle α  between the plane 
passing through the bottom edge of the pedestal and the corresponding junction 
edge of the column with pedestal and the horizontal plane shall be determined 
from Eq. 11.3.  
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2. Isolated footings 
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 These footings are for individual columns having the same plan forms of 
square, rectangular or circular as that of the column, preferably maintaining the 
proportions and symmetry so that the resultants of the applied forces and 
reactions coincide. These footings, shown in Figs.11.27.2 to 11.27.4, consist of a 
slab of uniform thickness, stepped or sloped. Though sloped footings are 
economical in respect of the material, the additional cost of formwork does not 
offset the cost of the saved material. Therefore, stepped footings are more 
economical than the sloped ones. The adjoining soil below footings generates 
upward pressure which bends the slab due to cantilever action. Hence, adequate 
tensile reinforcement should be provided at the bottom of the slab (tension face). 
Clause 34.1.1 of IS 456 stipulates that the sloped or stepped footings, designed 
as a unit, should be constructed to ensure the integrated action. Moreover, the 
effective cross-section in compression of sloped and stepped footings shall be 
limited by the area above the neutral plane. Though symmetrical footings are 
desirable, sometimes situation compels for unsymmetrical isolated footings 
(Eccentric footings or footings with cut outs) either about one or both the axes 
(Figs.11.28.5 and 6).  
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3. Combined  footings 
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When the spacing of the adjacent columns is so close that separate isolated 
footings are not possible due to the overlapping areas of the footings or 
inadequate clear space between the two areas of the footings, combined footings 
are the solution combining two or more columns. Combined footing normally 
means a footing combining two columns. Such footings are either rectangular or 
trapezoidal in plan forms with or without a beam joining the two columns, as 
shown in Figs.11.28.7 and 11.28.8. 
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4. Strap footings 
 

 
 

 When two isolated footings are combined by a beam with a view to 
sharing the loads of both the columns by the footings, the footing is known as 
strap footing (Fig.11.28.9). The connecting beam is designated as strap beam. 
These footings are required if the loads are heavy on columns and the areas of 
foundation are not overlapping with each other. 
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5. Strip foundation or wall footings 
 

 
 These are in long strips especially for load bearing masonry walls or 
reinforced concrete walls (Figs.11.28.10). However, for load bearing masonry 
walls, it is common to have stepped masonry foundations. The strip footings 
distribute the loads from the wall to a wider area and usually bend in transverse 
direction. Accordingly, they are reinforced in the transverse direction mainly, 
while nominal distribution steel is provided along the longitudinal direction. 
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6. Raft or mat foundation 

 
 
 These are special cases of combined footing where all the columns of the 
building are having a common foundation (Fig.11.28.11). Normally, for buildings 
with heavy loads or when the soil condition is poor, raft foundations are very 
much useful to control differential settlement and transfer the loads not 
exceeding the bearing capacity of the soil due to integral action of the raft 
foundation. This is a threshold situation for shallow footing beyond which deep 
foundations have to be adopted. 
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(B) Deep foundations 
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 As mentioned earlier, the shallow foundations need more plan areas due 
to the low strength of soil compared to that of masonry or reinforced concrete. 
However, shallow foundations are selected when the soil has moderately good 
strength, except the raft foundation which is good in poor condition of soil also. 
Raft foundations are under the category of shallow foundation as they have 
comparatively shallow depth than that of deep foundation. It is worth mentioning 
that the depth of raft foundation is much larger than those of other types of 
shallow foundations. 
 
 However, for poor condition of soil near to the surface, the bearing 
capacity is very less and foundation needed in such situation is the pile 
foundation (Figs.11.28.12). Piles are, in fact, small diameter columns which are 
driven or cast into the ground by suitable means. Precast piles are driven and 
cast-in-situ are cast. These piles support the structure by the skin friction 
between the pile surface and the surrounding soil and end bearing force, if such 
resistance is available to provide the bearing force. Accordingly, they are 
designated as frictional and end bearing piles. They are normally provided in a 
group with a pile cap at the top through which the loads of the superstructure are 
transferred to the piles. 
 
 Piles are very useful in marshy land where other types of foundation are 
impossible to construct. The length of the pile which is driven into the ground 
depends on the availability of hard soil/rock or the actual load test. Another 
advantage of the pile foundations is that they can resist uplift also in the same 
manner as they take the compression forces just by the skin friction in the 
opposite direction. 
 
 However, driving of pile is not an easy job and needs equipment and 
specially trained persons or agencies. Moreover, one has to select pile 
foundation in such a situation where the adjacent buildings are not likely to be 
damaged due to the driving of piles. The choice of driven or bored piles, in this 
regard, is critical. 
 
 Exhaustive designs of all types of foundations mentioned above are 
beyond the scope of this course. Accordingly, this module is restricted to the 
design of some of the shallow footings, frequently used for normal low rise 
buildings only.  
 
 

11.28.3  Safe Bearing Capacity of Soil 
 
 The safe bearing capacity qc of soil is the permissible soil pressure 
considering safety factors in the range of 2 to 6 depending on the type of soil, 
approximations and assumptions and uncertainties. This is applicable under 
service load condition and, therefore, the partial safety factors fλ  for different 

load combinations are to be taken from those under limit state of serviceability 
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(vide Table 18 of IS 456 or Table 2.1 of Lesson 3). Normally, the acceptable 
value of qc is supplied by the geotechnical consultant to the structural engineer 
after proper soil investigations. The safe bearing stress on soil is also related to 
corresponding permissible displacement / settlement.  
 
 Gross and net bearing capacities are the two terms used in the design. 
Gross bearing capacity is the total safe bearing pressure just below the footing 
due to the load of the superstructure, self weight of the footing and the weight of 
earth lying over the footing. On the other hand, net bearing capacity is the net 
pressure in excess of the existing overburden pressure. Thus, we can write 
 
Net bearing capacity  =  Gross bearing capacity - Pressure due to overburden 
soil   (11.1) 
 
 While calculating the maximum soil pressure q, we should consider all the 
loads of superstructure along with the weight of foundation and the weight of the 
backfill. During preliminary calculations, however, the weight of the foundation 
and backfill may be taken as 10 to 15 per cent of the total axial load on the 
footing, subjected to verification afterwards. 
 

11.28.4  Depth of Foundation 
 
 All types of foundation should have a minimum depth of 50 cm as per IS 
1080-1962. This minimum depth is required to ensure the availability of soil 
having the safe bearing capacity assumed in the design. Moreover, the 
foundation should be placed well below the level which will not be affected by 
seasonal change of weather to cause swelling and shrinking of the soil. Further, 
frost also may endanger the foundation if placed at a very shallow depth. 
Rankine formula gives a preliminary estimate of the minimum depth of foundation 
and is expressed as 
 
 d  =  (qc/λ ){(1 - sinφ )/(1 + sinφ )}2        

(11.2) 
 
where  d   =  minimum depth of foundation 
 qc =  gross bearing capacity of soil 
 λ =  density of soil 

 φ   =  angle of repose of soil 
 
 Though Rankine formula considers three major soil properties qc, λ and 

φ , it does not consider the load applied to the foundation. However, this may be 
a guideline for an initial estimate of the minimum depth which shall be checked 
subsequently for other requirements of the design. 
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11.28.5  Design Considerations 
 
(a) Minimum nominal cover (cl. 26.4.2.2 of IS 456) 
 
 The minimum nominal cover for the footings should be more than that of 
other structural elements of the superstructure as the footings are in direct 
contact with the soil. Clause 26.4.2.2 of IS 456 prescribes a minimum cover of 50 
mm for footings. However, the actual cover may be even more depending on the 
presence of harmful chemicals or minerals, water table etc. 
 
(b) Thickness at the edge of footings (cls. 34.1.2 and 34.1.3 of IS 456) 
 
 The minimum thickness at the edge of reinforced and plain concrete 
footings shall be at least 150 mm for footings on soils and at least 300 mm above 
the top of piles for footings on piles, as per the stipulation in cl.34.1.2 of IS 456. 
 
 For plain concrete pedestals, the angle α  (see Fig.11.28.1) between the 
plane passing through the bottom edge of the pedestal and the corresponding 
junction edge of the column with pedestal and the horizontal plane shall be 
determined from the following expression (cl.34.1.3 of IS 456) 
 
 tanα     0.9{(100 q≤ a/fck) + 1}1/2        
(11.3) 
 
where qa  =  calculated maximum bearing pressure at the base of pedestal in 
N/mm2, and   
 
 fck  =  characteristic strength of concrete at 28 days in N/mm2.   
 
(c) Bending moments (cl. 34.2 of IS 456) 
 
 1. It may be necessary to compute the bending moment at several 
sections of the footing depending on the type of footing, nature of loads and the 
distribution of pressure at the base of the footing. However, bending moment at 
any section shall be determined taking all forces acting over the entire area on 
one side of the section of the footing, which is obtained by passing a vertical 
plane at that section extending across the footing (cl.34.2.3.1 of IS 456).  
 
 2. The critical section of maximum bending moment for the purpose of 
designing an isolated concrete footing which supports a column, pedestal or wall 
shall be: 
 

(i)   at the face of the column, pedestal or wall for footing supporting a 
concrete column, pedestal or reinforced concrete wall, (Figs.11.28.2, 
3 and 10), and  
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(ii)   halfway between the centre-line and the edge of the wall, for footing 
under masonry wall (Fig.11.28.10). This is stipulated in cl.34.2.3.2 of 
IS 456. 

 
 The maximum moment at the critical section shall be determined as 
mentioned in 1 above. 
 

 
 For round or octagonal concrete column or pedestal, the face of the 
column or pedestal shall be taken as the side of a square inscribed within the 
perimeter of the round or octagonal column or pedestal (see cl.34.2.2 of IS 456 
and Figs.11.28.13a and b). 
 
(d) Shear force (cl. 31.6 and 34.2.4 of IS 456) 
 
 Footing slabs shall be checked in one-way or two-way shears depending 
on the nature of bending. If the slab bends primarily in one-way, the footing slab 
shall be checked in one-way vertical shear. On the other hand, when the bending 
is primarily two-way, the footing slab shall be checked in two-way shear or 
punching shear. The respective critical sections and design shear strengths are 
given below: 
 
1.  One-way shear (cl. 34.2.4 of IS 456) 
 
 One-way shear has to be checked across the full width of the base slab on 
a vertical section located from the face of the column, pedestal or wall at a 
distance equal to (Figs.11.28.2, 3 and 10): 
 
 (i)  effective depth of the footing slab in case of footing slab on soil, and 
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(ii) half the effective depth of the footing slab if the footing slab is on piles 
(Fig.11.28.12). 

 
 The design shear strength of concrete without shear reinforcement is 
given in Table 19 of cl.40.2 of IS 456. 
 
2.  Two-way or punching shear (cls.31.6 and 34.2.4) 
 
 Two-way or punching shear shall be checked around the column on a 
perimeter half the effective depth of the footing slab away from the face of the 
column or pedestal (Figs.11.28.2 and 3). 
 
 The permissible shear stress, when shear reinforcement is not provided, 
shall not exceed ks cτ , where ks = (0.5 + cβ ), but not greater than one, cβ  being 

the ratio of short side to long side of the column, and cτ  = 0.25(fck)
1/2 in limit state 

method of design, as stipulated in cl.31.6.3 of IS 456. 
 
 Normally, the thickness of the base slab is governed by shear. Hence, the 
necessary thickness of the slab has to be provided to avoid shear reinforcement. 
 
(e) Bond (cl.34.2.4.3 of IS 456) 
 
 The critical section for checking the development length in a footing slab 
shall be the same planes as those of bending moments in part (c) of this section. 
Moreover, development length shall be checked at all other sections where they 
change abruptly. The critical sections for checking the development length are 
given in cl.34.2.4.3 of IS 456, which further recommends to check the anchorage 
requirements if the reinforcement is curtailed, which shall be done in accordance 
with cl.26.2.3 of IS 456. 
 
(f) Tensile reinforcement (cl.34.3 of IS 456) 
 
 The distribution of the total tensile reinforcement, calculated in accordance 
with the moment at critical sections, as specified in part (c) of this section, shall 
be done as given below for one-way and two-way footing slabs separately.  
 
 (i) In one-way reinforced footing slabs like wall footings, the reinforcement 
shall be distributed uniformly across the full width of the footing i.e., 
perpendicular to the direction of wall. Nominal distribution reinforcement shall be 
provided as per cl. 34.5 of IS 456 along the length of the wall to take care of the 
secondary moment, differential settlement, shrinkage and temperature effects. 
 
 (ii) In two-way reinforced square footing slabs, the reinforcement 
extending in each direction shall be distributed uniformly across the full 
width/length of the footing. 
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 (iii) In two-way reinforced rectangular footing slabs, the reinforcement in 
the long direction shall be distributed uniformly across the full width of the footing 
slab. In the short direction, a central band equal to the width of the footing shall 
be marked along the length of the footing, where the portion of the reinforcement 
shall be determined as given in the equation below. This portion of the 
reinforcement shall be distributed across the central band: 
 

 
 
Reinforcement in the central band = {2/( β +1)} (Total reinforcement in the short 
direction)                                                                                                                      
(11.4) 
 
            
where β  is the ratio of longer dimension to shorter dimension of the footing slab 
(Fig.11.28.14). 
 
 Each of the two end bands shall be provided with half of the remaining 
reinforcement, distributed uniformly across the respective end band. 
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(g) Transfer of load at the base of column (cl.34.4 of IS 456) 
 

 
 

 All forces and moments acting at the base of the column must be 
transferred to the pedestal, if any, and then from the base of the pedestal to the 
footing, (or directly from the base of the column to the footing if there is no 
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pedestal) by compression in concrete and steel and tension in steel. 
Compression forces are transferred through direct bearing while tension forces 
are transferred through developed reinforcement. The permissible bearing 
stresses on full area of concrete shall be taken as given below from cl.34.4 of IS 
456: 
 
 brσ  = 0.25fck, in working stress method, and       
(11.5) 
 
 brσ  = 0.45fck, in limit state method          
(11.6) 
 
It has been mentioned in sec. 10.26.5 of Lesson 26 that the stress of concrete is 
taken as 0.45fck while designing the column. Since the area of footing is much 
larger, this bearing stress of concrete in column may be increased considering 
the dispersion of the concentrated load of column to footing. Accordingly, the 
permissible bearing stress of concrete in footing is given by (cl.34.4 of IS 456): 
 
 brσ   =  0.45fck (A1/A2)

1/2           
(11.7) 
 
with a condition that 
 
 (A1/A2)

1/2  2.0          
(11.8) 

≤

 
where  A1  =  maximum supporting area of footing for bearing which is 

geometrically similar to and concentric with the loaded area A2, as 
shown in Fig.11.28.15 

 
 A2  =    loaded area at the base of the column. 
 
The above clause further stipulates that in sloped or stepped footings, A1 may be 
taken as the area of the lower base of the largest frustum of a pyramid or cone 
contained wholly within the footing and having for its upper base, the area 
actually loaded and having side slope of one vertical to two horizontal, as shown 
in Fig.11.28.15. 
 
 If the permissible bearing stress on concrete in column or in footing is 
exceeded, reinforcement shall be provided for developing the excess force 
(cl.34.4.1 of IS 456), either by extending the longitudinal bars of columns into the 
footing (cl.34.4.2 of IS 456) or by providing dowels as stipulated in cl.34.4.3 of IS 
456 and given below: 
 
 (i) Sufficient development length of the reinforcement shall be provided to 
transfer the compression or tension to the supporting member in accordance with 
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cl.26.2 of IS 456, when transfer of force is accomplished by reinforcement of 
column (cl.34.4.2 of IS 456). 
 
 (ii) Minimum area of extended longitudinal bars or dowels shall be 0.5 per 
cent of the cross-sectional area of the supported column or pedestal (cl.34.4.3 of 
IS 456). 
 
 (iii) A minimum of four bars shall be provided (cl.34.4.3 of IS 456). 
 
 (iv) The diameter of dowels shall not exceed the diameter of column bars 
by more than 3 mm. 
 

 
 
 (v) Column bars of diameter larger than 36 mm, in compression only can 
be doweled at the footings with bars of smaller size of the necessary area. The 
dowel shall extend into the column, a distance equal to the development length 
of the column bar and into the footing, a distance equal to the development 
length of the dowel, as stipulated in cl.34.4.4 of IS 456 and as shown in 
Fig.11.28.16. 
 
(h) Nominal reinforcement (cl. 34.5 of IS 456) 
 
 1. Clause 34.5.1 of IS 456 stipulates the minimum reinforcement and 
spacing of the bars in footing slabs as per the requirements of solid slab 
(cls.26.5.2.1 and 26.3.3b(2) of IS 456, respectively). 
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 2. The nominal reinforcement for concrete sections of thickness greater 
than 1 m shall be 360 mm2 per metre length in each direction on each face, as 
stipulated in cl.34.5.2 of IS 456. The clause further specifies that this provision 
does not supersede the requirement of minimum tensile reinforcement based on 
the depth of section. 
 
 

11.28.6  Distribution of Base Pressure 
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 The foundation, assumed to act as a rigid body, is in equilibrium under the 
action of applied forces and moments from the superstructure and the reactions 
from the stresses in the soil. The distribution of base pressure is different for 
different types of soil. Typical distributions of pressure, for actual foundations, in 
sandy and clayey soils are shown in Figs.11.28.17 and 18, respectively. 
However, for the sake of simplicity the footing is assumed to be a perfectly rigid 
body, the soil is assumed to behave elastically and the distributions of stress and 
stain are linear in the soil just below the base of the foundation, as shown in 
Fig.11.28.19. Accordingly, the foundation shall be designed for the applied loads, 
moments and induced reactions keeping in mind that the safe bearing capacity of 
the soil is within the prescribed limit. It is worth mentioning that the soil bearing 
capacity is in the serviceable limit state and the foundation structure shall be 
designed as per the limit state of collapse, checking for other limit states as well 
to ensure an adequate degree of safety and serviceability. 
 
 In the following, the distributions of base pressure are explained for (i) 
concentrically loaded footings, (ii) eccentrically loaded footings and (iii) 
unsymmetrical (about both the axes) footings. 
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(i) Concentrically loaded footings 

 
 Figure 11.28.20 shows rectangular footing symmetrically loaded with 
service load P1 from the superstructure and P2 from the backfill including the 
weight of the footing. The assumed uniformly distributed soil pressure at the base 
of magnitude q is obtained from: 
 
 q  =  (P1 + P2)/A          
(11.9) 
where A is the area of the base of the footing. 
 
 In the design problem, however, A is to be determined from the condition 
that the actual gross intensity of soil pressure does not exceed qc, the bearing 
capacity of the soil, a known given data. Thus, we can write from Eq.11.9: 
 A  =  (P1 + P2)/qc       
 (11.10) 
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 From the known value of A, the dimensions B and L are determined such 
that the maximum bending moment in each of the two adjacent projections is 
equal, i.e., the ratio of the dimensions B and L of the footing shall be in the same 
order of the ratio of width b and depth D of the column.  
 
(ii) Eccentrically loaded footings 

 
 In most of the practical situations, a column transfers axial load P and 
moment M to the footing, which can be represented as eccentrically loaded 
footing when a load P is subjected to an eccentricity e = M/P. This eccentricity 
may also be there, either alone or in combined mode, when 
• the column transfers a vertical load at a distance of e from the centroidal axis 

of the footing, and 
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• the column or the pedestal transfers a lateral load above the level of 
foundation, in addition to vertical loads. 

 
 Accordingly, the distribution of pressure may be of any one of the three 
types, depending on the magnitude of the eccentricity of the load, as shown in 
Figs.11.28.21b to d. The general expression of qa, the intensity of soil pressure at 
a distance of y from the origin is: 
 
 qa  =  P/A   (Pe/I± x)y       
 (11.11) 
 
We would consider a rectangular footing symmetric to the column. Substituting 
the values of A = BL, Ix = BL3/12 and y = L/2, we get the values of qa at the left 
edge. 
 
 qa  at the left edge  =  (P/BL) {1 - (6e/L)}    
 (11.12) 
 
It is evident from Eq.11.12, that the three cases are possible:  
 
 (A) when e < L/6,  qa at the left edge is compression (+), 
 
 (B) when e = L/6,  qa at the left edge is zero, and 
 
 (C) when e > L/6,  qa at the left edge is tension (-). 
 
The three cases are shown in Figs.11.28.21b to d, respectively. It is to be noted 
that similar three cases are also possible when eccentricity of the load is 
negative resulting the values of qa at the right edge as compression, zero or 
tension. Evidently, these soil reactions, in compression and tension, should be 
permissible and attainable.  
 
Case (A):  when | e |  ≤  L/6 
 
 Figures 11.28.21b and c show these two cases, when |e| < L/6 or |e| = 
L/6, respectively. It is seen that the entire area of the footing is in compression 
having minimum and maximum values of q at the two edges with a linear and 
non-uniform variation. The values of q are obtained from Eq.11.11. 
 
 In the limiting case i.e., when |e| = L/6, the value of qa is zero at one edge 
and the other edge is having qa = 2P/BL (compression) with a linear variation. 
Similarly, when e = 0, the footing is subjected to uniform constant pressure of 
P/BL. Thus, when |e| = L/6, the maximum pressure under one edge of the footing 
is twice of the uniform pressure when e = 0. 
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 In a more general case, as in the case of footing for the corner column of 
a building, the load may have biaxial eccentricities. The general expression of qa 
at a location of (x,y) of the footing, when the load is having biaxial eccentricities 
of ex and ey is, 
 

qa  =  P/A ±  P exy/Ix  ±   P eyx/Iy    
 (11.13) 

 
 Similarly, it can be shown that the rectangular footing of width B and 
length L will have no tension when the two eccentricities are such that 
 
 6ex/L  +  6ey/B  ≤   1       
 (11.14) 
 
Case (B):  when | e |  > L/6 
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The eccentricity of the load more than L/6 results in development of tensile 
stresses in part of the soil. Stability, in such case, is ensured by either anchoring 
or weight of overburden preventing uplift. However, it is to ensure that maximum 
compressive pressure on the other face is within the limit and sufficient factor of 
safety is available against over turning. Accordingly, the maximum pressure in 
such a case can be determined considering the soil under compression part only. 
Further, assuming the line of action of the eccentric load coincides with that of 
resultant soil pressure (Fig.11.28.22) we have: 
 
 qmax   =  P/L'B  +  12P(0.5 C)(1.5 C)/BL'   =  2P/L'B   
 (11.15) 
 
where L'  =  3C        
 (11.16) 
 
(iii) Unsymmetrical footings 
 
 It may be necessary to provide some cutouts in the foundation to reduce 
the uplift pressure or otherwise. The footing in such cases becomes 
unsymmetrical about both the axes. It is possible to determine the soil pressure 
distribution using the structural mechanics principle as given below. 
 
qa(x,y)  =  P/A   {(M± yIx - MxIxy)(x)/(IxIy - )} + {(M2

xyI xIy - MyIxy)(y)/(IxIy - )}

 (11.17) 

2
xyI

 
where Mx  =  moment about x axis, 
 
 My  =  moment about y axis, 
 
 Ix     =  moment of inertia about x axis, 
 
 Iy    =  moment of inertia about y axis, 
 
 Ixy   =  product of inertia 
 
  

11.28.7  Practice Questions and Problems with Answers 
 
Q.1:    (A) What are the two essential requirements of the design of foundation? 
 
            (B) Mention five points indicating  the  differences  between  the design of 

foundation and the design of other elements of superstructure. 
 
A.1:    See sec. 11.28.1. 
 
Q.2:    Draw sketches of different shallow foundations. 
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A.2:    Figure Nos. 11.28.1 to 11. 
 
Q.3: Explain the difference between gross and net safe bearing capacities of soil. 

Which   one is used for the design of foundation? 
 
A.3:   See sec. 11.28.3. 
 
Q.4:   How would you determine the minimum depth of foundation? 
 
A.4:   See sec.11.28.4. 
 
Q.5:  What are the critical sections of determining the bending moment in 

isolated footing? 
 
A.5:    See part (c)2 of sec.11.28.5. 
 
Q.6:    Explain the one-way and two-way shears of foundation slabs. 
 
A.6:    See part (d) of sec.11.28.5. 
 
Q.7:   Draw the actual distributions of base pressures of soil below the footing in 

sandy and clayey soils. Draw the assumed distribution of base pressure 
below the footing. 

 
A.7:    Figure Nos. 11.28.17 and 18. 
 
Q.8:  Draw  the  distributions  of  pressure  in  a footing for concentric and 

eccentric loadings (e ≤  L/6 and e > L/6). 
 
A.8:    Figure Nos. 11.28.20 and 21. 
 
Q.9:   How would you determine the pressure at any point (x,y) of a foundation 

which is unsymmetrical? 
 
A.9:    See part (iii) of sec.11.28.6. 
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11.28.9  Test 28 with Solutions 
 
Maximum Marks  =  50,     Maximum Time  =  30 minutes 
 
Answer all questions. 
 
TQ.1:  (A) What are the two essential requirements of the design of foundation?  

        (5 
marks) 

 
            (B) Mention five points indicating the differences between  the  design of 

foundation and the design of other elements of superstructure.           
(5 marks) 

 
A.TQ.1: See sec. 11.28.1. 
 
TQ.2:   How would you determine the minimum depth of foundation?             (10 
marks) 
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A.TQ.2: See sec.11.28.4. 
 
TQ.3: What  are  the critical  sections of determining the bending moment in 

isolated footing?                           
(10 marks) 

 
A.TQ.3: See part (c)2 of sec.11.28.5. 
 
TQ.4:   Explain the one-way and two-way shears of foundation slabs.              (10 
marks) 
 
A.TQ.4: See part (d) of sec.11.28.5. 
 
TQ.5:  Draw  the  distributions  of  pressure  in  a footing for concentric and 

eccentric loadings (e ≤  L/6 and e > L/6).                            
(10 marks) 

 
A.TQ.5: Figure Nos. 11.28.20 and 21. 
 

10.26.11  Summary of this Lesson 
 

 This lesson explains the two major and other requirements of the 
design of foundation structures. Various types of shallow foundations and pile 
foundation are discussed explaining the distribution of pressure in isolated 
footings loaded concentrically and eccentrically with e ≤  L/6 and e > L/6. The 
gross and net safe bearing capacities are explained. The equation for 
determining the minimum depth of the foundation is given. Various design 
considerations in respect of minimum nominal cover, thickness at the edge of 
footing, bending moment, shear force, bond, tensile reinforcement, transfer of 
load at the base of the column, and minimum distribution reinforcement are 
discussed, mentioning the codal requirements. The actual and the assumed 
distributions of base pressure are discussed. The distributions of base pressure 
for concentric and eccentric loads with eccentricity  ≤  L/6 and  > L/6 are 
explained. Determination of bearing pressure of soil for unsymmetrical footing is 
also discussed. 
 
 All the discussions are relevant in understanding the load carrying 
mechanism of the foundation and the behaviour of soil. These understandings 
are essential in designing the foundation structures which is taken up in the next 
lesson. 
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Instructional Objectives: 
 
 

At the end of this lesson, the student should be able to: 
 
 

• define effective length, pedestal, column and wall, 
 
• classify the columns based on types of reinforcement, loadings and 

slenderness ratios, 
 

• identify and explain the functions of bracing in a braced column,  
 

• determine the minimum and maximum percentage of longitudinal 
reinforcement, 

 
• determine the minimum numbers and diameter of bars in rectangular and 

circular columns, 
 

• determine the longitudinal reinforcement in a pedestal, 
 

• determine the type, pitch and diameter of lateral ties of columns after 
determining the longitudinal steel, 

 
• state the assumptions in the design of compression member by limit state 

of collapse, 
 

• determine the strain distribution lines of a compression member subjected 
to axial load with or without the moments about one or both the axes, 

 
• explain the need of the minimum eccentricity to be considered in the 

design of compression members. 
 
 

10.21.1 Introduction 
 

Compression members are structural elements primarily subjected to axial 
compressive forces and hence, their design is guided by considerations of 
strength and buckling. Figures 10.21.1a to c show their examples: pedestal, 
column, wall and strut. While pedestal, column and wall carry the loads along its 
length l in vertical direction, the strut in truss carries loads in any direction. The 
letters  l,  b  and  D  represent the unsupported vertical length, horizontal lest 
lateral dimension, width and the horizontal longer lateral dimension, depth. These 
compression members may be made of bricks or reinforced concrete. Herein, 
reinforced concrete compression members are only discussed.   
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 This module is intended to explain the definition of some common 
terminologies and to illustrate the design of compression members and other 
related issues. This lesson, however, explain the definitions and classifications of 
columns depending on different aspects. Further, the recommendations of IS 456 
to be followed in the design are discussed regarding the longitudinal and lateral 
reinforcing bars. The assumptions made in the design of compression member 
by limit sate of collapse are illustrated. 
 
 

10.21.2  Definitions 
 
 (a) Effective length:  The vertical distance between the points of inflection 
of the compression member in the buckled configuration in a plane is termed as 
effective length  le  of that compression member in that plane. The effective 
length is different from the unsupported length  l  of the member, though it 
depends on the unsupported length and the type of end restraints. The relation 
between the effective and unsupported lengths of any compression member is 
 
 le  =  k l           
(10.1) 
 
where  k  is the ratio of effective to the unsupported lengths. Clause 25.2 of IS 
456 stipulates the effective lengths of compression members (vide Annex E of IS 
456). This parameter is needed in classifying and designing the compression 
members. 
 
 (b) Pedestal:  Pedestal is a vertical compression member whose effective 
length  le  does not exceed three times of its least horizontal dimension  b (cl. 
26.5.3.1h, Note). The other horizontal dimension  D  shall not exceed four times 
of  b (Fig.10.21.1a). 
 
 (c) Column:  Column is a vertical compression member whose 
unsupported length  l  shall not exceed sixty times of  b (least lateral dimension), 
if restrained at the two ends. Further, its unsupported length of a cantilever 
column shall not exceed 100b2/D, where  D  is the larger lateral dimension which 
is also restricted up to four times of  b (vide cl. 25.3 of IS 456 and Fig.10.21.1b). 
 

(d) Wall:  Wall is a vertical compression member whose effective height 
Hwe to thickness  t (least lateral dimension) shall not exceed 30 (cl. 32.2.3 of IS 
456). The larger horizontal dimension i.e., the length of the wall  L  is more than 
4t (Fig.10.21.1c). 
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10.21.3  Classification of Columns Based on Types of 
Reinforcement 
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 Based on the types of reinforcement, the reinforced concrete columns are 
classified into three groups: 
 
 (i) Tied columns:  The main longitudinal reinforcement bars are enclosed 
within closely spaced lateral ties (Fig.10.21.2a). 
 
 (ii) Columns with helical reinforcement:  The main longitudinal 
reinforcement bars are enclosed within closely spaced and continuously wound 
spiral reinforcement. Circular and octagonal columns are mostly of this type 
(Fig.10.21.2b). 
 
 (iii) Composite columns:  The main longitudinal reinforcement of the 
composite columns consists of structural steel sections or pipes with or without 
longitudinal bars (Fig.20.21.2c and d). 
 
 Out of the three types of columns, the tied columns are mostly common 
with different shapes of the cross-sections viz. square, rectangular, T-, L-, cross 
etc. Helically bound columns are also used for circular or octagonal shapes of 
cross-sections. Architects prefer circular columns in some specific situations for 
the functional requirement. This module, accordingly takes up these two types 
(tied and helically bound) of reinforced concrete columns. 
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10.21.4 Classification of Columns Based on Loadings 
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 Columns are classified into the three following types based on the 
loadings: 
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 (i)   Columns subjected to axial loads only (concentric), as shown in 
Fig.20.21.3a. 
 

(ii) Columns subjected to combined axial load and uniaxial bending, as 
shown in Fig.10.21.3b.  

 
(iii) Columns subjected to combined axial  load  and bi-axial bending, as 

shown in Fig.10.21.3c. 
 

 
 

 Figure 10.21.4 shows the plan view of a reinforced concrete rigid frame 
having columns and inter-connecting beams in longitudinal and transverse 
directions. From the knowledge of structural analysis it is well known that the 
bending moments on the left and right of columns for every longitudinal beam will 
be comparable as the beam is continuous. Similarly, the bending moments at the 
two sides of columns for every continuous transverse beam are also comparable 
(neglecting small amounts due to differences of  l1, l2, l3  and  b1, b2, b3, b4). 
Therefore, all internal columns (C1a to C1f) will be designed for axial force only. 
The side columns (C2a to C2j) will have axial forces with uniaxial bending 
moment, while the four corner columns (C3a to C3d) shall have axial forces with 
bi-axial bending moments. Thus, all internal columns (C1a to C1f), side columns 
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(C2a to C2j) and corner columns (C3a to C3d) are the columns of type (i), (ii) and 
(iii), respectively.  
 
 It is worth mentioning that pure axial forces in the inside columns is a rare 
case. Due to rigid frame action, lateral loadings and practical aspects of 
construction, there will be bending moments and horizontal shear in all the inside 
columns also. Similarly, side columns and corner columns will have the column 
shear along with the axial force and bending moments in one or both directions, 
respectively. The effects of shear are usually neglected as the magnitude is very 
small. Moreover, the presence of longitudinal and transverse reinforcement is 
sufficient to resist the effect of column shear of comparatively low magnitude. 
The effect of some minimum bending moment, however, should be taken into 
account in the design even if the column is axially loaded. Accordingly, cls. 39.2 
and 25.4 of IS 456 prescribes the minimum eccentricity for the design of all 
columns. In case the actual eccentricity is more than the minimum, that should 
be considered in the design. 
 
 

10.21.5  Classification of Columns Based on Slenderness 
Ratios 
 
 Columns are classified into the following two types based on the 
slenderness ratios: 
 
 (i)  Short columns 
 
 (ii) Slender or long columns 
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 Figure 10.21.5 presents the three modes of failure of columns with 
different slenderness ratios when loaded axially. In the mode 1, column does not 
undergo any lateral deformation and collapses due to material failure. This is 
known as compression failure. Due to the combined effects of axial load and 
moment a short column may have material failure of mode 2. On the other hand, 
a slender column subjected to axial load only undergoes deflection due to beam-
column effect and may have material failure under the combined action of direct 
load and bending moment. Such failure is called combined compression and 
bending failure of mode 2. Mode 3 failure is by elastic instability of very long 
column even under small load much before the material reaches the yield 
stresses. This type of failure is known as elastic buckling. 
 
 The slenderness ratio of steel column is the ratio of its effective length  le  
to its least radius of gyration  r.  In case of reinforced concrete column, however, 
IS 456 stipulates the slenderness ratio as the ratio of its effective length  le  to its 
least lateral dimension. As mentioned earlier in sec. 10.21.2(a), the effective 
length  le  is different from the unsupported length, the rectangular reinforced 
concrete column of cross-sectional dimensions  b  and  D  shall have two 
effective lengths in the two directions of  b  and  D. Accordingly, the column may 
have the possibility of buckling depending on the two values of slenderness 
ratios as given below: 
 
 Slenderness ratio about the major axis  =  lex/D 
 
 Slenderness ratio about the minor axis  =  ley/b 
 
 Based on the discussion above, cl. 25.1.2 of IS 456 stipulates the 
following: 
 
 A compression member may be considered as short when both the 
slenderness ratios  lex/D  and  ley/b  are less than 12  where  lex = effective length 
in respect of the major axis,  D = depth in respect of the major axis,  ley = effective 
length in respect of the minor axis, and  b = width of the member. It shall 
otherwise be considered as a slender compression member. 
 
 Further, it is essential to avoid the mode 3 type of failure of columns so 
that all columns should have material failure (modes 1 and 2) only. Accordingly, 
cl. 25.3.1 of IS 456 stipulates the maximum unsupported length between two 
restraints of a column to sixty times its least lateral dimension. For cantilever 
columns, when one end of the column is unrestrained, the unsupported length is 
restricted to 100b2/D  where  b  and  D  are as defined earlier. 
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10.21.6  Braced and unbraced columns 

 
 

 It is desirable that the columns do not have to resist any horizontal loads 
due to wind or earthquake. This can be achieved by bracing the columns as in 
the case of columns of a water tank or tall buildings (Figs.10.21.6a and b). 
Lateral tie members for the columns of water tank or shear walls for the columns 
of tall buildings resist the horizontal forces and these columns are called braced 
columns. Unbraced columns are supposed to resist the horizontal loads also. 
The bracings can be in one or more directions depending on the directions of the 
lateral loads. It is worth mentioning that the effect of bracing has been taken into 
account by the IS code in determining the effective lengths of columns (vide 
Annex E of IS 456). 
 

10.21.7  Longitudinal Reinforcement 
 
 The longitudinal reinforcing bars carry the compressive loads along with 
the concrete. Clause 26.5.3.1 stipulates the guidelines regarding the minimum 
and maximum amount, number of bars, minimum diameter of bars, spacing of 
bars etc. The following are the salient points: 
 
 (a) The minimum amount of steel should be at least 0.8 per cent of the 
gross cross-sectional area of the column required if for any reason the provided 
area is more than the required area.  
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 (b) The maximum amount of steel should be 4 per cent of the gross cross-
sectional area of the column so that it does not exceed 6 per cent when bars 
from column below have to be lapped with those in the column under 
consideration. 
 
 (c)  Four and six are the minimum number of longitudinal bars in 
rectangular and circular columns, respectively.  
 
 (d)  The diameter of the longitudinal bars should be at least 12 mm.  
 
 (e)  Columns having helical reinforcement shall have at least six 
longitudinal bars within and in contact with the helical reinforcement. The bars 
shall be placed equidistant around its inner circumference. 
 
 (f)  The bars shall be spaced not exceeding 300 mm along the periphery 
of the column. 
 
 (g)  The amount of reinforcement for pedestal shall be at least 0.15 per 
cent of the cross-sectional area provided. 
 

10.21.8  Transverse Reinforcement 
 
 Transverse reinforcing bars are provided in forms of circular rings, 
polygonal links (lateral ties) with internal angles not exceeding 135o or helical 
reinforcement. The transverse reinforcing bars are provided to ensure that every 
longitudinal bar nearest to the compression face has effective lateral support 
against buckling. Clause 26.5.3.2 stipulates the guidelines of the arrangement of 
transverse reinforcement. The salient points are: 
 

 
 (a) Transverse reinforcement shall only go round corner and alternate 
bars if the longitudinal bars are not spaced more than 75 mm on either side 
(Fig.10.21.7). 
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 (b) Longitudinal bars spaced at a maximum distance of 48 times the 
diameter of the tie shall be tied by single tie and additional open ties for in 
between longitudinal bars (Fig.10.21.8).  

 
 (c) For longitudinal bars placed in more than one row (Fig.10.21.9): (i) 
transverse reinforcement is provided for the outer-most row in accordance with 
(a) above, and (ii) no bar of the inner row is closer to the nearest compression 
face than three times the diameter of the largest bar in the inner row. 

 
 (d) For longitudinal bars arranged in a group such that they are not in 
contact and each group is adequately tied as per (a), (b) or (c) above, as 
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appropriate, the transverse reinforcement for the compression member as a 
whole may be provided assuming that each group is a single longitudinal bar for 
determining the pitch and diameter of the transverse reinforcement as given in 
sec.10.21.9. The diameter of such transverse reinforcement should not, however, 
exceed 20 mm (Fig.10.21.10). 
 

10.21.9  Pitch and Diameter of Lateral Ties 
 
 (a) Pitch: The maximum pitch of transverse reinforcement shall be the 
least of the following: 
 

(i) the least lateral dimension of the compression members; 
 
(ii) sixteen times the smallest diameter of the longitudinal 

reinforcement bar to be tied; and 
 

(iii) 300 mm. 
 

(b) Diameter: The diameter of the polygonal links or lateral ties shall be 
not less than one-fourth of the diameter of the largest longitudinal bar, and in no 
case less than 6 mm. 
 

10.21.10  Helical Reinforcement 
 
 (a) Pitch: Helical reinforcement shall be of regular formation with the turns 
of the helix spaced evenly and its ends shall be anchored properly by providing 
one and a half extra turns of the spiral bar. The pitch of helical reinforcement 
shall be determined as given in sec.10.21.9 for all cases except where an 
increased load on the column is allowed for on the strength of the helical 
reinforcement. In such cases only, the maximum pitch shall be the lesser of 75 
mm and one-sixth of the core diameter of the column, and the minimum pitch 
shall be the lesser of 25 mm and three times the diameter of the steel bar 
forming the helix. 
 
 (b) Diameter: The diameter of the helical reinforcement shall be as 
mentioned in sec.10.21.9b. 
 

10.21.11  Assumptions in the Design of Compression 
Members by Limit State of Collapse 

 
 It is thus seen that reinforced concrete columns have different 
classifications depending on the types of reinforcement, loadings and 
slenderness ratios. Detailed designs of all the different classes are beyond the 
scope here. Tied and helically reinforced short and slender columns subjected to 
axial loadings with or without the combined effects of uniaxial or biaxial bending 
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will be taken up. However, the basic assumptions of the design of any of the 
columns under different classifications are the same. The assumptions (i) to (v) 
given in sec.3.4.2 of Lesson 4 for the design of flexural members are also 
applicable here. Furthermore, the following are the additional assumptions for the 
design of compression members (cl. 39.1 of IS 456). 
 

(i) The maximum compressive strain in concrete in axial compression 
is taken as 0.002. 

 
(ii) The maximum compressive strain at the highly compressed 

extreme fibre in concrete subjected to axial compression and 
bending and when there is no tension on the section shall be 
0.0035 minus 0.75 times the strain at the least compressed 
extreme fibre. 
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 The assumptions (i) to (v) of section 3.4.2 of Lesson 4 and (i) and (ii) 
mentioned above are discussed below with reference to Fig.10.21.11a to c 
presenting the cross-section and strain diagrams for different location of the 
neutral axis. 
 
 The discussion made in sec. 3.4.2 of Lesson 4 regarding the assumptions 
(i), (iii), (iv) and (v) are applicable here also. Assumption (ii) of sec.3.4.2 is also 
applicable here when  kD, the depth of neutral axis from the highly compressed 
right edge is within the section i.e., k < 1. The corresponding strain profile  IN  in 
Fig.10.21.11b is for particular value of P  and  M  such that the maximum 
compressive strain is 0.0035 at the highly compressed right edge and tensile 
strain develops at the opposite edge. This strain profile is very much similar to 
that of a beam in flexure of Lesson 4.  
 
 The additional assumption (i) of this section refers to column subjected 
axial load P  only resulting compressive strain of maximum (constant) value of 
0.002 and for which the strain profile is EF in Fig.10.21.11b. The neutral axis is at 
infinity (outside the section). 
 
 Extending the assumption of the strain profile IN (Fig.10.21.11b), we can 
draw another strain profile IH (Fig.10.21.11c) having maximum compressive 
strain of 0.0035 at the right edge and zero strain at the left edge. This strain 
profile 1H along with EF are drawn in Fig.10.21.11c to intersect at  V. From the 
two similar triangles EVI and GHI, we have 
 
 EV/GH  =  0.0015/0.0035  =  3/7, which gives 
 
 EV  =  3D/7                       
(10.2) 
 
The point V, where the two profiles intersect is assumed to act as a fulcrum for 
the strain profiles when the neutral axis lies outside the section. Another strain 
profile JK drawn on this figure passing through the fulcrum V and whose neutral 
axis is outside the section. The maximum compressive strain GJ of this profile is 
related to the minimum compressive strain HK as explained below. 
 
 GJ =  GI – IJ  =  GI – 0.75 HK, as we can write IJ in term of HK from two 
similar triangles JVI and HVK: 
 
 IJ/HK  =  VE/VF  =  0.75. 
 
 The value of the maximum compressive strain GJ for the profile JK is, 
therefore, 0.0035 minus 0.75 times the strain HK on the least compressed edge. 
This is the assumption (ii) of this section (cl. 39.1b of IS 456). 
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10.21.12  Minimum Eccentricity 
 
 Section 10.21.4 illustrates that in practical construction, columns are rarely 
truly concentric. Even a theoretical column loaded axially will have accidental 
eccentricity due to inaccuracy in construction or variation of materials etc. 
Accordingly, all axially loaded columns should be designed considering the 
minimum eccentricity as stipulated in cl. 25.4 of IS 456 and given below 
(Fig.10.21.3c) 
 
 ex min  ≥   greater of )l/500 + D/30) or 20 mm 
             
(10.3) 
 
 ey min  ≥   greater of )l/500 + b/30) or 20 mm 
 
where l, D  and  b  are the unsupported length, larger lateral dimension and least 
lateral dimension, respectively.  
 

10.21.13  Practice Questions and Problems with Answers 
 
Q.1:   Define effective length, pedestal, column and wall. 
 
A.1:   See sec. 10.21.2. 
 
Q.2:   Classify the columns based on types of reinforcement. 
 
A.2:   See sec. 10.21.3 
 
Q.3:   Classify the columns based on loadings. 
 
A.3:   See sec. 10.21.4. 
 
Q.4:   Classify the columns based on slenderness ratios. 
 
A.4:   See Sec. 10.21.5 
 
Q.5:   Explain braced and unbraced columns. 
 
A.5:   See sec. 10.21.6. 
 
Q.6:   Answer the following: 
 
          (a) What are the minimum and maximum amounts of longitudinal 

reinforcement in  a column? 
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          (b) What are the minimum numbers of longitudinal bars in rectangular and 
circular columns? 

 
          (c)  What is the amount of longitudinal reinforcement in a pedestal? 
 
          (d)  What is the maximum pitch of transverse reinforcement in a column? 
 
          (e)  What is the diameter of lateral ties in a column? 
 
A.6:   (a)  0.8% and 4% 
 
          (b)  4 and 6 
 
          (c)   0.15% of cross-sectional area of the pedestal  
 
          (d)  See sec. 10.21.9(a) 
 
          (e)  See sec. 10.21.9(b). 
 
Q.7: Explain the assumptions of determining the strain distribution lines in a 

column subjected to axial force and biaxial bending. 
 
A.7:   See sec. 10.21.11(i) and (ii). 
 
Q.8:   State the minimum eccentricity of a rectangular column for designing. 
 
A.8:   See sec. 10.21.12. 
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10.21.15  Test 21 with Solutions 
 
Maximum Marks  =  50,     Maximum Time  =  30 minutes 
 
Answer all questions carrying equal marks. 
 
TQ.1:    Define effective length, pedestal, column and wall. 
 
A.TQ.1: See sec. 10.21.2.                                                             
 
TQ.2:    Classify the columns separately based on loadings and slenderness 
ratios. 
 
A.TQ.2: See secs. 10.21.4 and 5. 
 
TQ.3:   Explain braced and unbraced columns. 
 
A.TQ.3: See sec. 10.21.6. 
 
TQ.4:   Answer the following: 
 
            (a) What are the minimum and maximum amounts of longitudinal 

reinforcement in  a column? 
 
            (b) What are the minimum numbers of longitudinal bars in rectangular 

and circular columns? 
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            (c)  What is the amount of longitudinal reinforcement in a pedestal? 
 
            (d)  What is the maximum pitch of transverse reinforcement in a column? 
 
            (e)  What is the diameter of lateral ties in a column? 
 
A.TQ.4:  (a)  0.8% and 4% 
 
            (b)  4 and 6 
 
            (c)   0.15% of cross-sectional area of the pedestal  
 
            (d)  See sec. 10.21.9(a) 
 
            (e)  See sec. 10.21.9(b). 
 
TQ.5: Explain the assumptions of determining the strain distribution lines in a 

column subjected to axial force and biaxial bending. 
 
A.TQ.5:  See sec. 10.21.11(i) and (ii). 
 
 

10.21.16  Summary of this Lesson 
 
 This lesson defines the effective length, pedestal, column and wall. Three 
different classifications of columns based on types of reinforcement, loadings 
slenderness ratio are explained. The need and functions of bracings are 
illustrated. The guidelines of IS 456 are discussed regarding the types, 
arrangement, minimum numbers and diameter of bars, pitch and other aspects of 
longitudinal and transverse reinforcement of columns. The assumptions needed 
for the design of compression members are illustrated. The determination of 
strain distribution lines are explained depending on the location of the neutral 
axis. The need for considering the minimum eccentricity and its amount are 
explained. 
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Instructional Objectives: 
 

At the end of this lesson, the student should be able to: 
 

• state additional assumptions regarding the strengths of concrete and steel 
for the design of short axially loaded columns, 

 
• specify the values of design strengths of concrete and steel, 

 
• derive the governing equation for the design of short and axially loaded 

tied columns, 
 

• derive the governing equation for the design of short and axially loaded 
spiral columns,  

 
• derive the equation to determine the pitch of helix in spiral columns,  

 
• apply the respective equations to design the two types of columns by 

direct computation, 
 

• use the charts of SP-16 to design these two types of columns subjected to 
axial loads as per IS code. 

 
 
 

10.22.1   Introduction 
 
 Tied and helically bound are the two types of columns mentioned in 
sec.10.21.3 of Lesson 21. These two types of columns are taken up in this 
lesson when they are short and subjected to axially loads. Out of several types of 
plan forms, only rectangular and square cross-sections are covered in this lesson 
for the tied columns and circular cross-section for the helically bound columns. 
Axially loaded columns also need to be designed keeping the provision of 
resisting some moments which normally is the situation in most of the practical 
columns. This is ensured by checking the minimum eccentricity of loads applied 
on these columns as stipulated in IS 456. Moreover, the design strengths of 
concrete and steel are further reduced in the design of such columns. The 
governing equations of the two types of columns and the equation for 
determining the pitch of the helix in continuously tied column are derived and 
explained. The design can be done by employing the derived equation i.e., by 
direct computation or by using the charts of SP-16. Several numerical examples 
are solved to explain the design of the two types of columns by direct 
computation and using the charts of SP-16. 
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10.22.2  Further Assumptions Regarding the Strengths of 
Concrete and Steel 
 
 All the assumptions required for the derivation of the governing equations 
are given in sec.10.21.11 of Lesson 21. The stress-strain diagrams of mild steel 
(Fe 250) and cold worked deformed bars (Fe 415 and Fe 500) are given in 
Figs.1.2.3 and 4, respectively of Lesson 2. The stress block of compressive part 
of concrete is given in Fig.3.4.1.9 of Lesson 4, which is used in the design of 
beam by limit state of collapse. The maximum design strength of concrete is 
shown as constant at 0.446 fck  when the strain ranges from 0.002 to 0.0035. The 
maximum design stress of steel is 0.87 fy. 
 
 Sections 10.21.4 and 12 of Lesson 21 explain that all columns including 
the short axially loaded columns shall be designed with a minimum eccentricity 
(cls. 25.4 and 39.2 of IS 456). Moreover, the design strengths of concrete and 
steel are further reduced to 0.4 fck and 0.67 fy, respectively, to take care of the 
minimum eccentricity of 0.05 times the lateral dimension, as stipulated in cl.39.3 
of IS 456. It is noticed that there is not attempt at strain compatibility. Also the 
phenomenon of creep has not been directly considered. 
 
 ex min    greater of (l/500 + D/30) or 20 mm ≥
             
(10.3) 
 ey min    greater of (l/500 + b/30) or 20 mm ≥
 
The maximum values of  lex/D  and  ley/b  should not exceed 12 in a short column 
as per cl.25.1.2 of IS 456. For a short column, when the unsupported length  l = 
lex (for the purpose of illustration), we can assume  l = 12 D (or 12b  when b is 
considered). Thus, we can write the minimum eccentricity = 12D/500 + D/30 = 
0.057D, which has been taken as 0.05D or 0.05b as the maximum amount of 
eccentricity of a short column. 
 
 It is, therefore, necessary to keep provision so that the short columns can 
resist the accidental moments due to the allowable minimum eccentricity by 
lowering the design strength of concrete by ten per cent from the value of 
0.446fck, used for the design of flexural members. Thus, we have the design 
strength of concrete in the design of short column as (0.9)(0.446fck) = 0.4014fck, 
say 0.40 fck. The reduction of the design strength of steel is explained below. 
 
 For mild steel (Fe 250), the design strength at which the strain is 0.002 is 
fy/1.15 = 0.87fy. However, the design strengths of cold worked deformed bars (Fe 
415 and Fe 500) are obtained from Fig.1.2.4 of Lesson 2 or Fig.23A of IS 456. 
Table A of SP-16 presents the stresses and corresponding strains of Fe 415 and 
Fe 500. Use of Table A of SP-16 is desirable as it avoids error while reading from 
figures (Fig.1.2.4 or Fig.23A, as mentioned above). From Table A of SP-16, the 
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corresponding design strengths are obtained by making linear interpolation. 
These values of design strengths for which the strain is 0.002 are as follows: 
 
(i)  Fe 415: {0.9fyd + 0.05fyd(0.002 – 0.00192)/(0.00241 – 0.00192)} = 0.908fyd = 
0.789fy
 
(ii) Fe 500: {0.85fyd + 0.05fyd(0.002 – 0.00195)/(0.00226 – 0.00195)} = 0.859fyd = 
0.746fy
 
 A further reduction in each of three values is made to take care of the 
minimum eccentricity as explained for the design strength of concrete. Thus, the 
acceptable design strength of steel for the three grades after reducing 10 per 
cent from the above mentioned values are 0.783fy, 0.710fy and 0.671fy for Fe 
250, Fe 415 and Fe 500, respectively. Accordingly, cl. 39.3 of IS 456 stipulates 
0.67fy as the design strength for all grades of steel while designing the short 
columns. Therefore, the assumed design strengths of concrete and steel are 
0.4fck and 0.67fy, respectively, for the design of short axially loaded columns. 
 

10.22.3  Governing Equation for Short Axially Loaded Tied 
Columns 
 
 Factored concentric load applied on short tied columns is resisted by 
concrete of area  Ac and longitudinal steel of areas Asc effectively held by lateral 
ties at intervals (Fig.10.21.2a of Lesson 21). Assuming the design strengths of 
concrete and steel are 0.4fck and 0.67fy, respectively, as explained in sec. 
10.22.2, we can write 
 
 Pu  =  0.4fck Ac + 0.67fy Asc         
(10.4) 
 
where Pu  =  factored axial load on the member, 
 
 fck  =  characteristic compressive strength of the concrete,  
 
 Ac  =  area of concrete, 
 
 fy   =  characteristic strength of the compression reinforcement, and  
 
 Asc =  area of longitudinal reinforcement for columns. 
 
The above equation, given in cl. 39.3 of IS 456, has two unknowns Ac and  Asc to 
be determined from one equation. The equation is recast in terms of Ag, the 
gross area of concrete and p, the percentage of compression reinforcement 
employing 
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 Asc  =  pAg/100           
(10.5) 
 
 Ac  =  Ag(1 – p/100)          
(10.6) 
 
Accordingly, we can write 
 
 Pu/Ag  =  0.4fck + (p/100) (0.67fy – 0.4fck)       
(10.7) 
 
 
Equation 10.7 can be used for direct computation of Ag when Pu, fck and fy are 
known by assuming p ranging from 0.8 to 4 as the minimum and maximum 
percentages of longitudinal reinforcement. Equation 10.4 also can be employed 
to determine Ag and p in a similar manner by assuming p. This method has been 
illustrated with numerical examples and is designated as Direct Computation 
Method. 
 
 On the other hand, SP-16 presents design charts based on Eq.10.7. Each 
chart of charts 24 to 26 of SP-16 has lower and upper sections. In the lower 
section, Pu/Ag is plotted against the reinforcement percentage p(= 100As/Ag) for 
different grades of concrete and for a particular grade of steel. Thus, charts 24 to 
26 cover the three grades of steel with a wide range of grades of concrete. When 
the areas of cross-section of the columns are known from the computed value of  
Pu/Ag, the percentage of reinforcement can be obtained directly from the lower 
section of the chart. The upper section of the chart is a plot of  Pu/Ag  versus Pu 
for different values of Ag. For a known value of Pu, a horizontal line can be drawn 
in the upper section to have several possible Ag values and the corresponding 
Pu/Ag values. Proceeding vertically down for any of the selected Pu/Ag value, the 
corresponding percentage of reinforcement can be obtained. Thus, the combined 
use of upper and lower sections of the chart would give several possible sizes of 
the member and the corresponding Asc without performing any calculation. It is 
worth mentioning that there may be some parallax error while using the charts. 
However, use of chart is very helpful while deciding the sizes of columns at the 
preliminary design stage with several possible alternatives. 
 
 Another advantage of the chart is that, the amount of compression 
reinforcement obtained from the chart are always within the minimum and 
maximum percentages i.e., from 0.8 to 4 per cent. Hence, it is not needed to 
examine if the computed area of steel reinforcement is within the allowable range 
as is needed while using Direct Computation Method. This method is termed as 
SP-16 method while illustrating numerical examples. 
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10.22.4  Governing Equation of Short Axially Loaded 
Columns with Helical Ties 
 
 Columns with helical reinforcement take more load than that of tied 
columns due to additional strength of spirals in contributing to the strength of 
columns. Accordingly, cl. 39.4 recommends a multiplying factor of 1.05 regarding 
the strength of such columns. The code further recommends that the ratio of 
volume of helical reinforcement to the volume of core shall not be less than 0.36 
(Ag/Ac – 1) (fck/fy), in order to apply the additional strength factor of 1.05 (cl. 
39.4.1). Accordingly, the governing equation of the spiral columns may be written 
as  
 
 Pu  =  1.05(0.4 fck Ac + 0.67 fy Asc)        
(10.8) 
 
All the terms have been explained in sec.10.22.3. 
 
 Earlier observations of several investigators reveal that the effect of 
containing holds good in the elastic stage only and it gets lost when spirals reach 
the yield point. Again, spirals become fully effective after spalling off the concrete 
cover over the spirals due to excessive deformation. Accordingly, the above two 
points should be considered in the design of such columns. The first point is 
regarding the enhanced load carrying capacity taken into account by the 
multiplying factor of 1.05. The second point is maintaining specified ratio of 
volume of helical reinforcement to the volume of core, as specified in cl.39.4.1 
and mentioned earlier.  
 
 The second point, in fact, determines the pitch p of the helical 
reinforcement, as explained below with reference to Fig.10.21.2b of Lesson 21. 
 
 Volume of helical reinforcement in one loop  =  spspc aD  ) - ( φπ     

(10.9) 
 
 Volume of core  =       
 (10.10) 

pDc   )4/( 2π

 
where Dc   =  diameter of the core (Fig.10.21.2b) 
 
 spφ   =  diameter of the spiral reinforcement (Fig.10.21.2b) 

 
 asp  =  area of cross-section of spiral reinforcement  
 
 p    =  pitch of spiral reinforcement (Fig.10.21.2b)   
 
To satisfy the condition of cl.39.4.1 of IS 456, we have 
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  )/( 1) - /0.36(    }  )4//{(} ) - ({ 2

yckcgcspspc ffAApDaD ≥πφπ
 
which finally gives 
 
     

 (10.11) 
ckcyspspc fDDfaDp  ) - /(  ) - 11.1(    22φ≤

 
Thus, Eqs.10.8 and 11 are the governing equations to determine the diameter of 
column, pitch of spiral and area of longitudinal reinforcement. It is worth 
mentioning that the pitch p of the spiral reinforcement, if determined from 
Eq.10.11, automatically satisfies the stipulation of cl.39.4.1 of IS 456. However, 
the pitch and diameter of the spiral reinforcement should also satisfy cl. 26.5.3.2 
of IS 456:2000. 
 

10.22.5  Illustrative Examples 
 
Problem 1: 
 
 Design the reinforcement in a column of size 400 mm x 600 mm subjected 
to an axial load of 2000 kN under service dead load and live load. The column 
has an unsupported length of 4.0 m and effectively held in position and 
restrained against rotation in both ends. Use M 25 concrete and Fe 415 steel.  
 
Solution 1: 
 
Step 1:  To check if the column is short or slender  
 
Given l = 4000 mm, b = 400 mm and D = 600 mm. Table 28 of IS 456 = lex = ley = 
0.65(l) = 2600 mm. So, we have 
 
 lex/D  =  2600/600  =  4.33  <  12 
 
 ley/b  =  2600/400  =  6.5   <  12 
 
Hence, it is a short column. 
 
Step 2:  Minimum eccentricity 
 
 ex min  =  Greater of (lex/500 + D/30)  and  20 mm  =  25.2 mm  

 
 ey min  =  Greater of (ley/500 + b/30)  and  20 mm  =  20 mm  

 
 0.05 D  =  0.05(600)  =  30 mm  >  25.2 mm (= ex min) 
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 0.05 b  =  0.05(400)  =  20 mm  =  20 mm (= ey min) 
 
Hence, the equation given in cl.39.3 of IS 456 (Eq.10.4) is applicable for the 
design here. 
 
Step 3:  Area of steel 
 
Fro Eq.10.4, we have 
 
 Pu  =  0.4 fck Ac + 0.67 fy Asc            ….   (10.4) 
 
 3000(103)  =  0.4(25){(400)(600) – Asc} + 0.67(415) Asc

 
which gives, 
 
 Asc  =  2238.39 mm2

 
Provide 6-20 mm diameter and 2-16 mm diameter rods giving 2287 mm2 (> 
2238.39 mm2) and  p = 0.953 per cent, which is more than minimum percentage 
of 0.8 and less than maximum percentage of 4.0. Hence, o.k. 
 
Step 4:  Lateral ties 
 
 The diameter of transverse reinforcement (lateral ties) is determined from 
cl.26.5.3.2 C-2 of IS 456 as not less than (i) φ /4 and (ii) 6 mm. Here, φ  = largest 
bar diameter used as longitudinal reinforcement = 20 mm. So, the diameter of 
bars used as lateral ties = 6 mm. 
 
 The pitch of lateral ties, as per cl.26.5.3.2 C-1 of IS 456, should be not 
more than the least of 
 

(i) the least lateral dimension of the column  =  400 mm 
 

(ii) sixteen times the smallest diameter of longitudinal reinforcement 
bar to be tied  = 16(16) = 256 mm 

 
(iii) 300 mm 
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 Let us use  p = pitch of lateral ties = 250 mm. The arrangement of 
longitudinal and transverse reinforcement of the column is shown in Fig. 10.22.1. 
 
Problem 2:   
 

Design the column of Problem 1 employing the chart of SP-16. 
 
Solution 2: 
 
 Steps 1 and 2 are the same as those of Problem 1. 
 
Step 3:  Area of steel 
 
 Pu/Ag  =  3000(103)/(600)(400)  =  12.5  N/mm2

 
From the lower section of Chart 25 of SP-16, we get  p = 0.95% when Pu/Ag = 
12.5 N/mm2 and concrete grade is M 25. This gives  Asc = 0.95(400)(600)/100 = 
2288 mm2. The results of both the problems are in good agreement. Marginally 
higher value of Asc while using the chart is due to parallax error while reading the 
value from the chart. Here also, 6-20 mm diameter bars + 2-16 mm diameter 
bars (Asc provided = 2287 mm2) is o.k., though it is 1 mm2 less. 
 
 Step 4 is the same as that of Problem 1. Figure 10.22.1, thus, is also the 
figure showing the reinforcing bars (longitudinal and transverse reinforcement) of 
this problem (same column as that of Problem 1). 
 
Problem 3: 
 
 Design a circular column of 400 mm diameter with helical reinforcement 
subjected to an axial load of 1500 kN under service load and live load. The 
column has an unsupported length of 3 m effectively held in position at both ends 
but not restrained against rotation. Use M 25 concrete and Fe 415 steel. 
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Solution 3: 
 
 
Step 1:  To check the slenderness ratio 
 
 Given data are: unsupported length  l = 3000 mm, D = 400 mm. Table 28 
of Annex E of IS 456 gives effective length le = l = 3000 mm. Therefore, le/D = 7.5 
< 12 confirms that it is a short column. 
 
Step 2: Minimum eccentricity 
 
 emin   =  Greater of (l/500 + D/30) or 20 mm  =  20 mm 
 

0.05 D =  0.05(400)  =  20 mm 
 
As per cl.39.3 of IS 456, emin should not exceed 0.05D to employ the equation 
given in that clause for the design. Here, both the eccentricities are the same. 
So, we can use the equation given in that clause of IS 456 i.e., Eq.10.8 for the 
design.  
 
Step 3:  Area of steel 
 
From Eq.10.8, we have 
 
 Pu  =  1.05(0.4 fck Ac + 0.67 fy Asc)                …  (10.8) 
 
 Ac  =  Ag – Asc  = 125714.29 - Asc

 
Substituting the values of Pu, fck, Ag and fy in Eq.10.8, 
 
 1.5(1500)(103)  =  1.05{0.4(25)(125714.29 – Asc) + 0.67(415) Asc} 
 
we get the value of  Asc = 3304.29 mm2. Provide 11 nos. of 20 mm diameter bars 
(= 3455 mm2) as longitudinal reinforcement giving  p = 2.75%. This p is between 
0.8 (minimum) and 4 (maximum) per cents. Hence o.k. 
 
Step 4:  Lateral ties 
 
 It has been mentioned in sec.10.22.4 that the pitch p of the helix 
determined from Eq.10.11 automatically takes care of the cl.39.4.1 of IS 456. 
Therefore, the pitch is calculated from Eq.10.11 selecting the diameter of helical 
reinforcement from cl.26.5.3.2 d-2 of IS 456. However, automatic satisfaction of 
cl.39.4.1 of IS 456 is also checked here for confirmation. 
 
 Diameter of helical reinforcement (cl.26.5.3.2 d-2) shall be not less than 
greater of (i) one-fourth of the diameter of largest longitudinal bar, and (ii) 6 mm. 
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Therefore, with 20 mm diameter bars as longitudinal reinforcement, the diameter 
of helical reinforcement = 6 mm. 
 
 From Eq.10.11, we have 
 
 Pitch of helix  p  ≤   11.1(Dc - spφ ) asp fy/(D

2 -           … (10.11) ckc fD  )2

 
where Dc  =  400 – 40 – 40  =  320 mm, spφ  = 6 mm, asp = 28 mm2, fy = 415 

N/mm2, D = 400 mm and  fck = 25 N/mm2. 
 
So, p  ≤   11.1(320 – 6) (28) (415)/(4002 – 3202) (25)  ≤   28.125 mm 
 
As per cl.26.5.3.2 d-1, the maximum pitch is the lesser of 75 mm and 320/6 = 
53.34 mm and the minimum pitch is lesser of 25 mm and 3(6) = 18 mm. We 
adopt pitch = 25 mm which is within the range of 18 mm and 53.34 mm. So, 
provide 6 mm bars @ 25 mm pitch forming the helix. 
 
 
Checking of cl. 39.4.1 of IS 456 
 
 The values of helical reinforcement and core in one loop are obtained from 
Eqs.10.8 and 9, respectively. Substituting the values of Dc, spφ , asp and pitch p in 

the above two equations, we have 
 
 Volume of helical reinforcement in one loop  =  27632 mm3  and 
 
 Volume of core in one loop  =  2011428.571 mm3. 
 
 Their ratio  =  27632/2011428.571  =  0.0137375 
 
 0.36(Ag/Ac – 1) (fck/fy)  =  0.012198795 

It is, thus, seen that the above ratio (0.0137375) is not less than 0.36(Ag/Ac – 1) 
(fck/fy). 
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 Hence, the circular column of diameter 400 mm has eleven longitudinal 
bars of 20 mm diameter and 6 mm diameter helix with pitch p = 25 mm. The 
reinforcing bars are shown in Fig.10.22.2. 
 
 

10.22.6  Practice Questions and Problems with Answers 
 
Q.1:  State and explain the values of design strengths of concrete and steel to be 

considered in the design of axially loaded short columns.  
 
A.1:     See sec. 10.22.2. 
 
Q.2:  Derive the governing equation for determining the dimensions of the 

column and areas of longitudinal bars of an axially loaded short tied 
column. 

 
A.2:     See sec. 10.22.2. 
 
Q.3: Derive the governing equation for determining the diameter and areas of 

longitudinal bars of an axially loaded circular spiral short column. 
 
A.3:    First and second paragraph of sec. 10.22.4. 
 
Q.4:  Derive the expression of determining the pitch of helix in a short axially 

loaded spiral column which satisfies the requirement of IS 456. 
 
A.4:    See third paragraph onwards up to the end of sec. 10.22.4. 
 
Q.5:  Design a short rectangular tied column of b = 300 mm having the maximum 

amount of longitudinal reinforcement employing the equation given in 
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cl.39.3 of IS 456, to carry an axial load of 1200 kN under service dead 
load and live load using M 25 and Fe 415. The column is effectively held 
in position at both ends and restrained against rotation at one end. 
Determine the unsupported length of the column. 

 
A.5: 
 
Step 1:  Dimension D and area of steel Asc

 
Substituting the values of Pu = 1.5(1200) = 1800 kN and Asc = 0.04(300)D 

in Eq.10.4, we have 
 
 1800(103)  =  0.4(25)(300D)(1 – 0.04) + 0.67(415)(0.04)(300D) 
 
we get D  =  496.60 mm. Use 300 mm x 500 mm column. 
 
 Asc = 0.04(300)(500)  =  6000 mm2, provide 4-36 mm diameter + 4-25 mm 
diameter bars to give 4071 + 1963 = 6034 mm2 > 6000 mm2. 
 
Step 2:  Lateral ties 
 

 
 

 Diameter of lateral ties shall not be less than the larger of (i) 36/4 = 9 mm 
and (ii) 6 mm. Use 10 mm diameter bars as lateral ties. 
  
 Pitch of the lateral ties p shall not be more than the least of (i) 300 mm, (ii) 
16(25) = 400 mm and (iii) 300 mm.  
 
 So, provide 10 mm diameter bars @ 300 mm c/c. The reinforcement bars 
are shown in Fig.10.22.3.  
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 The centre to centre distance between two corner longitudinal bas along 
500 mm direction is 500 – 2(4) + 10 + 18) = 364 mm which is less than 48 
(diameter of lateral tie). Hence, the arrangement is satisfying Fig.9 of cl. 26.5.3.2 
b-2 of IS 456. 
 
Step 3:  Unsupported length  
 
 As per the stipulation in cl. 25.1.2 of IS 456, the column shall be 
considered as short if lex = 12(D) = 6000 mm and ley = 12(300) = 3600 mm. For 
the type of support conditions given in the problem, Table 28 of IS 456 gives 
unsupported length is the least of (i) l = lex/0.8 = 6000/0.8 = 7500 mm and (ii) 
ley/0.8 = 3600/0.8 = 4500 mm. Hence, the unsupported length of the column is 
4.5 m if the minimum eccentricity clause (cl. 39.3) is satisfied, which is checked 
in the next step. 
 
Step 4:  Check for minimum eccentricity 
 
 According to cl. 39.4 of IS 456, the minimum eccentricity of 0.05b or 0.05D 
shall not exceed as given in cl. 25.4 of IS 456. Thus, we have 
 
(i) 0.05(500)  =  l/500 + 500/30  giving  l = 4165 mm 
 
(ii) 0.05(300)  =  l/500 + 300/10  giving  l = 2500 mm 
 
Therefore, the column shall have the unsupported length of 2.5 m. 
 
Q.6:  (a) Suggest five alternative dimensions of square short column with the 

minimum longitudinal reinforcement to carry a total factored axial load of 
3000 kN using concrete of grades 20, 25, 30, 35 and 40 and Fe 415. 
Determine the respective maximum unsupported length of the column if it 
is effectively held in position at both ends but not restrained against 
rotation. Compare the given factored load of the column with that obtained 
by direct computation for all five alternative columns. 

 
            (b) For each of the five alternative sets of dimensions obtained in (a), 

determine the maximum factored axial load if the column is having 
maximum longitudinal reinforcement (i) employing SP-16 and (ii) by direct 
computation. 
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A.6: 

 
Solution of Part (a): 
 
Step 1:  Determination of Ag and column dimensions b (= D) 
 
 Chart 25 of SP-16 gives all the dimensions of five cases. The two input 
data are Pu = 3000 kN and 100 As/Ag = 0.8. In the lower section of Chart 25, one 
horizontal line AB is drawn starting from A where p = 0.8 (Fig.10.22.4) to meet 
the lines for M 20, 25, 30, 35 and 40 respectively. In Fig.10.22.4, B is the meeting 
point for M 20 concrete. Separate vertical lines are drawn from these points of 
intersection to meet another horizontal line CD from the point C where Pu = 3000 
kN in the upper section of the figure. The point D is the intersecting point. D 
happens to be on line when Ag = 3000 cm2. Otherwise, it may be in between two 
liens with different values of Ag. For M 20, Ag = 3000 cm2. However, in case the 
point is in between two lines with different values of Ag, the particular Ag has to 
be computed by linear interpolation. Thus, all five values of Ag are obtained. 
 
 The dimension b = D = 300000  = 550 mm. Other four values are 
obtained similarly. Table 10.1 presents the values of Ag and D along with other 
results as explained below. 
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Step 2:  Unsupported length of each column 
 
 The unsupported length l is determined from two considerations: 
 
 (i) Clause 25.1.2 of IS 456 mentions that the maximum effective length lex 
is 12 times b or D (as b = D here for a square column). The unsupported length is 
related to the effective length depending on the type of support. In this problem 
Table 28 of IS 456 stipulates  l = lex. Therefore, maximum value of  l = 12 D. 
 
 (ii) The minimum eccentricity of cl. 39.3 should be more than the same as 
given in cl. 25.4. Assuming them to be equal, we get  l/500 + D/30 = D/20, which 
gives  l = 8.33D. For the column using M 20 and Fe 415, the unsupported length 
= 8.33(550) = 4581 mm. All unsupported lengths are presented in Table 10.1 
using the equation 
 
 l  =  8.33 D                
(1) 
 
Step 3:  Area of longitudinal steel 
 
 Step 1 shows that the area provided for the first case is 550 mm x 550 mm 
= 302500 mm2, slightly higher than the required area of 300000 mm2 for the 
practical aspects of construction. However, the minimum percentage of the 
longitudinal steel is to the calculated as 0.8 per cent of area required and not 
area provided (vide cl. 26.5.3.1 b of IS 456). Hence, for this case Asc = 
0.8(300000)/100 = 2400 mm2. Provide 4-25 mm diameter + 4-12 mm diameter 
bars (area = 1963 + 452 = 2415 mm2). Table 10.1 presents this and other areas 
of longitudinal steel obtained in a similar manner. 
 
Step 4:  Factored load by direct computation 
 
 Equation 10.4 is employed to calculate the factored load by determining Ac 
from Ag and Ast. With a view to comparing the factored loads, we will use the 
values of Ag as obtained from the chart and not the Ag actually provided. From 
Eq.10.4, we have 
 
 Pu from direct computation  =  0.4(fck)(0.992 Ag) + 0.67(fy)(0.008)Ag

 
or Pu  =  Ag(0.3968 fck + 0.00536 fy)             
(2) 
 
For the first case when Ag = 300000 mm2, fck = 20 N/mm2, and  fy = 415 N/mm2, 
Eq.(2) gives Pu = 3048.12 kN. This value and other values of factored loads 
obtained from the direct computation are presented in Table 10.1. 
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Table 10.1  Results of Q.6a (Minimum Longitudinal Steel), given factored Pu = 
3000 kN 
 

Gross area of 
concrete (Ag) 

Area of steel (Asc)  
Concret
e grade Require

d (cm2) 
Provide
d (cm2) 

 
b = D 
(cm) Require

d (cm2) 
Provide
d (cm2) 

Bars 

 
Pu by direct 
computation 

 

 
l  

(m) 

M 20 3000 3025 55 24 24.15 4-25 + 
4-12 

3048.12 4.58
1 

M 25 2500 2500 50 20 20.60 4-20 + 
4-16 

3036.10 4.16
5 

M 30 2200 2209 47 17.60 17.85 2.25 + 
4-16 

3108.25 3.91
5 

M 35 1800 1806 42.5 14.40 14.57 2-28 + 
2-12 

2900.23 3.54
0 

M 40 1600 1600 40 12.80 13.06 2-20 + 
6-12 

2895.42 3.33
2 

 
Solution of Part (b): 
 
Step 1:  Determination of Pu

 
 Due to the known dimensions of the column section, the Ag is now known. 
With known Ag and reinforcement percentage 100As/Ag as 4 per cent, the 
factored Pu shall be determined. For the first case, when b = D =  550 mm, Ag = 
302500 mm2. In Chart 25, we draw a horizontal line EF from E, where 100As/Ag = 
4 in the lower section of the chart (see Fig.10.22.4) to meet the M 20 line at F. 
Proceeding vertically upward, the line FG intersects the line Ag = 302500 at G. A 
horizontal line towards left from G, say GH, meets the load axis at H where Pu = 
5600 kN. Similarly, Pu for other sets are determined and these are presented in 
Table 10.2, except for the last case when M 40 is used, as this chart has ended 
at p = 3.8 per cent. 
 
Step 2:  Area of longitudinal steel 
 
 The maximum area of steel, 4 per cent of gross area of column = 
0.04(550)(550) = 12100 mm2. Provide 12-36 mm diameter bars to have the 
actual area of steel = 12214 mm2 > 12100  mm2, as presented in Table 10.2. 
 
Step 3:  Factored Pu from direct computation 
 
 From Eq,10.4, as in Step 4 of the solution of Part (a) of this question, we 
have 
 
 Pu  =  0.4 fck (Ag – Asc) + 0.67 fy Asc             
(3) 
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Substituting the values of Ag and Asc actually provided, we get the maximum Pu 
of the same column when the longitudinal steel is the maximum. For the first 
case when Ag = 302500 mm2, Asc = 12214 mm2, fck = 20 N/mm2 and  fy = 415 
N/mm2, we get Pu = 5718.4 kN. This value along with other four values are 
presented in Table 10.2. 
 
Remarks: 
 
 Tables 10.1 and 10.2 reveal that two sets of results obtained from charts 
of SP-16 and by direct computation methods are in good agreement. However, 
values obtained from the chart are marginally different from those obtained by 
direct computation both on the higher and lower sides. These differences are 
mainly due to personal error (parallax error) while reading the values with eye 
estimation from the chart. 
 
Table 10.2  Results of Q.6(b) (Maximum Longitudinal Steel) given the respective 
Ag

 
Area of steel (Asc) Pu = Factored load Concret

e grade 
b = 
D 

(cm) 

Gross 
concret
e area 
(As)  
   (cm2) 

Require
d (cm2) 

Provide
d (cm2) 

Bars 
(No.

) 

SP-chart 
(kN) 

Direct 
Computatio
n  
      (kN) 

M 20 55 3025 121 122.14 12-
36 

5600 5718.4 
 

M 25 50 2500 100 101.06 8-36 
+ 4-
25 

5200 5208.9 

M 30 47 2209 88.36 88.97 8-32 
+ 4-
28 

5000 5017.8 

M 35 42.5 1806.25 72.25 73.69 12-
28 

4500 4474.5 
 

M 40 40 1600 64 64.46 8-28 
+ 4-
32 

Not 
availabl
e 

4249.2 

 
Q.7:  Design a short, helically reinforced circular column with minimum amount of 

longitudinal steel to carry a total factored axial load of 3000 kN with the 
same support condition as that of Q.6, using M 25 and Fe 415. Determine 
its unsupported length. Compare the results of the dimension and area of 
longitudinal steel with those of Q.6(a) when M 25 and Fe 415 are used. 

 
A.7: 
 
Step 1:  Diameter of helically reinforced circular column 

Version 2 CE IIT, Kharagpur 
 



 
 As per cl. 39.4 of IS 456, applicable for short spiral column, we get from 
Eq.10.8 
 
 Pu  =  1.05(0.4 fck Ac + 0.67 fy Asc)           ….  (10.8) 
 
Given data are: Pu = 3000 kN, Ac = π /4 (D2)(0.992), Asc = 0.008(π /4) D2, fck = 25 
N/mm2 and fy = 415 N/mm2. So, we have 
 
 3000(103)  =  1.05(12.1444)(π /4)D2

 
giving  D = 547.2 mm  and  Ag = 235264.2252 mm2. Provide diameter of 550 mm. 
 
Step 2:  Area of longitudinal steel 
 
 Providing 550 mm diameter, the required Ag has been exceeded. Clause 
26.5.3.1b stipulates that the minimum amount of longitudinal bar shall be 
determined on the basis of area required and not area provided for any column. 
Accordingly, the area of longitudinal steel = 0.008 Ag = 0.008(235264.2252) = 
1882.12 mm2. Provide 6-20 mm diameter bars (area = 1885 mm2) as longitudinal 
steel, satisfying the minimum number of six bar (cl. 26.5.3.1c of IS 456). 
 
Step 3:  Helical reinforcement 
 

 
 Minimum diameter of helical reinforcement is greater of (i) 20/4 or (ii) 6 
mm. So, provide 6 mm diameter bars for the helical reinforcement (cl. 26.5.3.2d-
2 of IS 456). The pitch of the helix p is determined from Eq.10.11 as follows: 
 
 p  ≤    11.1(Dc - spφ ) asp fy/(D

2 - ) f2
cD ck          ….  (10.11) 
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Using  Dc = 550 – 40 – 40 = 470 mm,  spφ  = 6 mm,  asp = 28 mm2, D = 550 mm, 

fck = 25 N/mm2 and fy = 415 N/mm2, we get 
 
 p  ≤   11.1(470 – 6)(28)(415)/(5502 – 4702)(25)  ≤   29.34 mm 
 
Provide 6 mm diameter bar @ 25 mm c/c as helix. The reinforcement bars are 
shown in Fig. 10.22.5. Though use of Eq.10.11 automatically checks the 
stipulation of cl. 39.4.1 of IS 456, the same is checked as a ready reference in 
Step 4 below.  
 
Step 4:  Checking of cl. 39.4.1 of IS 456 
 
 Volume of helix in one loop  =  π (Dc - spφ ) asp       ….  (10.9) 

 
 Volume of core  =  (π /4)  (p)                            ….  (10.10) 2

cD

 
 The ratio of Eq.10.9 and Eq.10.10  =  4(Dc - spφ ) asp/ p 2

cD

 
  =  4(470 – 6)(28)/(470)(470)(25)  =  0.009410230874 
 
This ratio should not be less than 0.36(Ag/Ac – 1)(fck/fy) 
 
  =  0.36{(D2/ ) – 1)} (f2

cD ck/fy)  =  0.008011039177 
 
Hence, the stipulation of cl. 39.4.1 is satisfied. 
 
Step 5:  Unsupported length 
 
 The unsupported length shall be the minimum of the two obtained from (i) 
short column requirement given in cl. 25.1.2 of IS 456 and (ii) minimum 
eccentricity requirement given in cls. 25.4 and 39.3 of IS 456. The two values are 
calculated separately: 
 
 (i)  l  =  le  =  12D  =  12(550)  =  6600 mm 
 
 (ii) l/500 + D/30  =  0.05 D  gives  l = 4583.3 mm 
 
So, the unsupported length of this column  =  4.58 m.  
 
Step 6:  Comparison of results 
 
 Table 10.3 presents the results of required and actual gross areas of 
concrete and area of steel bars, dimensions of column and number and diameter 
of longitudinal reinforcement of the helically reinforced circular and the square 
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columns of Q.6(a) when M 20 and Fe 415 are used for the purpose of 
comparison. 
 
Table 10.3 Comparison of results of circular and square columns with minimum 

longitudinal steel (Pu = 3000 kN, M 25, Fe 415) 
 

Gross concrete area Area of steel Column 
shape 
and 
Q.No. 

Required 
(cm2) 

Provided 
(cm2) 

Dimension 
D (cm) 

Required 
(cm2) 

Provided 
(cm2) 

 

Bar dia. 
and No. 

(mm,No.)
Circular 

(Q.7) 
2352.64 2376.78 55 18.82 18.85 6-20 

Square 
(Q.6(a) 

2500 2500 50 20 20.6 4-20 +  
4-16 
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10.22.8  Test 22 with Solutions 
 
Maximum Marks  =  50,     Maximum Time  =  30 minutes 
 
Answer all questions carrying equal marks. 
 
TQ.1: Derive the expression of determining the pitch of helix in a short axially 

loaded spiral column which satisfies the requirement of IS 456.                        
(20 marks) 

 
A.TQ.1:   See third paragraph onwards up to the end of sec. 10.22.4.                                               
 
TQ.2: Design a square, short tied column of b = D = 500 mm to carry a total 

factored load of 4000 kN using M 20 and Fe 415. Draw  the reinforcement 
diagram.       

(30 marks) 
 
A.TQ.2:  
 
Step 1:  Area of longitudinal steel  
 
 Assuming p as the percentage of longitudinal steel, we have Ac = 
(500)(500)(1 – 0.01p), Asc = (500)(500)(0.01p),  fck = 20 N/mm2  and  fy = 415 
N/mm2. Using these values in Eq.10.4 
 
 Pu  =  0.4 fck Ac + 0.67 fy Ast                …. (10.4) 
 
or  4000000  =  0.4(20)(250000)(1 – 0.01p) + 0.67(415)(250000)(0.01p) 
 
we get p  =  2.9624, which gives  Asc = (2.9624)(500)(500)/100 = 7406 mm2. Use 
4-36 + 4-25 + 4-22 mm diameter bars (4071 + 1963 + 1520) = 7554 mm2 > 7406 
mm2 as longitudinal reinforcement. 
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Step 2:  Lateral ties 
 
 Diameter of tie is the greater of (i) 36/4 and (ii) 6 mm. Provide 10 mm 
diameter lateral ties. 
 
 The pitch of the lateral ties is the least of (i) 500 mm, (ii) 16(22) = 352 mm, 
and (iii) 300 mm. Provide 10 mm diameter @ 300 mm c/c. The reinforcement 
bars are shown in Fig.10.22.6. It is evident that the centre to centre distance 
between two corner bars = 364 mm is less than 48 times the diameter of lateral 
ties = 480 mm (Fig.9 of cl. 26.5.3.2b-2 of IS 456). 
 

10.22.9  Summary of this Lesson 
 
 This lesson illustrates the additional assumptions made regarding the 
strengths of concrete and steel for the design of short tied and helically 
reinforced columns subjected to axial loads as per IS 456. The governing 
equations for determining the areas of cross sections of concrete and longitudinal 
steel are derived and explained. The equation for determining the pitch of the 
helix for circular columns is derived. Several numerical examples are solved to 
illustrate the applications of the derived equations and use of charts of SP-16 for 
the design of both tied and helically reinforced columns. The results of the same 
problem by direct computation are compared with those obtained by employing 
the charts of SP-16 are compared. The differences of results, if any, are 
discussed. Understanding the illustrative examples and solving the practice and 
test problems will explain the applications of the equation and use of charts of 
SP-16 for designing these two types of columns. 
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Instructional Objectives: 
 

At the end of this lesson, the student should be able to: 
 

• state the two types of problems that can be solved using the design charts 
of     SP-16, 

 
• mention the three sets of design charts specifying their parameters, 

 
• state the approximations, limitations and usefulness of the design charts 

of SP-16, 
 

• mention the different steps of solving the analysis type of problems using 
the design charts of SP-16, 

 
• mention the different steps of solving the design type of problems using 

the design charts of SP-16, 
 

• apply the methods in solving both types of problems using the design 
charts of SP-16. 

 
 

10.25.1   Introduction 
 

Lesson 24 explains the procedure of preparing the design charts of short 
rectangular reinforced concrete columns under axial load with uniaxial bending. It 
is also mentioned that similar design charts can be prepared for circular and 
other types of cross-sections of columns by dividing the cross-section into 
several strips. This lesson explains the design of rectangular and circular short 
columns with the help of design charts. 
 
 It is known that the design of columns by direct computations involves 
several trials and hence, time taking. On the other hand, design charts are very 
useful in getting several alternative solutions quickly. Further, design charts are 
also used for the analysis of columns for safety etc. However, there are 
limitations of using the design charts, which are mentioned in this lesson. Several 
numerical problems are solved in this lesson for the purpose of illustration 
covering both analysis and design types of problems using the design charts of 
SP-16. 
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10.25.2  Design Charts of SP-16 
 
 SP-16 has three sets of design charts prepared by following the procedure 
explained in Lesson 24 for rectangular and circular types of cross-sections of 
columns. The three sets are as follows: 
 
 (i) Charts 27 to 38 are the first set of twelve charts for rectangular columns 
having symmetrical longitudinal steel bars in two rows (Fig.10.25.1) for three 
grades of steel (Fe 250, Fe 415 and Fe 500) and each of them has four values of 
d’/D ratios (0.05, 0.10, 0.15 and 0.20). 

 
 (ii) Charts 39 to 50 are the second set of twelve charts for rectangular 
columns having symmetrical longitudinal steel bars (twenty numbers) distributed 
equally on four sides (in six rows, Fig.10.25.2) for three grades of steel (Fe 250, 
Fe 415 and Fe 500) and each of them has four values of d’/D ratios (0.05, 0.10, 
0.15 and 0.20). 
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 (iii) The third set of twelve charts, numbering from 51 to 62, are for circular 
columns having eight longitudinal steel bars of equal diameter and uniformly 
spaced circumferentially (Fig.10.25.3) for three grades of steel (Fe 250, Fe 415 
and Fe 500) and each of them has four values of d’/D ratios (0.05, 0.10, 0.15 and 
0.20). 
 
 All the thirty-six charts are prepared for M 20 grade of concrete only. This 
is a justified approximation as it is not worthwhile to have separate design charts 
for each grade of concrete. 
 

10.25.3  Approximations and Limitations of Design Charts of 
SP-16 
 
(i) Approximations 
 
 The following are the approximations of the design charts of SP-16: 
 
(a) Grade of concrete 
 
 As mentioned in the earlier section, all the design chars of SP-16 assume 
the constant grade M 20 of concrete. However, each chart has fourteen plots 
having different values of the parameter p/fck ranging from zero to 0.26 at an 
interval of 0.02. The designer, thus, can make use of the actual grade of concrete 
by multiplying the p/fck obtained from the plot with the actual fck for the particular 
grade of concrete to partially compensate the approximation. 
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(b) The d’/D ratio 
 
 The three sets of charts have four fixed values of d’/D ratios (0.05, 0.10, 
0.15 and 0.20). However, in the practical design, the d’/D ratio may be different 
from those values. In such situations intermediate values are determined by 
making linear interpolations.  
 
(c) Equal distribution of twenty longitudinal steel bars on four sides of rectangular 

columns 
 
 In spite of the above consideration, the design charts may be used without 
significant error for any number of bars greater than eight provided the bars are 
distributed equally on four sides. 
 
(d) Longitudinal bars in circular columns 
 
 Though the design charts are prepared considering eight bars uniformly 
placed circumferentially, they may generally be used for any number of bars 
greater than six, uniformly placed circumferentially.  
 
(ii) Limitations 
 

 
 The following are the limitations of the design chars of SP-16: 
 
(a) Longitudinal bars equally distributed on four sides of rectangular columns 
 
 Twenty bars, when equally placed on four sides, are placed in six rows 
avoiding any bar on the two axes. However, there will be bars on the axes for 
odd number of rows. A very common type is the 6-bar arrangement (Fig.10.25.4). 
Such arrangements, though symmetrical, are not covered in the design charts of 
SP-16. In such cases, the designer has to make his own assumptions judiciously 
in order to use the available charts of SP-16. Alternatively, he has to prepare the 
actual design chart depending on the bar arrangement to get accurate results.  

Version 2 CE IIT, Kharagpur 
 



 
(b) Unsymmetrical arrangement of longitudinal bars in rectangular cross-sections 
 
 It is not covered in the charts. 
 
(c) Non-uniform placing of longitudinal bars in circular cross-sections 
 
 It is not covered in the charts. 
 
(d) Cross-sections other than rectangular or circular like, I, T, H, X etc. 
 
 These are not covered in the charts. 
 
 The items under b, c and d, though rare, should be taken care of by 
preparing the respective design chars as and when needed. 
 
(e) Concluding remarks 
 
 In spite of the above approximations and limitations, use of SP-16 has 
several advantages even by making some more approximations if the charts are 
not directly applicable. In the note of cl.39.5 of IS 456, the following is 
recommended, which is worth reproducing: 
 
 “The design of members subject to combined axial load and uniaxial 
bending will involve lengthy calculation by trial and error. In order to overcome 
these difficulties interaction diagrams may be used. These have been prepared 
and published by BIS in “SP-16 Design aids for reinforced concrete to IS 456’.” 
 
 Accordingly, the use of SP-16 is explained in the following sections for the 
solutions of both analysis and design types of problems. 
 

10.25.4  Use of Design Charts in the Analysis Type of 
Problems 
 

 In many situations, it becomes necessary to assess the safety of a 
column with known cross-section dimensions, and longitudinal and transverse 
steel reinforcing bars. The objective is to examine if the column can resist some 
critical values of Pu or Mu or pairs of Pu and Mu, as may be expected to be 
applied on the column. This is done by comparing if the given values of pair of Pu 
and Mu are less than the respective strength capacities pair of Pu and Mu. The 
word “given” shall be used in the suffix of pairs of Pu and Mu to indicate that they 
are the given values for which the column has to be examined. The strength 
capacities of the column, either Pu or Mu alone or pair of Pu and Mu, will not have 
any suffix. Thus, the designer shall assess 
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(pair of Pu and Mu)given  <  pair of Pu and Mu, as strength capacities                         
(10.53) 
 
 This type of problem is known as analysis type of problem. The three 
steps are given below while using design charts of SP-16 for solving such 
problems. 
 
Step 1:  Selection of the design chart 
 
 The designer has to select a particular design chart, specified by the chart 
number, from the known value of d’/D and the grade of steel for circular columns; 
and considering also the distribution of longitudinal steel bars equally on two or 
four sides for the rectangular columns. 
 
Step 2:  Selection of the particular curve 
 
 The designer shall select the particular curve out of the family of fourteen 
curves in the chart selected in Step 1. The selection of the curve shall be made 
from the value of p/fck  parameter which is known. 
 
Step 3:  Assessment of the column 
 
 This can be done in any of the three methods selecting two of the three 
parameters as known and comparing the third parameter to satisfy Eq.10.53. The 
parameters are Pu/fck bD, Mu/fck bD2 and p/fck for rectangular columns. For circular 
columns the breadth b shall be replaced by D (the diameter of the column). 
 

10.25.5  Use of Design Charts in the Design Type of 
Problems 
 
 It is explained in sec.10.24.2 of Lesson 24 that the design of columns 
mainly involves with the determination of percentage of longitudinal steel p, either 
assuming or knowing the dimensions b and D, grades of concrete and steel, 
distribution of longitudinal bars in two or multiple rows and d’/D from the analysis 
or elsewhere. However, the designer has to confirm the assumed data or revise 
them, if needed. The use of design charts of SP-16 is explained below in four 
steps while designing columns: 
 
Step 1:  Selection of the design chart 
 
 As in step 1 of sec.10.25.4, the design chart is selected from the assumed 
values of the parameter as explained in step 1 of sec.10.25.4. The only 
difference is that, here the assumed parameter may be revised, if required. 
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Step 2:  Determination of the percentage of longitudinal steel 
 

 
 The two parameters (Pu/fck bD) and (Mu/fck bD2) are known and the point A 
is located on the design chart with these two coordinates (Fig.10.25.5). The point 
may be like A1, on a particular curve of specified p/fck, or like A2, in between two 
such curves having two values of p/fck, the difference between the two values of 
p/fck is 0.02. In the first case, the corresponding p/fck is obtained directly as 
specified on the curve. While, in the second case, liner interpolation is to be done 
by drawing a line KL perpendicular to the two curves and passing through the 
point A2. 
 
 The percentage of longitudinal steel is obtained by multiplying the p/fck, so 
obtained, by the actual grade of concrete (which may be different from M 20 
though the chart is prepared assuming M 20 only). Thus, percentage of 
longitudinal steel, 
 
 p  =  (p/fck) (Actual  fck)      
 (10.54) 
 
 This percentage of longitudinal steel (obtained from Eq.10.54) is a 
tentative value and shall be confirmed after finalizing the assumed data, i.e., d’/D, 
b, D etc. 
 
Step 3:  Design of transverse reinforcement 
 
 This should be done before confirming d’/D as the diameter of the lateral 
tie has a role in finalizing d’. The design of transverse reinforcement shall be 
done following the procedure explained in secs.10.21.8 and 10.21.9 of Lesson 
21. 
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Step 4:  Revision of the design, if required 
 
 If the value of d’/D changes in step 3 requiring any change of other 
dimension etc., the repetition of steps 1 to 3 are needed. Otherwise, the design is 
complete. 
 
 

10.25.6  Illustrative Examples 
 

 
Problem 1: 
 
 Figure 10.25.6 shows a rectangular short reinforced concrete column 
using M 25 and Fe 415. Analyse the safety of the column when subjected to Pu = 
1620 kN and  Mu = 170 kNm. 
 
Solution 1: 
 
 This is an analysis type of problems. The data given are: b = 300 mm, D = 
450 mm, d’ = 56 mm, Asc  = 4021 mm2 (20 bars of 16 mm diameter), fck = 25 
N/mm2, fy = 415 N/mm2, Pu = 1620 kN and Mu = 170 kNm. So, we have d’/D = 
56/450 = 0.1244, Pu/fckbD = 0.48, Mu/fckbD2 = 0.111934 and p/fck = 0.11914. 
 
Step 1:  Selection of design chart 
 
 From the given data: d’/D = 0.1244, fy = 415 N/mm2 and longitudinal steel 
bars are equally distributed on four sides, the charts selected are 44 (for d’/D = 
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0.1) and 45 (for d’/D = 0.15). Linear interpolation has to done with the values 
obtained from these two charts. 
 
Step 2:  Selection of the particular curve 
 
 From the given value of p/fck = 0.11914, the two curves having p/fck = 0.1 
and 0.12 are selected from both the charts (No. 44 and 45). Here also, linear 
interpolation has to be done. 
 
Step 3:  Assessment of the column 
 
 In order to assess the column, we select the two given parameters p/fck 
and Pu/fckbd2 to determine the third parameter Mu/fckbD2 to compare its value 
with the given parameter Mu/fckbD2. However, the value of Mu/fckbD2 is obtained 
by doing linear interpolation two times: once with respect to p/fck and the second 
time with respect to d’/D. The results are furnished in Table 10.9 below: 
 
Table 10.9:  Values of Mu/fckbD2 when (Pu/fckbD2)given = 0.48 and (p/fck)given = 

0.11914; and d’/D = 0.1244 
 

d’/D Sl. No. p/fck

0.1 0.15 0.1244 
1 0.1 0.1* 0.09** 0.09512*** 
2 0.12 0.12* 0.107** 0.113656*** 
3 0.11914 0.1194*** 0.10649*** 0.1130941*** 

 
Note:   *     Values obtained from chart 44 
 **   Values obtained from chart 45 
 ***  Linearly interpolated values 
 
 Thus, the moment capacity of the column is obtained from the final value 
of Mu/fckbD2 = 0.1130941 as 
 
 Mu  =  (0.1130941)(25)(300)(450)(450) Nmm  =  171.762  kNm, 
 
which is higher than the given  Mu = 170 kNm. Hence, the column can be 
subjected to the pair of given Pu and Mu as 1620 kN and 170 kNm, respectively. 
 
Problem 2: 
 
 Design a short spiral column subjected to Pu = 2100 kN and  Mu = 187.5 
kNm using M 25 and Fe 415. The  preliminary diameter of the column may be 
taken as 500 mm.  
 
Solution 2: 
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Step 1:  Selection of design chart 
 
 With the given  fy = 415 N/mm2 and assuming d’/D = 0.1, the chart 
selected for this problem is Chart 56. 
 
Step 2:  Determination of the percentage of longitudinal steel 
 
 With the given  fck = 25 N/mm2 and assuming the given D = 500 mm, we 
have: 
 
 Pu/fckD

2  =  2100000/25(500)(500)  =  0.336, and 
 
 Mu/fckD

3  =  187.5(106 )/25(500)(500)(500)  =  0.06 
 
 The particular point A (Fig.10.25.5) having coordinates of  Pu/fckD

2  =  
0.336 and Mu/fckD

3  =  0.06 in Chart 56 gives: p/fck = 0.08. Hence, p = 0.08(25) = 
2 per cent (see Eq.10.54). 
 
 Asc  =  0.02(π )(500)(500)/4  =  3928.57 mm2

 
Provide 8-25 mm diameter bars to have Asc actually provided = 3927 mm2. 
Marginally less amount of steel than required will be checked considering the 
enhancement of strength for spiral columns as stipulated in cl.39.4 of IS 456. 
 
Step 3:  Design of transverse reinforcement 
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 The diameter of the helical reinforcement is taken as 8 mm (> 25 mm/4). 
The pitch p of the spiral is determined from Eq.10.11 of Lesson 22, which 
satisfies the stipulation in cl.39.4.1 of IS 456. From Eq.10.11, we have the pitch 
of the spiral p as: 
 
 p  ≤   11.1(Dc - spφ ) asp fy/(D

2 -  f)2
cD ck ….                                           

(10.11) 
 
where, Dc = 500 – 40 – 40 = 420 mm, D = 500 mm, fck = 25 N/mm2, fy = 
415 N/mm2,  spφ  = 8 mm and  asp = 50 mm2. 

 
 Using the above values in Eq.10.11, we have  p ≤  25.716 mm. As per 
cl.26.5.3.2d1, regarding the pitch of spiral:  p >/  420/6 (= 70 mm),  p </  25 mm 
and  p </  24 mm. So, pitch of the spiral = 25 mm is o.k. Figure 10.25.7 presents 
the cross-section with reinforcing bars of the column. 
 
Step 4:  Revision of the design, if required 
 
 Providing 25 mm diameter longitudinal steel bars and 8 mm diameter 
spirals, we have d’ = 40 + 8 + 12.5 = 60.5 mm. This gives d’/D = 60.5/500 = 
0.121. In step 1, d’/D is assumed as 0.1. So, the revision of the design is needed. 
 
 However, as mentioned in step 2, the area of steel required is not 
provided and this may be offset considering the enhanced strength of the spiral 
column, as stipulated in cl.39.4 of IS 456. 
 
 We, therefore, assess the strength of the designed column, when d’/D = 
0.121 and Asc = 3927 mm2, if it can be subjected to Pu = 2100 kN and Mu = 187.5 
kNm. 
 
 For the purpose of assessment, we determine the capacity Pu of the 
column when Mu = 187.5 kNm. Further, the revised d’/D = 0.121 needs to 
interpolate the values from Charts 56 (for d’/D = 0.1) and 57 (for d’/D = 0.15). The 
value of p/fck = 0.08 and Mu/fckbD3 = 0.06. Table 10.10 presents the results. 
 
Table 10.10:  Value of Pu/fckbD2 when Mu/fckD

3 = 0.06 and p/fck = 0.08 
 

Sl.No. d’/D Pu/fckD
2 

 
1 0.1 0.336 (from Chart 56) 
2 0.15 0.30 (from Chart 57) 
3 0.121 0.32088 (Interpolated value) 

 
From Table 10.10, thus, we get,  
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 Pu/fckD
2 = 0.32088, which gives  Pu = (0.32088)(25)(500)(500) = 2005.5 

kN. 
 
 Considering the enhanced strength as 1.05 times as per cl.39.4 of IS 456, 
the actual capacity of this column is (1.05)(2005.5) = 2105 kN > 2100 kN. 
 
 Thus, the design is safe to carry Pu = 2100 kN and Mu = 187.5 kNm. 
 
 

10.25.7  Practice Questions and Problems with Answers 
 
Q.1:   Name the two types of problems that can be solved using the design 

charts of SP-16.  
 
A.1:   See sec. 10.25.1. 
 
Q.2: Mention the three different sets of design charts available in SP-16 

mentioning the number of charts and the parameters for their identification. 
 
A.2:  See sec. 10.25.2. 
 
Q.3: State the approximations, limitations and usefulness of the design charts of 

SP-16 in solving the analysis and design type of problems of short columns. 
 
A.3:  See sec. 10.25.3. 
 
Q.4:   
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         Assess the safety of the spiral column shown in Fig.10.25.8 using M 20 and 
Fe 415 when subjected to Pu = 1200 kN and Mu = 64 kNm, considering the 
enhanced strength of the spiral column. 

 
A.4:  In this problem, the given data are: D = 400 mm, d’ = 40 + 6 + 10 = 56 mm, 

Asc = 2513 mm2 (8-20 mm diameter bars), fck = 20 N/mm2, fy = 415 N/mm2, 
Pu = 1200 kN and Mu = 64 kNm. 

 
Step 1:  Selection of the design charts 
 
 With fy = 415 N/mm2 and d’/D = 56/400 = 0.14, we select two charts nos. 
56 (for d’/D = 0.1) and 57 (for d’/D = 0.15). We have to interpolate the values 
obtained from these two charts. 
 
Step 2:  Selection of the particular curve 
 
 From the given data we have p/fck = 0.0999488 ≅  0.1. So, we select the 
curve for p/fck = 0.1 in the two charts (Nos. 56 and 57). 
 
Step 3:  Assessment of the column 
 
 For the purpose of assessment, we select the two parameters p/fck and 
Mu/fckD

3 and determine the values of Pu/fckD
2 from the two charts for interpolation. 

The results are presented in Table 10.11 below. 
 
Table 10.11:  Values of  p/fckD

2 and Mu/fckD
3 and  p/fck = 0.1 

 
Sl.No. d’/D Pu/fckD

2 

 
1 0.1 0.444 (from Chart 56) 
2 0.15 0.422 (from Chart 57) 
3 0.14 0.4264 (Interpolated value) 

 
From Table 10.11, thus, we get Pu/fckD

2 = 0.4264, which gives  Pu = 1364.48 kN. 
 
 It may be noted that for more accuracy another set of values of d’/D = 0.08 
is required. The interpolated value, thus obtained, shall be strictly applicable 
when p/fck = 0.0999488. However, for all practical designs, such accuracy is not 
required. 
 
 Further, as per cl.39.4 of IS 456, the enhanced capacity of the spiral 
column = 1.05(1364.48) = 1432.704 kN, which is more than 1200 kN. It is also 
seen that the column is safe even without considering the enhanced capacity as 
the Pu = 1364.48 kN > 1200 kN. 
 
Q.5:    
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            Design a short square tied column to carry Pu = 2240 kN and  Mu = 112 

kNm using M 25 and Fe 415, and assuming the dimension b = D = 400 
mm, as shown in Fig.10.25.9. 

 
A.5:   The data given are: b = D = 400 mm, Pu = 2240 kN,  Mu = 112 kNm, fck = 

25 N/mm2 and fy = 415 N/mm2. 
 
Step 1:  Selection of the design chart 
 
 With the given data of fy = 415 N/mm2 and assuming d’/D = 0.15, we have 
to refer to Chart 45. 
 
Step 2:  Determination of percentage of longitudinal steel 
 
 Using the values of fck = 25 N/mm2 and assuming b = D = 400 mm as 
given, we have Pu/fckD

2 = 0.56 and  Mu/fckD
3 = 0.07. 

 
 From Chart 45, we get  p/fck = 0.1, giving p = 2.5 per cent. Accordingly,  
 
 Asc = 2.5(400)(400)/100 = 4000 mm2. Provide 20 bars of 16 mm diameter 
(Asc(provide) = 4021 mm2). 
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Step 3:  Design of lateral tie 
 
 The arrangement of lateral tie shall be like Fig.18 of IS 456 as the 
longitudinal bars are not spaced more than 75 mm on either side (cl.26.5.3.2b1 
of IS 456). The pitch of the lateral tie of diameter 8 mm is kept at 250 mm c/c 
satisfying the stipulation in cl.26.5.3.2c1 of IS 456. Figure 10.25.9 presents the 
cross-section with reinforcing bars of the column. 
 
Step 4:  Revision of the design, if required 
 
 The value of d’ is now 56 mm which gives d’/D = 0.14. Accordingly, the 
assumed value of d’/D in step 1 as 0.15 is not valid. So, we have to check the 
capacity of the column interpolating the values when d’/D = 0.1 and 0.15 from 
Charts 44 and 45, respectively. Further, the longitudinal steel provided gives  
p/fck = 0.100525, which also is different from 0.1 as obtained in step 2 of this 
problem. Though the difference is marginal, both the interpolations are done for 
the academic interest and results are presented in Table 10.12 below. In 
assessing the capacity of this column, we keep p/fck = 0.100125 and Pu/fckD

2 = 
0.56 as constants and determine the value of Mu/fckD

3 by two linear 
interpolations. 
 
Table 10.12:  Values of Mu/fckD

3 when Pu/fckbD2 = 0.56 and p/fck = 0.10025 
 

d’/D Sl. No. p/fck

0.1 0.15 0.14 
1 0.1 0.1* 0.07** 0.072*** 
2 0.12 0.08* 0.09** 0.092*** 
3 0.100525 0.080525*** 0.070525*** 0.072525*** 

 
Note:   *     Values obtained from Chart 44 
 **   Values obtained from Chart 45 
 ***  Linearly interpolated values 
 
 So, the capacity of the column Mu  =  (0.072525)(25)(400)(400)(400) Nmm  
=  116  kNm > 112 kNm. 
 
 Hence, the design of the column is o.k. 
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10.25.9   Test 25 with Solutions 
 
Maximum Marks  =  50,     Maximum Time  =  30 minutes 
 
Answer all questions. 
 
TQ.1: Mention the three different sets of design charts available in SP-16 

mentioning the number of charts and the parameters for their 
identification.                  (10 marks) 

 
A.TQ.1: See sec. 10.25.2. 
 
TQ.2: State the approximations, limitations and usefulness of the design charts 

of SP-16 in solving the analysis and design type of problems of short 
columns.   (10 marks) 
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A.TQ.2: See sec. 10.25.3. 
 
TQ.3:  

 
            Check the short square column of Fig.10.25.10 to carry Pu = 3250 kN and  

Mu = 250 kNm using M 25 and Fe 415.                           
(30 marks) 

 
A.TQ.3: Given data are: b = D = = 500 mm, Asc = 6283 mm2 (20 bars of 20 mm 

diameter), fck = 25 N/mm2, fy = 415 N/mm2, Pu = 3250 kN and Mu = 250 
kNm. 

 
Step 1:  Selection of design chart 
 
 From Fig.10.25.10, we get d’ = 65 mm giving d’/D = 0.13, and given fy = 
415 N/mm2, we select Charts 44 (for d’/D = 0.1) and 45 (for d’/D = 0.15). We 
have to interpolate the values to get the result when d’/D = 0.13. 
 
Step 2:  Selection of the particular curve 
 
 With p = 628300/(500)(500) = 2.5132 per cent, we get p/fck = 0.100528 ≅  
0.1. Accordingly, the curve for p/fck = 0.1 is to be used in Charts 44 and 45. 
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Step 3:  Assessment of the column 
 
 For the assessment, we keep Pu/fckD

2 = 3250/25(500)(500) = 0.52 and 
p/fck = 0.1 as constants to determine Mu/fckD

3  from two charts. The results are 
given in Table 10.13 below. 
 
Table 10.13:  Values of  Mu/fckD

3 when Pu/fckD
2  = 0.52 and  p/fck = 0.1 

 
Sl.No. d’/D Mu/fckD

3 

 
1 0.1 0.09 (from Chart 44) 
2 0.15 0.08 (from Chart 45) 
3 0.13 0.084 (Interpolated value) 

 
So, we get Mu/fckD

3 = 0.084, giving Mu = (0.084)(25)(500)(500)(500) = 
262.5 kNm > 250 kNm. 
 
 Hence, the column is safe to carry Pu = 3250 kN and  Mu = 250 kNm. 
 

10.25.10   Summary of this Lesson 
 
 This lesson explains the approximations, limitations and usefulness of the 
three sets of design charts available in SP-16 for the purpose of solving analysis 
and design types of reinforced concrete columns. The use of design charts has 
been illustrated in several steps for the solution of both analysis and design types 
of problems. 
 
 Several numerical problems in illustrative examples, practice problem and 
test will help in understanding the use of design charts to solve the two types of 
problems. 
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Instructional Objectives: 
 
 

At the end of this lesson, the student should be able to: 
 

• understand the behaviour of short columns under axial load and biaxial 
bending, 

 
• understand the concept of interaction surface, 

 
• identify the load contour and interaction curves of Pu-Mu in a interaction 

surface, 
 

• mention the limitation of direct application of the interaction surface in 
solving the problems, 

 
• explain the simplified method of design and analysis of short columns 

under axial load and biaxial bending, 
 

• apply the IS code method in designing and analysing the reinforced 
concrete short columns under axial load and biaxial bending. 

 
 
 
 

10.26.1   Introduction 
 

Beams and girders transfer their end moments into the corner columns of 
a building frame in two perpendicular planes. Interior columns may also have 
biaxial moments if the layout of the columns is irregular. Accordingly, such 
columns are designed considering axial load with biaxial bending. This lesson 
presents a brief theoretical analysis of these columns and explains the difficulties 
to apply the theory for the design. Thereafter, simplified method, as 
recommended by IS 456, has been explained with the help of illustrative 
examples in this lesson. 
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10.26.2  Biaxial Bending 
 

 
  

Figures 10.26.1a and b present column section under axial load and 
uniaxial bending about the principal axes x and y, respectively. Figure 10.26.1c 
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presents the column section under axial load and biaxial bending. The 
eccentricities ex and ey of Fig.10.26.1c are the same as those of Fig.10.26.1a (for 
ex) and Fig.10.26.1b (for ey), respectively. Thus, the biaxial bending case (case 
c) is the resultant of two uniaxial bending cases a and b. The resultant 
eccentricity e, therefore, can be written as (see Fig.10.26.1c): 
 
        

 (10.55) 

2/122 )  (    yx eee +=

 
Designating the moments of cases a, b and c by Mux, Muy and Mu, respectively, 
we can write: 
 
       

 (10.56) 

2/122 )  (    uyuxu MMM +=

 
and the resultant  Mu is acting about an inclined axis, so that 
 
 tanθ   =  ex/ey  =  Muy/Mux      
 (10.57) 
 
the angle of inclination θ  is measured from y axis. 
 
 This inclined resultant axis shall also be the principal axis if the column 
section including the reinforcing bars is axisymmetric. In such a situation, the 
biaxial bending can be simplified to a uniaxial bending with the neutral axis 
parallel to the resultant axis of bending. 
 
 The reinforced concrete column cross-sections are, in general, non-
axisymmetric with reference to the longitudinal axis and, therefore, the neutral 
axis is not parallel to the resultant axis of bending (θ  is not equal to λ  in 
Fig.10.26.1c). Moreover, it is extremely laborious to find the location of the 
neutral axis with successive trials. However, failure strain profile and stress block 
can be drawn for a given location of the neutral axis. Figs.10.25.1d and e present 
the strain profile and stress block, respectively, of the section shown in 
Fig.10.25.1c. 
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10.26.3  Interaction Surface 

 
 Figure 10.26.2 can be visualised as a three-dimensional plot of Pu-Mux-
Muy, wherein two two-dimensional plots of Pu-Muy and Pu-Mus are marked as case 
(a) and case (b), respectively. These two plots are the interaction curves for the 
columns of Figs.10.26.1a and b, respectively. The envelope of several interaction 
curves for different axes will generate the surface, known as interaction surface. 
 
 The interaction curve marked as case (c) in Fig.10.26.2, is for the column 
under biaxial bending shown in Fig.10.26.1c. The corresponding axis of bending 
is making an angle θ  with the y axis and satisfies Eq.10.57. It has been 
explained in Lesson 24 that a column subjected to a pair of P and M will be safe 
if their respective values are less than Pu and Mu, given by its interaction curve. 
Extending the same in the three-dimensional figure of interaction surface, it is 
also acceptable that a column subjected to a set of Pu, Muy and Mux is safe if the 
set of values lies within the surface. Since Pu is changing in the direction of z, let 
us designate the moments and axial loads as mentioned below: 
 
Muxz  =  design flexural strength with respect to major axis xx under biaxial 

loading, when Pu = Puz, 
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Muyz  =  design flexural strength with respect to minor axis yy under biaxial 

loading, when Pu = Puz, 
 
Mux1  =  design flexural strength with respect to major axis xx under uniaxial 

loading, when Pu = Puz, and 
 
Muy1  =  design flexural strength with respect to minor axis yy under uniaxial 

loading, when Pu = Puz. 
 
The above notations are also shown in Fig.10.26.2. 
 
 All the interaction curves, mentioned above, are in planes perpendicular to 
xy plane. However, the interaction surface has several curves parallel to xy 
plane, which are planes of constant Pu. These curves are known as load contour, 
one such load contour is shown in Fig.10.26.2, when Pu = Puz. Needless to 
mention that the load is constant at all points of a load contour. These load 
contour curves are also interaction curves depicting the interaction between the 
biaxial bending capacities. 
 

10.26.4  Limitation of Interaction Surface 
 
 The main difficulty in preparing an exact interaction surface is that the 
neutral axis for the case (c) of Fig.10.26.1c will not, in general, be perpendicular 
to the line joining the loading point Pu and the centre of the column 
(Fig.10.26.1c). This will require several trials with c and λ , where c is the 
distance of the neutral axis and λ  angle made by the neutral axis with the x axis, 
as shown in Fig.10.26.1c. Each trial will give a set of Pu, Mux and Muy. Only for a 
particular case, the neutral axis will be perpendicular to the line joining the load 
point Pu to the centre of the column. This search makes the process laborious. 
Moreover, several trials with c and λ , giving different values of h (see 
Fig.10.26.1c), may result in a failure surface with wide deviations, particularly as 
the value of Pu will be increasing. 
 
 Accordingly, the design of columns under axial load with biaxial bending is 
done by making approximations of the interaction surface. Different countries 
adopted different approximate methods. Clause 39.6 of IS 456 recommends one 
method based on Bresler's formulation, also known as "Load Contour Method", 
which is taken up in the following section. (For more information, please refer to: 
"Design Criteria for Reinforced Columns under Axial Load and Biaxial Bending", 
by B. Bresler, J. ACI, Vol.32, No.5, 1960, pp.481-490). 
 

10.26.5   IS Code Method for Design of Columns under Axial 
Load and Biaxial Bending 
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 IS 456 recommends the following simplified method, based on Bresler's 
formulation, for the design of biaxially loaded columns. The relationship between 
Muxz and Muyz for a particular value of Pu = Puz, expressed in non-dimensional 
form is: 
 
     

 (10.58) 

1    )/(    )/( 11 ≤+ nn
uyuyuxux MMMM αα

 
where Mux and Muy  =  moments about x and y axes due to design loads, and 
 
 nα   is related to  Pu/Puz, (Fig.10.26.3), where  
 
 Puz  =  0.45 fck Ac + 0.75 fy Asc

 
        =  0.45 Ag + (0.75 fy - 0.45 fck) Asc    
 (10.59) 
 
where Ag  =  gross area of the section, and 
 
 Asc =  total area of steel in the section 
 
 Muxz, Muyz, Mux1 and Muy1  are explained in sec.10.26.3 earlier. 
 
 It is worth mentioning that the quantities Mux, Muy  and Pu are due to 
external loadings applied on the structure and are available from the analysis, 
whereas Mux1, Muy1 and Puz are the capacities of the column section to be 
considered for the design. 
 
 Equation 10.58 defines the shape of the load contour, as explained earlier 
(Fig.10.26.2). That is why the method is also known as "Load Contour Method". 
The exponent  nα  of Eq.10.58 is a constant which defines the shape of the load 
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contour and depends on the value of Pu. For low value of the axial load, the load 
contour is approximated as a straight line and, in that case, nα  = 1. On the other 
hand, for high values of axial load, the load contour is approximated as a 
quadrant of a circle, when  nα  = 2. For intermediate load values, the value of  nα  
lies between 1 and 2. Chart 64 of SP-16 presents the load contour and 
Fig.10.26.3 presents the relationship between nα  and Pu/Puz. The mathematical 

relationship between  nα  and Pu/Puz  is as follows: 
 
 nα  = 1.0, when  Pu/Puz  ≤  0.2 
 
 nα  = 0.67 + 1.67 Pu/Puz, when 0.2 < (Pu/Puz) < 0.8 
  
 nα  = 2.0, when (Pu/Puz)  0.8     
 (10.60) 

≥

 

10.26.6  Solution of Problems using IS Code Method 
 
 The IS code method, as discussed in sec.10.26.5, can be employed to 
solve both the design and analysis types of problems. The only difference 
between the design and analysis type of problems is that a trial section has to be 
assumed including the percentage of longitudinal reinforcement in the design 
problems. However, these data are available in the analysis type of problems. 
Therefore, a guide line is given in this section for assuming the percentage of 
longitudinal reinforcement for the design problem. Further, for both types of 
problems, the eccentricities of loads are to be verified if they are more than the 
corresponding minimum eccentricities, as stipulated in cl.25.4 of IS 456. 
Thereafter, the relevant steps are given for the solution of the two types of 
problems.  
 
(a) Selection of trial section for the design type of problems 
 
 As mentioned in sec.10.24.2(i) of Lesson 24, the preliminary dimensions 
are already assumed during the analysis of structure (mostly statically 
indeterminate). Thus, the percentage of longitudinal steel is the one parameter to 
be assumed from the given Pu, Mux, Muy, fck and fy. Pillai and Menon (Ref. No. 4) 
suggested a simple way of considering a moment of approximately 15 per cent in 
excess (lower percentage up to 5 per cent if Pu/Puz is relatively high) of the 
resultant moment  
 

2/122 )  ( (1.15)    uyuxu MMM +=       

 (10.61) 
 
as the uniaxial moment for the trial section with respect to the major principal axis 
xx, if  Mux  M≥ uy; otherwise, it should be with respect to the minor principal axis. 
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The reinforcement should be assumed to be distributed equally on four sides of 
the section. 
 
(b) Checking the eccentricities ex and ey for the minimum eccentricities 
 
 Clause 25.4 of IS 256 stipulates the amounts of the minimum 
eccentricities and are given in Eq.10.3 of sec.10.21.11 of Lesson 21. However, 
they are given below as a ready reference. 
 
 exmin   ≥   greater of (l/500 + b/30) or 20 mm 
        ….  (10.3) 
 
 eymin   ≥   greater of (l/500 + D/30) or 20 mm 
 
where l, b and D are the unsupported length, least lateral dimension and larger 
lateral dimension, respectively. The clause further stipulates that for the biaxial 
bending, it is sufficient to ensure that the eccentricity exceeding the minimum 
value about one axis at a time. 
 
(c) Steps for the solution of problems 
 
 The following are the steps for the solution of both analysis and design 
types of problems while employing the method recommended by IS 456. 
 
(i) Verification of eccentricities 
 
 It is to be done determining  ex = Mux/Pu and  ey = Muy/Pu from the given 
data of Pu, Mux and Muy; and exmin and eymin from Eq.10.3 from the assumed b and 
D and given l. 
 
(ii) Assuming a trial section including longitudinal reinforcement 
 
 This step is needed only for the design type of problem, which is to be 
done as explained in (a) above. 
 
(iii) Determination of Mux1 and Muy1

 
 Use of design charts should be made for this. Mux1  and  Muy1, 
corresponding to the given Pu, should be significantly greater than Mux and Muy, 
respectively. Redesign of the section should be done if the above are not 
satisfied for the design type of problem only. 
 
(iv) Determination of Puz and  nα  
 
 The values of Puz and  nα  can be determined from Eqs.10.59 and 10.60, 
respectively. Alternatively, Puz can be obtained from Chart 63 of SP-16. 
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(v) Checking the adequacy of the section 
 
 This is done either using Eq.10.58 or using Chart 64 of SP-16. 
 

10.26.7  Illustrative Example 
 

 
Problem 1: 
 
 Design the reinforcement to be provided in the short column of Fig.10.26.4 
is subjected to  Pu = 2000 kN, Mux = 130 kNm (about the major principal axis) and 
Muy = 120 kNm (about the minor principal axis). The unsupported length of the 
column is 3.2 m, width b = 400 mm and depth D = 500 mm. Use M 25 and Fe 
415 for the design. 
 
Solution 1: 
 
Step 1:  Verification of the eccentricities 
 
 Given: l = 3200 mm, b = 400 mm and D = 500 mm, we have from Eq.10.3 
of sec.10.26.6b, the minimum eccentricities are: 
 
exmin  =  greater of (3200/500 + 400/30) and 20 mm  =  19.73 mm or 20 mm  =  20 
mm 
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eymin  =  greater of (3200/500 + 500/30) and 20 mm  =  23.07 mm or 20 mm  =  
23.07 mm 
 
Again from Pu = 2000 kN, Mux = 130 kNm and Muy = 120 kNm, we have ex = 
Mux/Pu = 130(106)/2000(103) = 65 mm and ey = Muy/Pu = 120(106)/2000(103) = 60 
mm. Both ex and ey are greater than exmin and eymin, respectively. 
 
Step 2:  Assuming a trial section including the reinforcement 
 
 We have b = 400 mm and  D = 500 mm. For the reinforcement, 

, from Eq.10.61 becomes 203.456 kNm. Accordingly, we 

get 

2/122 )  ( 1.15    uyuxu MMM +=

 
Pu/fckbD  =  2000(103)/(25)(400)(500)  =  0.4 

 
Mu/fckbD2  =  203.456(106)/(25)(400)(500)(500)  =  0.0814 

 
Assuming d' = 60 mm, we have d'/D = 0.12. From Charts 44 and 45, the value of 
p/fck is interpolated as 0.06. Thus, p = 0.06(25) = 1.5 per cent, giving Asc = 3000 
mm2. Provide 12-20 mm diameter bars of area 3769 mm2, actual p provided = 
1.8845 per cent. So, p/fck = 0.07538. 
 
Step 3:  Determination of Mux1 and Muy1

 
 We have Pu/fckbD = 0.4 and p/fck = 0.07538 in step 2. Now, we get 
Mux1/fckbD2 from chart corresponding to d' = 58 mm (Fig.10.26.4) i.e., d'/D = 
0.116. We interpolate the values of Charts 44 and 45, and get Mux1/fckbD2 = 
0.09044. So, Mux1 = 0.0944(25)(400)(500(500)(10-6) = 226.1 kNm. 
 
 For Mux1, d'/b = 58/400 = 0.145. In a similar manner, we get Muy1 = 
0.0858(25)(400)(400)(500)(10-6) = 171.6 kNm. 
 
 As Mux1 and Muy1 are significantly greater than Mux and Muy, respectively, 
redesign of the section is not needed. 
 
Step 4:  Determination of Puz and nα  
 
 From Eq.10.59, we have Puz = 0.45(25)(400)(500) + {0.75(415) - 
0.45(25)}(3769) = 3380.7 kN. 
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Alternatively, Chart 63 may be used to find Puz as explained. From the upper 
section of Chart 63, a horizontal line AB is drawn at p = 1.8845, to meet the Fe 
415 line B (Fig.10.26.5). A vertical line BC is drawn from B to meet M 25 line at 
C. Finally, a horizontal line CD is drawn from C to meet Puz/Ag at 17. This gives 
Puz = 17(400)(500) = 3400 kN. The difference between the two values, 19.3 kN is 
hardly 0.57 per cent, which is due to the error in reading the value from the chart. 
However, any one of the two may be employed. 
 
 Now, the value of nα  is obtained from Eq.10.60 for Pu/Puz = 2000/3380.7 = 

0.5916, i.e., 0.2 < Pu/Puz < 0.8, which gives, nα  = 0.67 + 1.67 (Pu/Puz) = 1.658. 

Alternatively, nα  may be obtained from Fig.10.26.3, drawn to scale. 
 
Step 5:  Checking the adequacy of the section 
 
 Using the values of Mux, Mux1, Muy, Muy1 and nα  in Eq.10.58, we have 
(130/226.1)1.658 + (120/171.6)1.658 = 0.9521 < 1.0. Hence, the design is safe. 
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 Alternatively, Chart 64 may be used to determine the point (Mux/Mux1), 
(Muy/Muy1) is within the curve of Pu/Puz = 0.5916 or not. 
 
 Here, Mux/Mux1 = 0.5749 and  Muy/Muy1 = 0.6993. It may be seen that the 
point is within the curve of Pu/Puz = 0.5916 of Chart 64 of SP-16. 
 
Step 6:  Design of transverse reinforcement 
 
 As per cl.26.5.3.2c of IS 456, the diameter of lateral tie should be > (20/4) 
mm diameter. Provide 8 mm diameter bars following the arrangement shown in 
Fig.10.26.4. The spacing of lateral tie is the least of : 
 
 (a) 400 mm = least lateral dimension of column, 
 
 (b) 320 mm = sixteen times the diameter of longitudinal reinforcement (20 
mm), 
 
 (c) 300 mm 
 
 Accordingly, provide 8 mm lateral tie alternately @ 250 c/c (Fig.10.26.4). 
 

10.26.8  Practice Questions and Problems with Answers 
 
Q.1:    Explain the behaviour of a short column under biaxial bending as the 

resultant of two uniaxial bending.   
 
A.1:    See sec. 10.26.2 
 
Q.2:   Draw one interaction surface for a short column under biaxial bending and 

show typical interaction curves and load contour curve. Explain the safety 
of a column with reference to the interaction surface when the column is 
under biaxial bending. 

 
A.2:    See sec.10.26.3 and Fig.10.26.2. 
 
Q.3:    Discuss the limitation of the interaction curve. 
 
A.3:    See sec.10.26.4. 
 
Q.4:    Illustrate the IS code method of design of columns under biaxial bending. 
 
A.4:    See sec.10.26.5. 
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Q.5:     

 
           Analyse the safety of the short column of unsupported length 3.2 m, b = 

450 mm, D = 500 mm, as shown in Fig.10.26.6, having 12-16 mm 
diameter bars as longitudinal reinforcement and 8 mm diameter bars as 
lateral tie @ 250 mm c/c, when subjected to Pu = 1600 kN, Mux = 120 kNm 
and Muy = 100 kNm. Use M 25 and Fe 415. 

 
A.5:     
 
Step 1:  Verification of the eccentricities 
 
 From the given data: l = 3200 mm, b = 450 mm and D = 500 mm, 
 
 exmin  =  3200/500 + 450/30  =  21.4  >  20 mm, so, 21.4 mm    
 
 eymin  =  3200/500 + 5000/30  =  23.06  >  20 mm, so, 23.06 mm    
 
 ex  =  Mux/Pu  =  120(103)/1600  =  75 mm 
 
 ey  =  Muy/Pu  =  100(103)/1600  =  62.5 mm 
 
 So, the eccentricities ex and ey are >> exmin and eymin. 
 
Step 2:  Determination of Mux1 and Muy1
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 Given data are: b = 450 mm, D = 500 mm, fck = 25 N/mm2, fy = 415 
N/mm2, Pu = 1600 kN, Mux = 120 kNm, Muy = 100 kNm and Asc = 2412 mm2 (12-
16 mm diameter bars). 
 
 We have p = (100)(2412)/(450)(500) = 1.072 per cent, and d'/D = 56/500 = 
0.112, d'/b = 56/450 = 0.124, Pu/fckbD = 1600/(25)(450)(500) = 0.2844 and p/fck = 
1.072/25 = 0.043. We get Mux1/fckbD2 from Charts 44 and 45 as 0.09 and 0.08, 
respectively. Linear interpolation gives Mux1/fckbD2 for d'/D = 0.112 as 0.0876. 
Thus, 
 
 Mux1  =  (0.0876)(25)(450)(500)(500)  =  246.376 kNm 
 
Similarly, interpolation of values (0.09 and 0.08) from Charts 44 and 45, we get 
Muy1/fckdb2  = 0.085 for d'/b = 0.124. Thus 
 
 Muy1  =  (0.085)(25)(500)(450)(450)  =  215.156 kNm 
 
Step 3:  Determination of Puz and nα  
 
 From Eq.10.59, Puz = 0.45(25)(450)(500) + {0.75(415) - 0.45(25)}(2412) = 
3254.85 kN. This gives Pu/Puz = 1600/3254.85 = 0.491574. 
 
 From Eq.10.60, nα  = 0.67 + 1.67(Pu/Puz) = 0.67 + 1.67(0.491574) = 
1.4909. 
 
Step 4:  Checking the adequacy of the section 
 
 From Eq.10.58, we have: (120/246.376)1.4909 +  (100/215.156)1.4909 = 
0.6612 < 1. 
 
 
 Hence, the section is safe to carry Pu = 1600 kN, Mux = 120 kNm and Muy 
= 100 kNm. 
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10.26.10  Test 26 with Solutions 
 
Maximum Marks  =  50,     Maximum Time  =  30 minutes 
 
Answer all questions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Version 2 CE IIT, Kharagpur 
 



TQ.1:  
 

 
               Analyse the safety of the short square column of unsupported length = 

3.5 m, b = D  = 500 mm, as shown in Fig.10.26.7, with 12-16 mm 
diameter bars as longitudinal reinforcement and 8 mm diameter bars as 
lateral tie @ 250 mm c/c, when subjected to Pu = 1800 kN, Mux = 160 
kNm and Muy = 150 kNm. 

                                                                
A.TQ.1:   
 
Step 1:  Verification of the eccentricities 
 
 From the given data: l = 3500 mm, b = D = 500 mm, we have 
 
 emin in both directions (square column) = (3500/500) + (500/30) = 23.67 
mm 
 
 ex  =  160(103)/1800  =  88.88 mm and  ey = 150(103)/1800  =  83.34 mm 
 
 Therefore,  ex and ey  >>  emin. 
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Step 2:  Determination of Mux1 and Muy1

 
 We have the given data: b = D = 500 mm, fck = 25 N/mm2, fy = 415 N/mm2, 
Pu = 1800 kN, Mux = 160 kNm, Muy = 150 kNm and Asc = 2412 mm2 (12-16 mm 
diameter bars). 
 
 The percentage of longitudinal reinforcement  p = 241200/(500)(500) = 
0.9648 per cent, and d'/D = 56/500 = 0.112 and p/fck = 0.9648/25 = 0.03859. 
Linear interpolation of values of Mux1/fckbD2 from Charts 44 and 45 for d'/D = 
0.112 is obtained as 0.08. Thus, 
 
 Mux1  =  (0.08)(25)(500)(500)(500)  =  250 kNm 
 
 Muy1  =  Mux1 = 250  kNm  (square column) 
 
Step 3:  Determination of Puz and nα  
 
 From Eq.10.59,  
 

Puz = 0.45(25)(500)(500) + {0.75(415) - 0.45(25)}(2415) = 3536.1 kN.  
 

Pu/Puz = 1800/3536.1 = 0.509. 
 
 From Eq.10.60, nα  = 0.67 + 1.67(0.509) = 1.52. 
 
Step 4:  Checking the adequacy of the section 
 
 From Eq.10.58, we have: (160/250)1.52  + (150/250)1.52  = 0.967 < 1. 
 
 
 Hence, the section can carry Pu = 1800 kN, Mux = 160 kNm and Muy = 150 
kNm. 
 

10.26.11  Summary of this Lesson 
 

 This lesson explains the behaviour of short columns under axial 
load and biaxial bending with the help of interaction surface, visualised as a 
three-dimensional plot of Pu-Mux-Muy. The interaction surface has a set of 
interaction curves of Pu-Mu and another set of interaction curves of Muxz-Muyz at 
constant Puz, also known as load contour. The design and analysis of short 
columns are also explained with the help of derived equations and design charts 
of SP-16. Numerical examples in the illustrative example, practice problems and 
test will help in understanding the application of the theory in solving the analysis 
and design types of problems of short columns under axial load and biaxial 
bending. 
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Instructional Objectives: 
 

At the end of this lesson, the student should be able to: 
 

• identify a design chart and understand the differences between a design 
chart and interaction diagram of P and M, 

 
• name the major design parameters of short columns subjected to axial 

loads and uniaxial bending, 
 

• state the design parameters assumed before the design, 
 

• state the design parameter actually designed for the column, 
 

• explain the roles of each of the design parameters in increasing the 
strength capacities of column, 

 
• name the two non-dimensional design parameters to prepare the design 

charts, 
 

• derive the governing equations in four separate cases while preparing the 
design charts, 

 
• mention the various points at which the values of the two non-dimensional 

parameters are determined to prepare the design charts, 
 

• prepare the design chart of any short and rectangular column subjected to 
axial loads and uniaxial moment. 

 
 

10.24.1   Introduction 
 

Lesson 23 illustrates the different steps of determining the capacities of a 
short, rectangular, reinforced with steel bars, concrete column. Several pairs of 
collapse strengths Pu and Mu are to be determined for a column with specific 
percentage of longitudinal steel bars assuming different positions of the neutral 
axis. A designer has to satisfy that each of the several pairs of Pu and Mu,  
obtained from the structural analysis, is less than or equal to the respective 
strengths in form of pairs of Pu and Mu obtained from determining the capacities 
for several locations of the neutral axis. Thus, the design shall involve several 
trials of a particular cross-section of a column for its selection.  
 
 On the other hand, it is also possible to prepare non-dimensional 
interaction diagram selecting appropriate non-dimensional parameters. This 
would help to get several possible cross-sections with the respective longitudinal 
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steel bars. This lesson explains the preparation of such non-dimensional 
interaction diagrams which are also known as design charts. 
 
 Similar design charts of circular and other types of cross-sections can be 
prepared following the same procedure as that of rectangular cross-section. 
However, the stress block parameters, explained in Lesson 23, are to be 
established separately by summing up the forces and moment of several strips 
by dividing the cross-section of columns into the strips. This lesson is restricted 
to columns of rectangular cross-section which are symmetrically reinforced. 
 

10.24.2  Design Parameters 
 
 The following are the four major design parameters to be determined for 
any column so that it has sufficient pairs of strengths (Pu and Mu) to resist all 
critical pairs obtained from the analysis: 
 
 (i)   dimensions b and D of the rectangular cross-section, 

 
(ii) longitudinal steel reinforcing bars - percentage p, nature of distribution  

(equally on two or four sides) and d'/D, 
 
(iii)  grades of concrete and steel, and 
 
(iv)  transverse reinforcement. 

 
 The roles and importance of each of the above four parameters are 
elaborated below: 
 
(i)  Dimensions b and D of the rectangular cross-section 
 
 The strength of column depends on the two dimensions b and D. 
However, preliminary dimensions of b and D are already assumed for the 
analysis of structure, which are usually indeterminate statically. In the 
subsequent redesign, these dimensions may be revised, if needed, inviting re-
analysis with the revised dimensions. 
 
(ii)  Longitudinal steel reinforcing bars 
 
 It is a very important consideration to utilise the total area of steel bars 
effectively. The total area of steel, expressed in percentage p ranges from the 
minimum 0.8 to the maximum 4 per cent of the gross area of the cross-section. 
The bars may be distributed either equally on two sides or on all four sides 
judiciously having two or multiple rows of steel bars. The strain profiles of 
Fig.10.23.2 reveals that the rows of bars may be all in compression or both 
compression and tension depending on the location of the neutral axis. 
Accordingly, the total strength of the longitudinal bars is determined by adding all 
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the individual strengths of bars of different rows. The effective cover d', though 
depends on the nominal cover, has to be determined from practical 
considerations of  housing all the steel bars. 
 
(iii)  Grades of concrete and steel 
 
 The dimensions b and D of the cross-section and the amount of 
longitudinal steel bars depend on the grades of concrete and steel. 
 
(iv)  Transverse reinforcement 
 
 The transverse reinforcement, provided in form of lateral ties or spirals, 
are important for the following advantages in 
 
 (a)  preventing premature / local buckling of the longitudinal bars, 

 
(b) improving ductility and strength by the effect of confinement of the core 

concrete, 
 
(c)  holding the longitudinal bars in position during construction, and 
 
(d)  providing resistance against shear and torsion, if present. 
 

 However, the transverse reinforcement does not have a major contribution 
in influencing the capacities of the column. Moreover, the design of transverse 
reinforcement involves selection of bar diameter and spacing following the 
stipulations in the design code. The bar diameter of the transverse reinforcement 
also depends on the bar diameter of longitudinal steel. Accordingly, the 
transverse reinforcement is designed after finalizing other parameters mentioned 
above. 
 
 It is, therefore, clear that the design of columns mainly involves the 
determination of percentage of longitudinal reinforcement p, either assuming or 
knowing the dimensions b and D, grades of concrete and steel, distribution of 
longitudinal bars in two or multiple rows and d'/D ratio from the analysis or 
elsewhere. Needless to mention that any designed column should be able to 
resist several critical pairs of Pu and Mu obtained from the analysis of the 
structure. It is also a fact that several trials may be needed to arrive at the final 
selection revising any or all the assumed parameters. Accordingly, the design 
charts are prepared to give the results for the unknown parameter quickly 
avoiding lengthy calculations after selecting appropriate non-dimensional 
parameters. 
 
 Based on the above considerations and making the design simple, quick 
and fairly accurate, the following are the two non-dimensional parameters: 
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 For axial load:  Pu/fckbD 
 
For moment:  Mu/fckbD2

 
 The characteristic strength of concrete  fck has been associated with the 
non-dimensional parameters as the grade of concrete does not improve the 
strength of the column significantly. The design charts prepared by SP-16 are 
assuming the constant value of fck for M 20 to avoid different sets of design 
charts for different grades of concrete. However, separate design charts are 
presented in SP-16 for three grades of steel (Fe 250, Fe 415 and Fe 500), four 
values of d'/D (0.05, 0.1, 0.15 and 0.2) and two types of distribution of 
longitudinal steel (distributed equally on two and four sides). Accordingly there 
are twenty-four design charts for the design of rectangular columns. Twelve 
separate design charts are also presented in SP-16 for circular sections covering 
the above mentioned three grades of steel and for values of d'/D ratio. 
 
 However, the unknown parameter p, the percentage of longitudinal 
reinforcement has been modified to p/fck in all the design charts of SP-16, so that 
for grades other than M 20, the more accurate value of p can be obtained by 
multiplying the p/fck with the actual grade of concrete used in the design of that 
column.  
 
 However, this lesson explains that it is also possible to prepare design 
chart taking into consideration the actual grade of concrete. As mentioned earlier, 
the design charts are prepared getting the pairs of values of Pu and Mu in non-
dimensional form from the equations of equilibrium for different locations of the 
neutral axis. We now take up the respective non-dimensional equations for four 
different cases as follows: 
 

(a)  When the neutral axis is at infinity, i.e., kD = ∞ , pure axial load is 
applied on the column. 

 
(b)  When the neutral axis is outside the cross-section of the column, i.e., 

 > kD  D. ∞ ≥
 
(c)  When the neutral axis is within the cross-section of the column, i.e., 

kD < D. 
 
(d)  When the column behaves like a steel beam. 

 

10.24.3  Non-dimensional Equation of Equilibrium when  k = 
, (Pure Axial Load) ∞

 
 Figures 10.23.2b and c of Lesson 23 present the strain profile EF and the 
corresponding stress block for this case. As the load is purely axial, we need to 
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express the terms Cc and Cs of Eq.10.35 of sec.10.23.10 of Lesson 23. The total 
compressive force due to concrete of constant stress of 0.446 fck is: 
 
 Cc  =  0.446 fck b D       
 (10.37) 
 
However, proper deduction shall be made for the compressive force of concrete 
not available due to the replacement by steel bars while computing Cs. 

 
The force of longitudinal steel bars in compression is now calculated. The 

steel bars of area pbD/100 are subjected to the constant stress of fsc when the 
strain is 0.002. Subtracting the compressive force of concrete of the same area 
pbD/100, we have, 

 
Cs  =  (pbD/100) (fsc  - 0.446 fck)     

 (10.38)  

 
Thus, we have from Eq.10.35 of sec.10.23.10 of Lesson 23 after substituting the 
expressions of Cc and Cs from Eqs.10.37 and 10.38, 
 
 Pu  =  0.446 fck b D  +  (pbD/100) (fsc - 0.446 fck)   
 (10.39) 

 
Dividing both sides of Eq.10.39 by fck bD, we have 
 
 (Pu/fck bD)  =  0.446 + (p/100 fck) (fsc - 0.446 fck)   
 (10.40) 
 
Thus, Eq.10.40 is the only governing equation for this case to be considered. 
 
10.24.4  Non-dimensional Equations of Equilibrium when 
Neutral Axis is Outside the Section (∞  > kD ≥  D) 
 
 Figures 10.23.3b and c of Lesson 23 present the strain profile JK and the 
corresponding stress block for this case. The expressions of Cc, Cs and 
appropriate lever arms are determined to write the two equations of equilibrium 
(Eqs.10.35 and 36) of Lesson 23. While computing Cc, the area of parabolic 
stress block is determined employing the coefficient C1 from Table 10.4 of 
Lesson 23. Similarly, the coefficient C2, needed to write the moment equation, is 
obtained from Table 10.4 of Lesson 23. The forces and the corresponding lever 
arms of longitudinal steel bars are to be considered separately and added for 
each of the n rows of the longitudinal bars. Thus, we have the first equation as, 
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Pu  =  C1 fck bD +      

 (10.41) 

) - ( )100/ (
1

cisii

n

i

ffbDp∑
=

 
where  C1  =  coefficient for the area of stress block to be taken from Table 10.4 

of Lesson 23, 
 
pi    =  Asi/bD  where Asi is the area of reinforcement in the ith row, 
 
fsi   =  stress in the ith row of reinforcement, taken positive for compression 

and negative for tension,  
 
fci    =  stress in concrete at the level of the ith row of reinforcement, and 
 
n     =  number of rows of reinforcement. 

 
Here also, the deduction of the compressive force of concrete has been made for 
the concrete replaced by the longitudinal steel bars. 
 
 Dividing both sides of Eq.10.41 by fckbD, we have 
 

 (Pu/fckbD)  =  C1 +     

 (10.42) 

) - ( ) 100/ (
1

cisicki

n

i

fffp∑
=

 
 Similarly, the moment equation (Eq.10.36) becomes, 
 

 Mu  =  C1 fckbD (D/2 - C2D) +   

 (10.43) 

icisii

n

i

yffbDp  ) - ( )100/ (
1
∑
=

 
where  C2  =  coefficient for the distance of the centroid of the compressive stress 

block of concrete measured from the highly compressed right edge 
and is taken from Table 10.4 of Lesson 23, and 

 
yi   =   the distance from the centroid of the section to the ith row of 

reinforcement, positive towards the highly compressed right edge 
and negative towards the least compressed left edge. 

 
 Dividing both sides of Eq.10.43 by fckbD2, we have 
 

 (Mu/fckbD2)  =  C1(0.5 - C2)  +  (y) - ( ) 100/ (
1

cisicki

n

i

fffp∑
=

i/D) 

 (10.44) 
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 Equations 10.42 and 10.44 are the two non-dimensional equations of 
equilibrium in this case when  .    DkD ≤<∞  

 

10.24.5  Non-dimensional Equations of Equilibrium when the 
Neutral Axis is within the Section (kD < D) 

 
 The strain profile IN and the corresponding stress block of concrete are 
presented in Figs.10.23.4b and c for this case. Following the same procedure of 
computing Cc, Cs and the respective lever arms, we have the first equation as 
 

Pu  =  0.36 fck kbD +      

 (10.45) 

) - ( )100/ (
1

cisii

n

i

ffbDp∑
=

 
Dividing both sides of Eq.10.45 by fckbD, we have 
 

Pu/fckbD  =  0.36 k  +     

 (10.46) 

) - ( ) 100/ (
1

cisicki

n

i

fffp∑
=

 
and the moment equation (Eq.10.36) as 
 

 Mu  =  0.36 fck kbD(0.5 - 0.42 k) D  +  (y) - ( )100/  (
1

cisii

n

i

ffbDp∑
=

i/D)

 (10.47) 
 
Dividing both sides of Eq.10.47 by fckbD2, we have 
 

(Mu/fckbD2)  =  0.36 k(0.5 - 0.42 k) +  (y) - ( ) 100/ (
1

cisicki

n

i

fffp∑
=

i/D)

 (10.48) 
 

where  k  =  Depth of the neutral axis/Depth of column, mentioned earlier in 
sec.10.21.10 and Fig.10.21.11 of Lesson 21. 

 
 Equations 10.46 and 10.48 are the two non-dimensional equations of 
equilibrium in this case. 
 

10.24.6  Non-dimensional Equation of Equilibrium when the 
Column Behaves as a Steel Beam 
 
 This is a specific situation when the column is subjected to pure moment 
Mu = Mo only (Point 6 of the interaction diagram in Fig.10.23.1 of Lesson 23). 
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Since the column has symmetrical longitudinal steel on both sides of the 
centroidal axis of the column, the column will resist the pure moment by yielding 
of both tensile and compressive steel bars (i.e., fsi = 0.87 fy = fyd). Thus, we have 
only one equation (Eq.10.36 of Lesson 23), which becomes 
 

 Mu  =   (y)(0.87 )100/  (
1

yi

n

i

fbDp∑
=

i/D)    

 (10.49) 
 
Dividing both sides of Eq.10.49 by fck bD2, we have 
 

(Mu/fckbD2)  =  (y)(0.87 ) 100/(
1

ycki

n

i

ffp∑
=

i/D)   

 (10.50) 
 
Equation 10.50 is the equation of equilibrium in this case. 

 

10.24.7  Preparation of Design Charts 
 
Design charts are prepared employing the equations of four different 

cases as given in secs.10.24.3 to 6. The advantage of employing the equations 
is that the actual grade of concrete can be taken into account, though it may not 
be worthwhile to follow this accurately. However, preparation of interaction 
diagram will help in understanding the behaviour of column with the change of 
neutral axis depth for the four cases mentioned in sec.10.24.2. The step by step 
procedure of preparing the design charts is explained below. It is worth 
mentioning that the values of (Pu/fckbD) and (Mu/fckbD2) are determined 
considering different locations of the neutral axis for the four cases mentioned in 
sec.10.24.2.  
 
Step 1:  When the neutral axis is at infinity 
 
 The governing equation is Eq.10.40. The strain profile EF and the 
corresponding stress block are in Fig.10.23.2b and c of Lesson 23, respectively. 
 
Step 2: When the column is subjected to axial load considering minimum 

eccentricity 
 

 Lesson 22 presents the design of short columns subjected to axial load 
only considering minimum eccentricity as stipulated in cl.29.3 of IS 456, 
employing Eq.10.4, which is as follows: 

 
Pu  =  0.4 fck b D  +  (pbD/100) (0.67 fy - 0.4 fck) ….  (10.4) 
Dividing both sides of Eq.10.4 by fck bD, we have  
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(Pu/fck bD)  =  0.4 + (p/100 fck) (0.67 fy - 0.4 fck)   
 (10.51) 

 
The Pu obtained from Eq.10.51 can also resist Mu as per cl.39.3 of IS 456. 

From the stipulation of cl. 39.3 of IS 456 and considering the maximum value of 
the minimum eccentricity as 0.05D, we have 

 
Mu  =  (Pu) (0.05)D  =  0.02 fck bD2 + (0.05 pbD2/100) (0.67 fy - 0.4 fck) 
 
Dividing both sides of the above equation by fckbD2, we have 
 
(Mu/fck bD2)  =  0.02 + (0.05p/100 fck) (0.67 fy - 0.4 fck)  

 (10.52) 
 
Equations 10.51 and 10.52 are the two equations to be considered in this 

case. 
 
Step 3:  When the neutral axis is outside the section 
 
 Figures 10.23.3b and c of Lesson 23 present one strain profile JK and the 
corresponding stress block, respectively, out of a large number of values of k 
from 1 to infinity, only values up to about 1.2 are good enough to consider, as 
explained in sec.10.23.5 of Lesson 23. Accordingly, we shall consider only one 
point, where k = 1.1, in this case. With the help of Eqs.10.42 and 10.44, Table 
10.4 for the values of C1 and C2, Table 10.5 for the values of fsi and Eq.10.23 or 
Eq.10.27 for the values of fci, the non-dimensional parameters Pu/fck bD and 
Mu/fck bD2 are determined. 
 
Step 4:  When the neutral axis is within the section 
 
 One representative strain profile IU and the corresponding stress block 
are presented in Fig.10.23.4b and c, respectively, of Lesson 23. The following six 
points of the interaction diagram are considered satisfactory for preparing the 
design charts: 

 
(a)  Where the tensile stress of longitudinal steel is zero i.e., kD = D - d', 
 
(b)  Where the tensile stress of longitudinal steel is 0.4fyd = 0.4(0.87 fy),  
 
(c)  Where the tensile stress of longitudinal steel is) 0.8fyd  =  0.8(0.87 fy) ,

 
(d) Where the tensile stress of longitudinal steel is fyd  =  0.87fy and strain 

= 0.87fy/Es, i.e., the initial yield point, 
 
(e) Where the tensile stress of longitudinal steel is fyd  =  0.87fy and strain 

= 0.87fy/Es + 0.002, i.e., the final yield point, 
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(f)  When the depth of the neutral axis is 0.25D. 
 
 For all six points, the respective strain profile and the corresponding stress 
blocks can be drawn. Therefore, values of  (Pu/fck bD) and (Mu/fck bD2) are 
determined from Eqs.10.46 and 10.48, using Table 10.5 for fsc and Eq.10.34 for 
fci. 

 
Step 5:  When the column behaves like a steel beam 
 
 As explained in sec.10.24.6, Eq.10.50 is used to compute Mu/fck bD2 in this 
case. 
 
Step 6:  Preparation of design chart 
 
 The ten pairs of (Pu/fck bD) and (Mu/fck bD2) (one set each in steps 1, 2, 3 
and 5 and six sets in step 4) can be plotted to prepare the desired design chart. 
 
 One illustrative example is taken up in the next section. 
 

10.24.8  Illustrative Example 
 
Problem 1: 
 
 Prepare a design chart for a rectangular column with 3 per cent 
longitudinal steel distributed equally on two faces using M 25 and Fe 415, and 
considering d'/D = 0.15. 
 
Solution 1: 
 
 The solution of this problem is explained in six steps of the earlier section.  
 
Step 1:  When the neutral axis is at infinity 
 
 Figures 10.23.2b and c present the strain profile EF and the 
corresponding stress block, respectively. Using the values of p = 3 per cent, fck = 
25 N/mm2 and determining the value of fsc = 327.7388 N/mm2 (using linear 
interpolation from the values of Table 10.5 of Lesson 23), we get the value of 
(Pu/fck bD) from Eq.10.40 as  
 
 (Pu/fck bD)  =  0.8259. 
 
Step 2: When the column is subjected to axial load considering minimum 

eccentricity 
 Using the value of p = 3 per cent, fck = 25 N/mm2 and fy = 415 N/mm2 in 
Eqs.10.51 and 10.52 of sec.10.24.6, we have 
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(Pu/fck bD)  =  0.7217 
 
(Mu/fck bD2 )  =  0.0361 

 
Step 3:  When the neutral axis depth = 1.1 D 

 
 Figures 10.24.1a, b and c show the section of the column, strain profile JK 
and the corresponding stress block, respectively, for this case. We use 
Eqs.10.42 and 10.44 for determining the value of  (Pu/fck bD) and (Mu/fck bD2 ) for 
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this case using k = 1.1, fck = 25 N/mm2, p1 = p2 = 1.5 , y1/D = 0.35 and y2/D = - 
0.35. Values of C1, C2, fs1 and fs2, fc1 and fc2 are obtained from equations 
mentioned in Step 3 of sec.10.24.6. The values of all the quantities are presented 
in Table 10.6A, mentioning the source equation no., table no. etc. to get the two 
non-dimensional parameters as given below: 
 

(Pu/fck bD)  =  0.67405 
(Mu/fck bD2 )  =  0.06370 
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Step 4:  When the neutral axis is within the section 
 

In Step 4 of section 10.24.6, six different locations of neutral axis are 
mentioned; five of them (a to e) are specified by the magnitude of fs2 (tensile) of 
longitudinal steel and one of them is specified by the value of k = 0.25. The 
values of all the quantities are presented in Tables 10.6A and B, mentioning the 
source equation no., table no. etc. 
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Figures 10.24.2 to 10.24.7 present the respective strain profiles and the 

corresponding stress block separately for all six different locations of the neutral 
axis. 

 
Table 10.6A   Parameters and results of Problem 1 of Section 10.24.8 
 
Given data:  fck = 25 N/mm2,  fy = 415 N/mm2,  p = 3 per cent,  p1 = p2 = 1.5 per 
cent,  
                   d’/D = 0.15 
Note:  Units of  fsi, fsc  and fci are in N/mm2, (-) minus sign indicates tensile strain 

or stress. 
 

Given Sl.No. 
Description 

k = 1.1 fs2 = 0 fs2 = -0.4 fyd fs2 = 0.8 fyd

1 Sec. No. 10.24.7 10.24.7 10.24.7 10.24.7 
2 Step No. 3 4 4 4 
3 Fig. No. 10.24.1 10.24.2 10.24.3 10.24.4 
4 εs1 = εc1 0.002829 0.00288 0.00275 0.00263 
5 εs2 = εc2 0.000744 0.0 -0.00072 -0.00144 
6 Table No. 

of  fsi and 
fsc

10.5 10.5 10.5 10.5 

7 fs1 352.407 352.871 351.669 348.392 
8 fs2 148.914 0.0 -144.42 -288.84 
9 fsc NA NA NA NA 
10 Eq.Nos. of 

fci

10.23 and 
10.27 

10.34 10.34 10.34 

11 fc1 11.15 11.15 11.15 11.15 
12 fc2 6.757 0.0 0.0 0.0 
13 Table No. 

of C1 and 
C2

10.4 NA NA NA 

14 C1 0.384 NA NA NA 
15 C2 0.443 NA NA NA 
16 y1/D +0.35 +0.35 +0.35 +0.35 
17 y2/D -0.35 -0.35 -0.35 -0.35 
18 k  1.1 0.85 0.7046 0.6017 
19 Eq.No. of 

Pu/fck bD 
10.42 10.46 10.46 10.46 

20 Pu/fck bD 0.6740 0.5110 0.3713 0.2457 
21 Eq.No. of 

Mu/fck bD2
10.44 10.48 10.48 10.48 

22 Mu/fck bD2 0.0643 0.1155 0.1536 0.1850 
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Table 10.6B   Parameters and results of Problem 1 of Section 10.24.8 
 
Given data:  fck = 25 N/mm2,  fy = 415 N/mm2,  p = 3 per cent,  p1 = p2 = 1.5 per 
cent,  
                   d’/D = 0.15 
Note:  Units of  fsi, fsc  and fci are in N/mm2, (-) minus sign indicates tensile strain 

or stress. 
 

Given Sl.No. 
Description 

fs2 = - fyd 
(Initial yield) 

fs2 = - fyd 
(Final yield) 

k  = 0.25  

1 Sec. No. 10.24.7 10.24.7 10.24.7 
2 Step No. 4 4 4 
3 Fig. No. 10.24.5 10.24.6 10.24.7 
4 εs1 = εc1 0.00256 0.00221 0.0014 
5 εs2 = εc2 -0.00180 -0.00380 -0.0084 
6 Table No. 

of  fsi and 
fsc

10.5 10.5 10.5 

7 fs1 346.754 335.484 281.0 
8 fs2 -361.05 -361.05 -361.05 
9 fsc NA NA NA 
10 Eq.Nos. of 

fci

10.34 10.34 10.34 

11 fc1 11.15 11.15 10.146 
12 fc2 0.0 0.0 0.0 
13 Table No. 

of C1 and 
C2

NA NA NA 

14 C1 NA NA NA 
15 C2 NA NA NA 
16 y1/D +0.35 +0.35 +0.35 
17 y2/D -0.35 -0.35 -0.35 
18 k  0.5607 0.4072 0.25 
19 Eq.No. of 

Pu/fck bD 
10.46 10.46 10.46 

20 Pu/fck bD 0.1866 0.1246 0.0353 
21 Eq.No. of 

Mu/fck bD2
10.48 10.48 10.48 

22 Mu/fck bD2 0.1997 0.1921 0.1680 
 
Step 5:  When the column behaves like a steel beam 
 

For this case, the parameter (Mu/fck bD2) is determined from Eq.10.50 
using p1 = p2 = 1.5 per cent, fck = 25 N/mm2, fy = 415 N/mm2,   y1/D = 0.35 and 
y2/D = -0.35. Thus, we get  
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(Mu/fck bD2 )  =  0.15164 
 

Step 6:  Final results of design chart 
 

The values of ten pairs of  (Pu/fck bD) and (Mu/fck bD2) as obtained in steps 
1 to 5 are presented in Sl. Nos. 1 to 10 of Table 10.6C. The design chart can be 
prepared by plotting these values. 

 
Table 10.6C   Final values of Pu/fck bD and Mu/fck bD2 of Problem 1 of Section 

10.24.8 
 

Sl. No. Particulars about the point Pu/fck bD Mu/fck bD2

1 k = α  0.8259 0.0 
2 Minimum eccentricity 0.7217 0.0361 
3 k = 1.1 0.6740 0.0643 
4 fs2 = 0 0.5110 0.1155 
5 fs2 = (-)0.4 fyd 0.3713 0.1536 
6 fs2 = (-)0.8 fyd 0.2457 0.1850 
7 fs2 = (-) fyd  

(Initial yield) 
0.1866 0.1997 

8 fs2 = (-) fyd  
(Final yield) 

0.1246 0.1921 

9 k = 0.25 0.0353 0.1680 
10 Steel Beam 0.0 0.1516 

 

10.24.9  Practice Questions and Problems with Answers 
 
Q.1:   Why do we need to have non-dimensional design chart?  
 
A.1:    See sec. 10.24.1 
 
Q.2:   Name the different design parameters while designing a column. Mention 

which one is the most important parameter.   
 
A.2:    See sec. 10.24.2. 
 
Q.3:    Prepare a design chart for a rectangular column within three per cent 

longitudinal steel, equally distributed on two faces, using M 25 and Fe 250 
and considering  d'/D = 0.15. 

 
.A.3:    The solution of this problem is obtained following the same six steps of 

Problem 1 of sec.10.24.8, except that the grade of steel here is Fe 250. 
Therefore, the final results and all the parameters are presented in Table 
10.7 avoiding explaining step by step again. 
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Table 10.7   Final values of Pu/fck bD and Mu/fck bD2 of Q.3 of Section 10.24.9 
 

Sl. No. Particulars about the point Pu/fck bD Mu/fck bD2

1 k = α  0.6936 0.0 
2 Minimum eccentricity 0.5890 0.0295 
3 k = 1.1 0.5931 0.0354 
4 fs2 = 0 0.4298 0.0871 
5 fs2 = (-)0.4 fyd 0.3438 0.1113 
6 fs2 = (-)0.8 fyd 0.2645 0.1323 
7 fs2 = (-) fyd  

(Initial yield) 
0.2268 0.1421 

8 fs2 = (-) fyd  
(Final yield) 

0.1559 0.1395 

9 k = 0.25 0.0839 0.1248 
10 Steel Beam 0.0 0.0914 
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10.24.11  Test 24 with Solutions 
 
Maximum Marks  =  50,     Maximum Time  =  30 minutes 
 
Answer all questions. 
 
TQ.1:    Determine the parameters including the two non-dimensional 

parameters, Pu and Mu of a rectangular reinforced concrete short 
column of b = 370 mm, D = 530 mm, d'/D = 0.1 and having 8-25 mm 
diameter bars as longitudinal steel distributed equally on two sides 
using M 20 and Fe 415 for each of the following three cases:  

 
 (a) when  fs2  =  - 0.4 fyd

  
 (b) when  fs2  =  - 0.8 fyd

 
 (c) when  fs2  =  -  fyd (at final yield)        

 (16 + 17 + 17 = 50) 
             
A.TQ.1:    This problem can be solved following the same procedure of explained 

in Step 4b, c and d of sec.10.24.7. The step by step calculations are 
not shown here and the final results are presented in Table 10.8.                                   

 
Table 10.8   Parameters and results of TQ.1 of Section 10.24.11 
 
Given data:   fck = 20 N/mm2,  fy = 415 N/mm2,  b = 370 mm,  D = 530 mm,  
                    Longitudinal steel = 8-25 mm diameter equally distributed  on                     

two sides,   d'/D = 0.15 
 

Given Sl.No. 
Description 

fs2 = -0.4 fyd fs2 = 0.8 fyd fs2 = - fyd 
(Final yield) 

1 Sec. No. 10.24.7 10.24.7 10.24.7 
2 Step No. 4 4 4 
3 Fig. No. 10.24.3 10.24.4 10.24.6 
4 εs1 = εc1 0.0030 0.0029 0.0027 
5 εs2 = εc2 -0.00072 -0.00144 -0.0038 
6 Table No. 

of  fsi and 
fsc

10.5 10.5 10.5 

7 fs1 354.1702 353.468 349.956 
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8 fs2 -144.42 -288.84 -361.05 
9 fsc NA NA NA 
10 Eq.Nos. of 

fci

10.34 10.34 10.34 

11 fc1 11.15 11.15 11.15 
12 fc2 0.0 0.0 0.0 
13 Table No. 

of C1 and 
C2

NA NA NA 

14 C1 NA NA NA 
15 C2 NA NA NA 
16 y1/D +0.4 +0.4 +0.4 
17 y2/D -0.4 -0.4 -0.4 
18 k  0.7461 0.6371 0.4311 
19 Eq.No. of 

Pu/fck bD 
10.46 10.46 10.46 

20 Pu/fck bD 0.3690 0.2572 0.1452 
21 Pu (kN) 1447.225 1008.792 569.568 
22 Eq.No. of 

Mu/fck bD2
10.48 10.48 10.48 

23 Mu/fck bD2 0.1481 0.1799 0.1899 
24 Mu (kNm) 307.777 374.125 394.779 

 

10.24.12  Summary of this Lesson 
 

 This lesson explains the procedure of the preparation of design 
charts of rectangular reinforced concrete short columns subjected to axial load 
and uniaxial moment. Different positions of the neutral axis due to different pairs 
of Pu and Mu give rise to different strain profiles and stress blocks. Accordingly, 
the column may collapse when subjected to any pair of axial load and moment 
exceeding the capacities of the column. Design charts are very much useful to 
design the column avoiding lengthy numerical computations. Illustrative example, 
practice and test problems will help in understanding each step of the procedure 
to prepare the design chart. 
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Instructional Objectives: 
 

At the end of this lesson, the student should be able to: 
 

• define a slender column, 
 
• give three reasons for its increasing importance and popularity, 

 
• explain the behaviour of slender columns loaded concentrically, 

 
• explain the behaviour of braced and unbraced single column or a part of 

rigid frame, bent in single or double curvatures, 
 

• roles and importance of additional moments due to P-  effect and 
moments due to minimum eccentricities in slender columns, 

Δ

 
• identify a column if sway or nonsway type,  

 
• understand the additional moment method for the design of slender 

columns, 
 

• apply the equations or use the appropriate tables or charts of SP-16 for 
the complete design of slender columns as recommended by IS 456. 

 
 
 

11.27.1   Introduction 
 

 Slender and short are the two types of columns classified on the basis of 
slenderness ratios as mentioned in sec.10.21.5 of Lesson 21. Columns having 
both lex/D and ley/b less than twelve are designated as short and otherwise, they 
are slender, where lex and ley are the effective lengths with respect to major and 
minor axes, respectively; and D and b are the depth and width of rectangular 
columns, respectively. Short columns are frequently used in concrete structures, 
the design of such columns has been explained in Lessons 22 to 26, loaded 
concentrically or eccentrically about one or both axes. However, slender columns 
are also becoming increasingly important and popular because of the following 
reasons: 
 
 (i)    the development of high strength materials (concrete and steel), 
 

(ii) improved methods of dimensioning and designing with rational and 
reliable design procedures, 
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(iii) innovative structural concepts – specially, the architect’s expectations 
for creative structures. 

 
 Accordingly, this lesson explains first, the behaviour of slender elastic 
columns loaded concentrically. Thereafter, reinforced concrete slender columns 
loaded concentrically or eccentrically about one or both axes are taken up. The 
design of slender columns has been explained and illustrated with numerical 
examples for easy understanding. 
 
 
 

10.27.2  Concentrically Loaded Columns 
 
 It has been explained in Lessons 22 to 26 that short columns fail by 
reaching the respective stresses indicating their maximum carrying capacities. 
On the other hand, the slender or long columns may fail at a much lower value of 
the load when sudden lateral displacement of the member takes place between 
the ends. Thus, short columns undergo material failure, while long columns may 
fail by buckling (geometric failure) at  a critical load or Euler’s load, which is much 
less in comparison to that of short columns having equal area of cross-section. 
The buckling load is termed as Euler’s load as Euler in 1744 first obtained the 
value of critical load for various support conditions. For more information, please 
refer to Additamentum, “De Curvis elasticis”, in the “Methodus inveiendi Lineas 
Curvas maximi minimive proprietate gaudentes” Lausanne and Geneva, 1744. 
An English translation of this work is given in Isis No.58, Vol.20, p.1, November 
1933. 
 
 The general expression of the critical load Pcr at which a member will fail 
by buckling is as follows: 
 
 Pcr  =  π2EI /(kl)2

 
where E is the Young’s modulus I is the moment of inertia about the axis of 
bending, l is the unsupported length of the column and k is the coefficient whose 
value depends on the degree of restraints at the supports. Expressing moment of 
inertia I = Ar2, where A is the area of cross-section of the column and r is the 
radius of gyration, the above equations can be written as, 
 
 Pcr  =  π2EA /(kl/r)2       
 (10.62) 
 
Thus, Pcr of a particular column depends upon kl/r or slenderness ratio. It is worth 
mentioning that kl is termed as effective length le of the column. 
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 Figures 10.27.1 and 2 show two elastic slender columns having hinge 
supports at both ends and fixed supports against rotation at both ends, 
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respectively. Figure 10.27.3 presents a column of real structure whose end 
supports are not either hinged or fixed. It has supports partially restrained against 
rotation by the top and bottom beams. Each of the three figures shows the 
respective buckled shape, points of inflection PIs (points of zero moment), the 
distance between the PIs and the value of k. All the three columns, having 
supports at both ends, have the k values less than one or at most one. By 
providing supports at both ends, one end of the column is prevented from 
undergoing lateral movement or sidesway with respect to the other end. 
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However, cantilever columns are entirely free at one end, as shown in 
Fig.10.27.4. Figure 10.27.5 shows another type of column, rotationally fixed at 
both ends but one end can move laterally with respect to the other. Like that of 
Fig.10.27.3, a real column, not hinged, fixed or entirely free but restrained by top 
and bottom beams, where sideway can also take place. Each of these three 
figures, like those of Figs.10.27.1 to 3, presents the respective buckled shape, 
points of inflection (PIs), if any, the distance between the PIs and the value of k. 
All these columns have the respective k values greater than one or at least one. 
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Figures 10.27.7 and 8 present two reinforced concrete portal frames, a 
typical reinforced concrete rigid frame. Columns of Fig.10.27.7 are prevented 
from sidesway and those of Fig.10.27.8 are not prevented from sidesway, 
respectively, when subjected to concentric loadings. The buckled configuration of 
the frame, prevented from sidesway (Fig.10.27.7) is similar to that of Fig.10.27.3, 
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except that the lower ends of the portal frame are hinged. One of the two points 
of inflection (PIs) is at the lower end of the column, while the other PI is slightly 
below the upper end of the column, depending on the degree of restraint. The 
value of k for such a frame is thus less than 1. The critical load is, therefore, 
slightly more than Pcr of the hinge-hinge column of Fig.10.27.1. The buckled 
configuration of the other portal frame of Fig.10.27.8, where sidesway is not 
prevented, is similar to the column of Fig.10.27.4 when it is made upside down, 
except that the upper end is not fixed but partially restrained by the supporting 
beam. In this case, the value of k exceeds 2, depending on the degree of 
restraint. One of the two PIs is at the bottom of the column. The critical load of 
the column of Fig.10.27.8 is much less than that of the column of Fig.10.27.1. 
 
Table 10.14: Critical loads in terms of Pcr of hinge-hinge column and effective 
lengths le = kl  of elastic and reinforced concrete columns with different boundary 
conditions and for a constant unsupported length l  
 
Sl. 
No. 

Support conditions Critical load  
Pcr

Effective length  
le = kl 

Fig. No. 

(A) Elastic single columns 
1. Hinged at both ends, no 

sidesway 
Pcr l 10.27.1 

2. Fixed against rotation at 
both ends – no sidesway 

4Pcr 0.5 l 10.27.2 

3. Partially restrained 
against rotation by top 
and bottom cross-
beams, no sidesway 

Between Pcr 
and 4Pcr

l > kl > l/2 10.27.3 

4. Fixed at one end and 
entirely free at other end 
– sidesway not 
prevented  

0.25 Pcr 2 l, one PI is on 
imaginary 
extension 

10.27.4 

5. Rotationally fixed at both 
ends – sidesway not 
prevented 

Pcr l, one PI is on 
imaginary 
extension 

10.27.5 

6. Partially restrained 
against rotation at both 
ends – sidesway not 
prevented 

Between zero 
and slightly 

less than Pcr * 

l < kl < α  10.27.6 

(B) Reinforced concrete columns 
7. Hinged portal frame – no 

sidesway 
> Pcr kl < l 10.27.7 

8. Hinged portal frame – 
sidesway not prevented 

<< Pcr kl > 2 l 10.27.8 

 
Notes:  1.  Buckled shapes are half sine wave between two points of inflection 
(PIs). 
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            2. * The critical load is slightly less than Pcr of hinge-hinge column 

(Sl.No.1), when cross-beams are very rigid compared to columns, i.e., 
the case under Sl.No.6 approaches the case under Sl.No.1. 

 
           The critical load is zero when cross-beams are very much 

flexible compared to columns, i.e., the case under Sl.No.6 approaches 
to hinge-hinge column of Sl.No.1, allowing sidesway. In that case, it 
becomes unstable and hence, carries zero load. 

 

 
 

 Table 10.14 presents the critical load in terms of that of hinge-hinge 
column Pcr and effective lengths le (equal to the distance between two points of 
inflection PIs = kl) of elastic and reinforced concrete columns for a constant value 
of the unsupported length l. 
 
 The stress-strain curve of concrete, as shown in Fig.1.2.1 of Lesson 2, 
reveals that the initial tangent modulus of concrete Ec is much higher than Et 
(tangent modulus at higher stress level). Taking this into account in Eq.10.62, 
Fig.10.27.9 presents a plot of buckling load Pcr versus kl/r. It is evident from the 
plot that the critical load is reducing with increasing slenderness ratio. For very 
short columns, the limiting factored concentric load estimated from Eq.10.39 of 
Lesson 24 will be found to be less than the critical load, determined from 
Eq.10.62. The column, therefore, will fail by direct crushing and not by buckling. 
We can also find out the limiting value of kl/r when the crushing load and the 
buckling load are the same. The (kl/r)lim is shown in Fig.10.27.9. The limiting 
value of kl/r also indicates that a column having kl/r more than (kl/r)lim will fail by 
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buckling, while columns having any value of kl/r less than (kl/r)lim will fail by 
crushing of concrete. 
 
 The following are the observations of the discussions about the 
concentrically loaded columns: 
 
 1. As the slenderness ratio kl/r increases, the strength of concentrically 
loaded column decreases. 
 
 2. The effective length of columns either in single members or parts of 
rigid frames is between 0.5l and l, if the columns are prevented from sidesway by 
bracing or otherwise. The actual value depends on the degree of end restraints. 
 
 3. The effective length of columns either in single members or parts of 
rigid frames is always greater than one, if the columns are not prevented from 
sidesway. The actual value depends on the degree of end restraints. 
 
 4. The critical load of braced frame against sidesway is always 
significantly larger than that of the unbraced frame. 
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10.27.3  Slender Columns under Axial Load and Uniaxial 
Moment 
 
(A) Columns bent in single curvature 
 
 Figure 10.27.10a shows a column bent in single curvature under axial load 
P less than its critical load Pcr with constant moment Pe. The deflection profile 
marked by dotted line is due to the constant moment. However, there will be 
additional moment of Py at a distance z from the origin (at the bottom of column) 
which will deflect the column further, as shown by the solid line. The constant 
moment Pe and additional moment Py are shown in Fig.10.27.10b. Thus, the 
total moment becomes 
 
 M  =  Mo + Py   =  P(e + y)      
 (10.63) 
 
The maximum moment is P(e + Δ ) at the mid-height of the column. This, we can 
write 
 
 Mmax  =  Mo + P   =  P(e + Δ Δ )     
 (10.64) 
 
This is known as  P - Δ  effect. 
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Figure 10.27.11a shows another column whose bending is caused by a 

transverse load H. The bending moment at a distance z from the origin (bottom 
of the column) is Hz/2 causing deflection of the column marked by dotted line in 
the figure. The axial load P, less than its critical load Pcr, causes additional 
moment resulting in further deflection, marked by solid line in the figure. This 
additional deflection produces additional moment of Py at a section z from the 
origin. The two bending moment diagrams are shown in Fig.10.27.11b. Here 
again, the total moment is 
 
 M  =  Mo + Py  =  Hz/2 + Py      
 (10.65) 
 
The maximum moment at the mid-height of the column is  
 
 Mmax  =  Mo,max + P   =  Hl/4 + PΔ Δ      
 (10.66) 
 
 The total moment in Eqs.10.63 and 10.65 consists of the moment Mo that 
acts in the presence of P and the additional moment caused by P (= Py). The 
deflections  y can be computed from yo, the deflections without the axial load 
from the expression 
 
 y  =  yo[1/{1 – (P/Pcr)}]      
 (10.67) 
 
From Eq.10.64, we have 
 
 Mmax  =  Mo + P   =  MΔ o + PΔ o[1/{1 – (P/Pcr)}]   
 (10.68) 
 
Equation 10.68 can be written as 
 

 
1  (

     
1 - (

cr
max o

cr

P / P )
M M

P / P )

ψ+
=      

 (10.69) 
 
where  ψ  depends on the type of loading and generally varies between 0.20. 
Since P/P

±
cr is always less than one, we can ignore ψ (P/Pcr) term of Eq.10.69, to 

have 
 
 Mmax  =  Mo/{1 – (P/Pcr)}      
 (10.70) 
 
where 1/{1 – (P/Pcr)} is the moment magnification factor. In both the cases above 
(Figs.10.27.10 and 11), a direct addition of the maximum moment caused by 
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transverse load or otherwise, to the maximum moment caused by P gives the 
total maximum moment as that is the most unfavourable situation. However, this 
is not the case for situation taken up in the following.  
 
(B)  Columns bent in double curvature 
 

 
 Figure 10.27.12a shows a column subjected to equal end moment of 
opposite signs. From the moment diagrams Mo and Py (Figs.10.27.12b and c), it 
is clear that though Mo moments are maximum at the ends, the Py moments are 
maximum at some distance from the ends. The total moment can be either as 
shown in d or in e of Fig.10.27.12. In case of Fig.10.27.12d, the maximum 
moment remains at the ends and in Fig.10.27.12e, the maximum moment is at 
some distance from the ends, where Mo is comparatively smaller than Mo max at 
the ends. Accordingly, the total maximum moment is moderately higher than Mo 

max. 
 
 From the above, it is evident that the moment Mo will be magnified most 
strongly if the section of Mo max coincides with the section of maximum value of y, 
as in the case of column bent in single curvature of Figs.10.27.10 and 11. 
Similarly, if the two moments are unequal but of same sign as in Fig.10.27.10, 
the moment Mo will be magnified but not so much as in Fig.10.27.10. On the 
other hand, if the unequal end moments are of opposite signs and cause bending 
in double curvature, there will be little or no magnification of Mo moment.  
 
 This dependence of moment magnification on the relative magnitudes of 
the two moments can be expressed by modifying the earlier Eq.10.70 as  
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 Mmax  =  Mo Cm/{1 – (P/Pcr)}      
 (10.71) 
 
where Cm   =  0.6 + 0.4(M1/M2)  ≥   0.4     
 (10.72) 
 
The moment M1 is smaller than M2 and M1/M2 is positive if the moments produce 
single curvature and negative if they produce double curvature. It is further seen 
from Eq.10.72 that  Cm = 1, when M1 = M2 and in that case, Eq.10.71 becomes 
the same as Eq.10.70. 
 
 For the column of Fig.10.27.12a, the deflections caused by Mo are 
magnified when axial load P is applied. The deflection can be obtained from  
 
 y  =  yo [1/{1 – (P/4Pcr)}]      
 (10.73) 
 

 
(C)  Portal frame laterally unbraced and braced 
 
 Here, the sidesway can occur only for the entire frame simultaneously. A 
fixed portal frame, shown in Fig.10.27.13a, is under horizontal load H and 
compression force P. The moments due to H and P and the total moment 
diagrams are shown in Fig.10.27.13b, c and d, respectively. The deformations of 
the frame due to H are shown in Fig.10.27.13a by dotted curves, while the solid 
curves are the magnified deformations. It is observed that the maximum values 
of positive and negative Mo are at the ends of the column where the maximum 
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values of positive and negative moments due to P also occur. Thus, the total 
moment shall be at the ends as the two effects are fully additive. 
 

 
 Figure 10.27.14a shows a fixed portal frame, laterally braced so that no 
sidesway can occur. Figures 10.27.14b and c show the moments Mo and due to 
P.  It is seen that the maximum values of the two different moments do not occur 
at the same location. As a result, the magnification of the moment either may not 
be true or shall be small. 
 
(D) Columns with different slenderness ratios 
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 Figure 10.27.15 shows the interaction diagram of P and M at the mid-
height section of the column shown in Fig.10.27.10. Three loading paths OA, OB 
and OC are also shown in the figure for three columns having the same cross-
sectional area and the eccentricity of loads but with different slenderness ratios. 
The three columns are loaded with increasing P and M (at constant eccentricity) 
up to failure. The loading path OA is linear indicating Δ  = 0, i.e., for a very short 
column. It should be noted that Δ  should be theoretically zero only when either 
the effective length or the eccentricity is zero. In a practical short column, 
however, some lateral deflection shall be there, which, in turn will cause 
additional moment not more than five per cent of the primary moment and may 
be neglected. The loading path OA terminates at point A of the interaction 
diagram, which shows the failure load Psc of the short column with moment Msc = 
Psc e. The short column fails by crushing of concrete at the mid-height section. 
This type of failure is designated as material failure, either a tension failure or a 
compression failure depending on the location of the point A on the interaction 
curve. 
 
 The load path OB is for a long column, where the deflection  caused by 
increasing value of P is significant. Finally, the long column fails at load P

Δ
lc and 

moment Mlc = Plc(e + ). The loading path OB further reveals that the secondary 
moment P

Δ
lcΔ  is comparable to the primary moment Plc e. Moreover, the failure 

load and the primary moment of the long column Plc and Plc e, respectively, are 
less than those of the short column (Psc and Psc e, respectively), though both the 
columns have the same cross-sectional areas and eccentricities but different 
slenderness ratios. Here also, the mid-height section of the column undergoes 
material failure, either a compression failure or a tension failure, depending on 
the location of the point B on the interaction diagram. 
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 The loading path OC, on the other hand, is for a very long column when 
the lateral deflection  is so high that the slope of the path dP/dM at C is zero. 
The column is so slender that the failure is due to buckling (instability) at a 
comparatively much low value of the load P

Δ

cr, though this column has the same 
cross-sectional area and the eccentricity of load as of the other two columns. 
Such instability failure occurs for very slender columns, specially when they are 
not braced. 
 
 The following points are summarised from the discussion made in 
sec.10.27.3. 
 
 1. Additional deflections and moments are caused by the axial 
compression force P in columns. The additional moments increase with the 
increase of  kl/r, when other parameters are equal. 
 
 2. Laterally braced compression members and bent in single curvature 
have the same or nearby locations of the maxima of both Mo and Py. Thus, being 
fully additive, they have large moment magnification. 
 
 3. Laterally braced compression members and bent in double curvature 
have different locations of the maxima of both Mo and Py. As a result, the 
moment magnification is either less or zero. 
 
 4. Members of frames not braced laterally, the maxima of Mo and Py 
mostly occur at the ends of column and cause the maximum total moment at the 
ends of columns only. Additional moments and additional deflections increase 
with the increase of kl/r. 
 

10.27.4  Effective Length of Columns 
 
 Annex E of IS 456 presents two figures (Figs.26 and 27) and a table 
(Table 26) to estimate the effective length of columns in frame structures based 
on a research paper, “Effective length of column in multistoreyed building” by 
R.H. Wood in The Structural Engineer Journal, No.7, Vol.52, July 1974. Figure 
26 is for columns in a frame with no sway, while Fig.27 is for columns in a frame 
with sway. These two figures give the values of k (i.e., le/l) from two parameters 

21  and ββ  which are obtained from the following expression: 
 
       

 (10.74) 

    /    ∑ ∑ ∑+= bcc KKKβ

 
where Kc and Kb are flexural stiffnesses of columns and beams, respectively. The 
quantities 21  and ββ  at the top and bottom joints A and B, respectively, are 
determined by summing up the K values of members framing into a joint at top 
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and bottom, respectively. Thus 21  and ββ  for the frame shown in Fig.10.27.16 are 
as follows: 
 

 
 1β   =  (Kc + Kct)/(Kc + Kct + Kb1 + Kb2)    
 (10.75) 
 
 2β   =  (Kc + Kcb)/(Kc + Kcb + Kb3 + Kb4)    
 (10.76) 
 
 However, assuming idealised conditions, the effective length in a given 
plane may be assessed from Table 28 in Annex E of IS 456, for normal use. 
 

10.27.5  Determination of Sway or No Sway Column 
 
 Clause E-2 of IS 456 recommends the stability index Q to determine if a 
column is a no sway or sway type. The stability index Q is expressed as: 
 
 Q  =  P∑ u /HuΔ u hz      

 (10.77) 
 
where ∑ Pu  =  sum of axial loads on all columns in the storey, 

         =  elastically computed first-order lateral deflection, uΔ
 Hu         =  total lateral force acting within the storey, and 

Version 2 CE IIT, Kharagpur 
 



 hz          =  height of the storey.   
  
 The column may be taken as no sway type if the value of Q is  0.4, 
otherwise, the column is considered as sway type. 

≤

 

10.27.6  Design of Slender Columns 
 
 The design of slender columns, in principle, is to be done following the 
same procedure as those of short columns. However, it is essential to estimate 
the total moment i.e., primary and secondary moments considering P-  effects. 
These secondary moments and axial forces can be determined by second-order 
rigorous structural analysis – particularly for unbraced frames. Further, the 
problem becomes more involved and laborious as the principle of superposition 
is not applicable in second-order analysis. 

Δ

 
 However, cl.39.7 of IS 456 recommends an alternative simplified method 
of determining additional moments to avoid the laborious and involved second-
order analysis. The basic principle of additional moment method for estimating 
the secondary moments is explained in the next section. 
 

10.27.7  Additional Moment Method 
 
 In this method, slender columns should be designed for biaxial 
eccentricities which include secondary moments (Py of Eq.10.63 and 10.65) 
about major and minor axes. We first consider braced columns which are bent 
symmetrically in single curvature and cause balanced failure i.e.,  Pu = Pub. 
 
(A) Braced columns bent symmetrically in single curvature and undergoing 
balanced failure 
 
 For braced columns bent symmetrically in single curvature, we have from 
Eqs.10.63 and 10.65, 
 
 M  =  Mo + Py  =  Mo + P ea  =  Mo + Ma    
 (10.78) 
 
where P is the factored design load Pu, M are the total factored design moments 
Mux and Muy about the major and minor axes, respectively; Mo are the primary 
factored moments Moux and Mouy about the major and minor axes, respectively; 
Ma are the additional moments Max and May about the major and minor axes, 
respectively and ea are the additional eccentricities eax and eay along the minor 
and major axes, respectively. The quantities Mo and P of Eq.10.78 are known 
and hence, it is required to determine the respective values of ea, the additional 
eccentricities only.  
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 Let us consider the columns of Figs.10.27.10 and 11 showing  as the 
maximum deflection at the mid-height section of the columns. The column of 
Fig.10.27.10, having a constant primary moment M

Δ

o, causes constant curvature 
φ , while the column of Fig.10.27.11, having a linearly varying primary moment 
with a maximum value of Mo max at the mid-height section of the column, has a 
linearly varying curvature with the maximum curvature of φ max at the mid-height 
section the column. The two maximum curvatures can be expressed in terms of 
their respective maximum deflection Δ  as follows: 
 
 The constant curvature (Fig.10.27.10)    
 (10.79) 

2
max /8    elΔ=φ

 
 The linearly varying curvature (Fig.10.27.11)  
 (10.80) 

2
max /12    elΔ=φ

 
where le are the respective effective lengths kl of the columns. We, therefore, 
consider the maximum φ  as the average value lying in between the two values of 
Eqs.10.79 and 80 as 
 
         
 (10.81) 

2
max /10    elΔ=φ

 
 Accordingly, the maximum additional eccentricities  ea, which are equal to 
the maximum deflections Δ , can be written as 
 
 ea  =    =         
 (10.82) 

Δ  /10 2
elφ
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 Assuming the column undergoes a balanced failure when Pu = Pub, the 
maximum curvature at the mid-height section of the column, shown in 
Figs.10.27.17a and b, can be expressed as given below, assuming (i) the values 
of cε  = 0.0035, stε  = 0.002 and  Dd /′  = 0.1, and (ii) the additional moment 
capacities are about eighty per cent of the total moment. 
 
 φ   =  eighty per cent of {(0.0035 + 0.002)/0.9D} (see Fig.10.27.17c) 
 
or φ   =  1/200D        
 (10.83) 
 
Substituting the value of φ  in Eq.10.82, 
 
 ea  =  D(le/D)2/2000       
 (10.84) 
 
Therefore, the additional moment Ma can be written as, 
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 Ma  =  Py  =  PΔ   =  Pea  =  (PD/2000) (le/D)2   
 (10.85) 
 
Thus, the additional moments Max and May about the major and minor axes, 
respectively, are: 
 
 Max  =  (PuD/2000) (lex/D)2      
 (10.86) 
 
 May  =  (Pub/2000) (ley/b)2      
 (10.87) 
 
where Pu   =  axial load on the member,  
 
 lex   =  effective length in respect of the major axis, 
 
 ley   =  effective length in respect of the minor axis, 
 
 D   =  depth of the cross-section at right angles to the major axis, and 
 
 b    =  width of the member. 
 
Clause 39.7.1 of IS 456 recommends the expressions of Eqs.10.86 and 87 for 
estimating the additional moments Max and May for the design. These two 
expressions of the additional moments are derived considering the columns to be 
braced and bent symmetrically undergoing balanced failure. Therefore, proper 
modifications are necessary for different situations like braced columns with 
unequal end moments with the same or different signs, unbraced columns and 
columns causing compression failure i.e., when Pu > Pub. 
 
(B)  Braced columns subjected to unequal primary moments at the two 
ends 
 
 For braced columns without any transverse loads occurring in the height, 
the primary maximum moment (Mo max of Eq.10.64), with which the additional 
moments of Eqs.10.86 and 87 are to be added, is to be taken as: 
 
 Mo max  =  0.4 M1 + 0.6 M2      
 (10.88) 
 
and further  Mo max  ≥   0.4 M2       
 (10.89) 
 
where M2 is the larger end moment and M1 is the smaller end moment, assumed 
to be negative, if the column is bent in double curvature. 
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 To eliminate the possibility of total moment Mu max becoming less than M2 
for columns bent in double curvature (see Fig.10.27.12) with M1 and M2 having 
opposite signs, another condition has been imposed as 
 
 Mu max    M≥ 2        
 (10.90) 
 
 The above recommendations are given in notes of cl.39.7.1 of IS 456. 
 
(C)  Unbraced columns 
 
 Unbraced frames undergo considerable deflection due to P-  effect. The 
additional moments determined from Eqs.10.86 and 87 are to be added with the 
maximum primary moment M

Δ

o max at the ends of the column. Accordingly, we 
have 
 
 Mo max  =  M2 + Ma       
 (10.91) 
 
The above recommendation is given in the notes of cl.39.7.1 of IS 456. 
 
(D)  Columns undergoing compression failure (Pu > Pub) 
 
 It has been mentioned in part A of this section that the expressions of 
additional moments given by Eqs.10.86 and 10.87 are for columns undergoing 
balanced failure (Fig.10.27.17). However, when the column causes compression 
failure, the e/D ratio is much less than that of balanced failure at relatively high 
axial loads. The entire section may be under compression causing much less 
curvatures. Accordingly, additional moments of Eqs.10.86 and 10.87 are to be 
modified by multiplying with the reduction factor k as given below: 
 
(i)   For Pu > Pubx:  kax  =  (Puz – Pu)/(Puz – Pubx)    
 (10.92) 
 
(ii)  For Pu > Puby:  kay  =  (Puz – Pu)/(Puz – Puby)    
 (10.93) 
 
with a condition that kax and kay should be ≤  1    
 (10.94) 
 
where Pu  =  axial load on compression member 
 
 Puz  is given in Eq.10.59 of Lesson 26 and is, 
 
 Puz  =  0.45 fck Ac + 0.75 fy Ast   …  (10.59) 
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 Pubx, Puby  =  axial loads with respect to major and minor axes, 
respectively, corresponding to the condition of maximum compressive strain of 
0.0035 in concrete and tensile strain of 0.002 in outermost layer of tension steel. 
 
 It is seen from Eqs.10.92 and 10.93 that the values of k (kax and kay) vary 
linearly from zero (when Pu = Puz) to one (when Pu = Pub). Since Eqs.10.92 and 
10.93 are not applicable for Pu < Pub, another condition has been imposed as 
given in Eq.10.94. 
 
 The above recommendations are given in cl.39.7.1.1 of IS 456. 
 
 The following discussion is very important for the design of slender 
columns. 
 
 Additional moment method is one of the methods of designing slender 
columns as discussed in A to D of this section. This method is recommended in 
cl.39.7 of IS 456 also. The basic concept here is to enhance the primary 
moments by adding the respective additional moments estimated in a simple way 
avoiding laborious and involved calculations of second-order structural analysis. 
However, these primary moments under eccentric loadings should not be less 
than the moments corresponding to the respective minimum eccentricity, as 
stipulated in the code. Hence, the primary moments in such cases are to be 
replaced by the minimum eccentricity moments. Moreover, all slender columns, 
including those under axial concentric loadings, are also to be designed for 
biaxial bending, where the primary moments are zero. In such cases, the total 
moment consisting of the additional moment multiplied with the modification 
factor, if any, in each direction should be equal to or greater than the respective 
moments under minimum eccentricity conditions. As mentioned earlier, the 
minimum eccentricity consideration is given in cl.25.4 of IS 456. 
 

10.27.8  Illustrative Example 
 
 The following illustrative example is taken up to explain the design of 
slender columns. The example has been solved in step by step using (i) the 
equations of Lessons 21 to 27 and (ii) employing design charts and tables of SP-
16, to compare the results. 
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Problem 1: 
 
 Determine the reinforcement required for a braced column against 
sidesway with the following data: size of the column  =  350 x 450 mm 
(Fig.10.27.18); concrete and steel grades = M 30 and Fe 415, respectively; 
effective lengths lex and ley = 7.0 and 6.0 m, respectively; unsupported length l = 8 
m; factored load Pu = 1700 kN; factored moments in the direction of larger 
dimension = 70 kNm at top and 30 kNm at bottom; factored moments in the 
direction of shorter dimension = 60 kNm at top and 30 kNm at bottom. The 
column is bent in double curvature. Reinforcement will be distributed equally on 
four sides. 
 
Solution 1: 
 
Step 1:  Checking of slenderness ratios 
 
 lex/D  =  7000/450  =  15.56 > 12, 
 
 ley/b  =  6000/350  =  17.14  >  12. 
 
Hence, the column is slender with respect to both the axes. 
 
Step 2: Minimum eccentricities and moments due to minimum 

eccentricities (Eq.10.3 of Lesson21) 
 
 ex min =  l/500 + D/30  =  8000/500 + 450/30  =  31.0  >  20 mm  
 
 ey min =  l/500 + b/30  =  8000/500 + 350/30  =  27.67  >  20 mm 
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 Mox (Min. ecc.)  =  Pu(ex min)  =  (1700) (31) (10-3)  =  52.7 kNm 
 
 Moy (Min. ecc.)  =  Pu(ey min)  =  (1700) (27.67) (10-3)  =  47.04 kNm 
 
Step 3:  Additional eccentricities and additional moments  
 
Method 1:  Using Eq. 10.84 
 
 eax  =  D(lex/D)2/2000  =  (450) (7000/450)2/2000  =  54.44 mm 
 
 eay  =  b(lex/b)2/2000  =  (350) (6000/350)2/2000  =  51.43 mm 
 
 Max  =  Pu(eax)  =  (1700) (54.44) (10-3)  =  92.548 kNm 
 
 May  =  Pu(eay)  =  (1700) (51.43) (10-3)  =  87.43 kNm 
 
Method 2:  Table I of SP-16 
 
For lex/D  =  15.56, Table I of SP-16 gives: 
 
 eax/D  =  0.1214, which gives  eax = (0.1214) (450)  =  54.63 mm 
 
For ley/D  =  17.14, Table I of SP-16 gives: 
 
 eay/b  =  0.14738, which gives  eay = (0.14738) (350)  =  51.583 mm 
 
 It is seen that values obtained from Table I of SP-16 are comparable with 
those obtained by Eq. 10.84 in Method 1. 
 
Step 4:  Primary moments and primary eccentricities (Eqs.10.88 and 89) 
 
 Mox  =  0.6M2 – 0.4M1  =  0.6(70) – 0.4(30)  =  30 kNm, which should be  ≥  
0.4 M2 (= 28 kNm).   Hence, o.k. 
 

Moy  =  0.6M2 – 0.4M1  =  0.6(60) – 0.4(30)  =  24 kNm, which should be  ≥  
0.4 M2 (= 24 kNm).   Hence, o.k. 
 
Primary eccentricities: 
 
 ex  =  Mox/Pu  =  (30/1700) (103)  =  17.65 mm 
 
 ey  =  Moy/Pu  =  (24/1700) (103)  =  14.12 mm 
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Since, both primary eccentricities are less than the respective minimum 
eccentricities (see Step 2), the primary moments are revised to those of Step 2. 
So,  Mox = 52.7 kNm and Moy = 47.04 kNm. 
 
Step 5:  Modification factors 
 
 To determine the actual modification factors, the percentage of 
longitudinal reinforcement should be known. So, either the percentage of 
longitudinal reinforcement may be assumed or the modification factor may be 
assumed which should be verified subsequently. So, we assume the modification 
factors of 0.55 in both directions. 
 
Step 6:  Total factored moments 
 

Mux  =  Mox + (Modification factor) (Max)  =  52.7 + (0.55) (92.548)  
 
        =  52.7 + 50.9  =  103.6 kNm 

 
 

Muy  =  Moy + (Modification factor) (May)  =  47.04 + (0.55) (87.43)  
 
        =  47.04 + 48.09  =  95.13 kNm 

 
Step 7:  Trial section (Eq.10.61 of Lesson 26) 
 
 The trial section is determined from the design of uniaxial bending with Pu 
= 1700 kN and Mu = 1.15 . So, we have M2/122 )  ( uyux MM + u = (1.15){(103.6)2 + 

(95.13)2}1/2 = 161.75 kNm. With these values of Pu (= 1700 kN) and Mu (= 161.75 
kNm), we use chart of SP-16 for the Dd /′  = 0.134. We assume the diameters of 
longitudinal bar as 25 mm, diameter of lateral tie = 8 mm and cover = 40 mm, to 
get   = 40 + 8 + 12.5 = 60.5 mm. Accordingly, d ′ Dd /′  = 60.5/450 = 0.134 and 

 = 60.5/350 = 0.173. We have: bd /′
 
 Pu/fck bD  =  1700(103)/(30)(350)(450)  =  0.3598 
 
 Mu/fck bD2  =  161.75(106)/(30)(350)(450)(450)  =  0.076 
 
We have to interpolate the values of  p/fck  for  Dd /′  = 0.134 obtained from 
Charts 44 (for  = 0.1) and 45 (Dd /′ Dd /′  = 0.15). The values of p/fck are 0.05 
and 0.06 from Charts 44 and 45, respectively. The corresponding values of p are 
1.5 and 1.8 per cent, respectively. The interpolated value of p for  = 0.134 
is 1.704 per cent, which gives A

Dd /′
sc = (1.704)(350)(450)/100 = 2683.8 mm2. We 

use 4-25 + 4-20 (1963 + 1256 = 3219 mm2), to have  p provided = 2.044 per cent 
giving p/fck = 0.068. 
 
Step 8:  Calculation of balanced loads Pb
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 The values of Pbx and Pby are determined using Table 60 of SP-16. For 
this purpose, two parameters k1 and k2 are to be determined first from the table. 
We have p/fck = 0.068,  = 0.134 and Dd /′ bd /′  = 0.173. From Table 60, k1 = 
0.19952 and k2 = 0.243 (interpolated for Dd /′  = 0.134) for Pbx. So, we have: 
Pbx/fckbD = k1 + k2 (p/fck) = 0.19952 + 0.243(0.068) = 0.216044, which gives Pbx = 
0.216044(30)(350)(450)(10-3) = 1020.81 kN. 
 
 Similarly, for Pby:   = 0.173, p/fbd /′ ck = 0.068. From Table 60 of SP-16, k1 
= 0.19048 and k2 = 0.1225 (interpolated for bd /′  = 0.173). This gives Pby/fckbD = 
0.19048 + 0.1225(0.068) = 0.19881, which gives Pby = 
(0.19881)(30)(350)(450)(10-3) = 939.38 kN. 
 
 Since, the values of Pbx and Pby are less than Pu, the modification factors 
are to be used. 
 
Step 9:  Determination of Puz

 
Method 1:  From Eq.10.59 of Lesson 26 
 
 Puz  =  0.45 fck Ag + (0.75 fy – 0.45 fck) Asc

 
        =  0.45(30)(350)(450) + {0.75(415) – 0.45(30)}(3219)  =  3084.71 kN 
 
Method 2: Using Chart 63 of SP-16 
 
 We get Puz/Ag = 19.4 N/mm2 from Chart 63 of SP-16 using p = 2.044 per 
cent. Therefore, Puz = (19.4)(350)(450)(10-3) = 3055.5 kN, which is in good 
agreement with that of Method 1. 
 
Step 10:  Determination of modification factors 
 
Method 1:  From Eqs.10.92 and 10.93 
 
 kax  =  (Puz – Pu)/(Puz – Pubx)  …  (10.92)   
 
or kax  =  (3084.71 – 1700)/(3084.71 – 1020.81)  =  0.671 and 
 

kay  =  (Puz – Pu)/(Puz – Puby)  …  (10.93)   
 
or kay  =  (3084.71 – 1700)/(3084.71 – 939.39)  =  0.645 
 
 The values of the two modification factors are different from the assumed 
value of 0.55 in Step 5. However, the moments are changed and the section is 
checked for safety. 
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Method 2:  From Chart 65 of SP-16 
 
 From Chart 65 of SP-16, for the two parameters, Pbx/Puz = 
1020.81/3084.71 = 0.331 and Pu/Puz = 1700/3084.71 = 0.551, we get kax = 0.66. 
Similarly, for the two parameters, Pby/Puz = 939.38/3084.71 = 0.3045 and Pu/Puz =  
0.551, we have kay = 0.65. Values of kax and kay are comparable with those of 
Method 1. 
 
Step 11:  Total moments incorporating modification factors 
 
 Mux  =  Mox (from Step 4) + (kax) Max (from Step 3) 
 
         =  52.7 + 0.671(92.548)  =  114.8 kNm 
 
 
 Muy  =  Moy (from Step 4) + kay (May) (from Step 3) 
 
         =  47.04 + (0.645)(87.43)  =  103.43 kNm. 
 
Step 12:  Uniaxial moment capacities 
 
 The two uniaxial moment capacities Mux1 and Muy1 are determined as 
stated: (i) For Mux1, by interpolating the values obtained from Charts 44 and 45, 
knowing the values of Pu/fckbD = 0.3598 (see Step 7), p/fck = 0.068 (see Step 7), 

 = 0.134 (see Step 7), (ii) for MDd /′ uy1, by interpolating the values obtained from 
Charts 45 and 46, knowing the same values of Pu/fckbD and p/fck as those of (i) 
and  = 0.173 (see Step 7). The results are given below: Dd /′
 
(i)   Mux1/fckbD2  =  0.0882 (interpolated between 0.095 and 0.085) 
 
(ii)  Muy1/fckbb2  =  0.0827 (interpolated between 0.085 and 0.08) 
 
So, we have, Mux1 = 187.54 kNm and Muy1 = 136.76 kNm. 
 
Step 13:  Value of  nα  
 
Method 1:  From Eq.10.60 of Lesson 26 
 
 We have Pu/Puz = 1700/3084.71 = 0.5511. From Eq.10.60 of Lesson 26, 
we have nα  = 0.67 + 1.67 (Pu/Puz) = 1.59. 
 
Method 2: Interpolating the values between (Pu/Puz) = 0.2 and 0.6 
 
 The interpolated value of  nα  = 1.0 + (0.5511 – 0.2)/0.6 = 1.5852. Both the 

values are comparable. We use nα  = 1.5852. 
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Step 14:  Checking of column for safety 
 
Method 1: From Eq.10.58 of Lesson 26 
 
 We have in Lesson 26: 
 
  1    )/(  )/( 11 ≤+ nn

uyuyuxux MMMM αα   …  (10.58) 

 
 Here, putting the values of Mux, Mux1, Muy, Muy1 and nα , we get: 
(114.8/187.54)1.5452 + (103.43/136.76)1.5852 = 0.4593 + 0.6422 = 1.1015. Hence, 
the section or the reinforcement has to be revised. 
 
Method 2: Chart 64 of SP-16 
 
 The point having the values of (Mux/Mux1) = 114.8/187.54 = 0.612 and 
(Muy/Muy1) = 103.43/136.76 = 0.756 gives the value of Pu/Pz more than 0.7. The 
value of Pu/Puz here is 0.5511 (see Step 13). So, the section needs revision. 
 
 We revise from Step 7 by providing 8-25 mm diameter bars (= 3927 mm2, 
p = 2.493 per cent and p/fck = 0.0831) as the longitudinal reinforcement keeping 
the values of b and D unchanged. The revised section is checked furnishing the 
repeated calculations from Step 8 onwards. The letter R is used before the 
number of step to indicate this step as revised one. 
 
Step R8:  Calculation of balanced loads Pb

 
 Table 60 of SP-16 gives k1 = 0.19952, and k2 = 0.243. We have p/fck = 
0.0831 now. So, Pbx  =  {0.19952 + (0.243)(0.0831)} (30)(350)(450)(10-3)  =  
1038.145 kN. Similarly, k1 = 0.19048, k2 = 0.1225 and p/fck = 0.0831 give Pby  =  
{0.19048 + (0.1225)(0.0831)} (30)(350)(450)(10-3)  =  948.12 kN.  
 
 The values of Pbx and Pby are less than Pu (= 1700 kN). So, modification 
factors are to be incorporated. 
 
Step R9:  Determination of Puz (Eq. 10.59 of Lesson 26) 
 
 Puz = 0.45(30)(350)(450) + {0.75(415) – 0.45(30)}(3927) = 3295.514 kN. 
 
Step R10:  Determination of modification factors (Eqs.10.92 and 10.93) 
 
 kax  =  (3295.514 – 1700)/(3295.514 – 1038.145)  =  0.707 
 
 kay  =  (3295.514 – 1700)/(3295.514 – 948.12)  =  0.68 
 
Step R11:  Total moments incorporating modification factors 
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 Mux  =  52.70 + 0.707(92.548)  =  118.13 kNm 
 
 Muy  =  47.04 + 0.68(87.43)  =  106.49 kNm 
 
Step R12:  Uniaxial moment capacities 
 
 Using Charts 44 and 45 for Mux1 and Charts 45 and 46 for Muy1, we get (i) 
the coefficient 0.1032 (interpolating 0.11 and 0.10) and (ii) the coefficient 0.0954 
(interpolating 0.1 and 0.09) for Mux1 and Muy1, respectively.  
 
 Mux1  =  (0.1032)(30)(350)(450)(450)(10-6)  =  219.429 kNm 
 
 Muy1  =  (0.0954)(30)(450)(350)(350)(10-6)  =  157.77 kNm 
 
Step R13:  Value of  nα  (Eq.10.60 of Lesson 26) 
 
 Pu/Puz  =  1700/3295.514  =  0.5158 which gives  
 
 nα   =  1 + (0.5158 – 0.2)/0.6  =  1.5263 
 
Step R14:  Checking of column for safety (Eq.10.58 of Lesson 26) 
 
 (118.13/219.424)1.5263 + (106.49/157.77)1.5263  =  0.3886 + 0.5488  =  
0.9374 < 1.0 
 
 Hence, the revised reinforcement is safe. The section is shown in 
Fig.10.27.18. 
 
 

10.27.9  Practice Questions and Problems with Answers 
 
Q.1:  Define a slender column. Give three reasons for its increasing importance 

and popularity. 
             
A.1:    See sec. 10.27.1. 
 
Q.2:   Explain the behaviour of a slender column subjected to concentric loading. 

Explain Euler’s load. 
 
A.2: See sec.10.27.3. 
 
Q.3: Choose the correct answer. 
 

(A) As the slenderness ratio increases, the strength of concentrically 
loaded column: 

          (i)  increases     (ii)  decreases 
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 (B)   For braced columns, the effective length is between 
 
          (i) l and 2l  (ii) 0.5l and 2l  (iii)  0.5l and l 
 
 (C)   The critical load of a braced frame is  
 
         (i)  always larger than that of an unbraced column 
 
        (ii)  always smaller than that of an unbraced column 
 
        (iii) sometimes larger and sometimes smaller than that of an unbraced 
column 
 
A.3: A. (ii),   B. (iii),   C. (i) 
 
Q.4: Explain the behaviour of slender columns under axial load and uniaxial 

bending, bent in single curvature. 
 
A.4: Part (A) of sec. 10.27.3. 
 
Q.5: Explain the behaviour of slender columns under axial load and uniaxial 

bending, bent in double curvature. 
 
A.5: Part (B) of sec. 10.27.3. 
 
Q.6: Explain the behaviour of columns in portal frame both braced and 
unbraced. 
 
A.6: Part (C) of sec. 10.27.3. 

 

Version 2 CE IIT, Kharagpur 
 



 
Q.7: Check the column of Fig.10.27.19, if subjected to an axial factored load of 

Pu = 1500 kN only when the unsupported length of the column = l = 8.0 m,  
lex = ley = 6.0 m, D = 400 mm, b = 300 mm, using concrete of M 20 and 
steel grade in Fe 415. 

 
A.7: Solution: 
 
Step 1:  Slenderness ratios 
 
 Lex/D  =  6000/400  =  15  > 12 
 
 Ley/b  =  6000/300  =  20  > 12 
 
The column is slender about both the axes. 
 
Step 2: Minimum eccentricities and moments due to minimum 

eccentricities (Eq.10.3 of Lesson 21) 
 
 ex min  =  l/500 + D/30  =  8000/500 + 400/30  =  29.33 mm > 20 mm 
 
 ey min  = 8000/500 + 300/30  =  26 mm > 20 mm 
 
 Mx due to min. ecc.  =  Pu (ex min)  =  1500(29.33)  =  43.995 kNm 
 
 My due to min. ecc.  =  Pu (ey min)  =  1500(26.0)   =  39.0 kNm 
 
Step 3:  Primary moments 
 
 Since the column is concentrically loaded, the primary moments are zero. 
Therefore, the additional moments must be greater than the respective moments 
due to minimum eccentricity. 
 
Step 4:  Additional eccentricities and moments (Eq.10.84) 
 
 eax  =  D(lex/D)2/2000  =  400(6000/400)2/2000  =  45 mm  >  ex min (= 29.23 
mm) 
 
 eay  =  b(ley/b)2/2000  =  300(6000/300)2/2000  =  60 mm  >  ey min (= 26 
mm) 
 
Step 5:  Calculation of balance loads Pbx and Pby

 
 Given Asc = 3927 mm2 (8 bars of 25 mm diameter give  p = 3.2725 per 
cent. So,   p/fck = 0.1636. Using 8 mm diameter lateral tie, d ′  = 40 + 8 + 12.5 = 
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60.5 mm giving /D = 60.5/400 = 0.15125 d ′ ≅  0.15 and d ′ /b = 60.5/300 = 0.2017 
 0.20. ≅

 
 From Table 60 of SP-16, we get k1 = 0.196 and k2 = 0.061. Thus, we 
have: 
 
 Pbx  =  {0.196 + (0.061)(0.1636)}(20)(300)(400)(10-3) = 494.35 kN 
 
 Similarly, for Pby: k1 = 0.184 and k2 = -0.011, we get 
 
 Pby  =  {0.184 - (0.011)(0.1636)}(20)(300)(400)(10-3) = 437.281 kN 
 
 Since, Pbx and Pby are less than Pu (= 1500 kN), modification factors are to 
be incorporated. 
 
Step 6:  Determination of Puz (Eq.10.59 of Lesson 26) 
 
 Puz  =  0.45(20)(300)(400) + {0.75(415) – 0.45(20)}(3927)(10-3)  =  2266.94 
kN 
 
Step 7:  Determination of modification factors 
 
 kax = (2266.94 – 1500)/(2266.94 – 494.35)  =  0.433  and 
 
 kay = (2266.94 – 1500)/(2266.94 – 437.281)  =  0.419 
 
Step 8:  Additional moments and total moments  
 
 Max  =  1500(0.433)(45)  =  29.2275 kNm 
 
 May  =  1500(0.419)(60)  =  37.71 kNm 
 
 Since, primary moments are zero as the column is concentrically loaded, 
the total moment shall consist of the additional moments. But, as both the 
additional moments are less than the respective moment due to minimum 
eccentricity, the revised additional moments are: Max = 43.995 kNm and May = 
39.0 kNm, which are the total moments also. 
 
 Thus, we have: 
 
 Mux = 43.995 kNm, Muy = 39.0 kNm and Pu = 1500 kN. 
 
Step 9:  Uniaxial moment capacities  
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 We have, Pu/fck bD = {1500/(20)(300)(400)}(1000) = 0.625, p/fck = 0.1636 
and /D = 0.15 for Md ′ ux1; and d ′ /b = 0.2 for Muy1. The coefficients are 0.11 (from 
Chart 45) and 0.1 (from Chart 46) for Mux1 and Muy1, respectively. So, we get,  
 
 Mux1  =  0.11(20)(300)(400)(400)(10-6)  =  225.28 kNm, and 
 
 Muy1  =  0.1(20)(300)(300)(400)(10-6)  =  72.0 kNm 
 
Step 10:  Value of  nα  (Eq.10.60 of Lesson 26) 
 
 Here, Pu/Puz  =  1500/2266.94  =  0.6617. So, we get 
 
 nα  = 1.0 + (0.4617/0.6)  =  1.7695 
 
Step 11:  Checking the column for safety (Eq.10.58 of Lesson 26) 
 
    1    )/(  )/( 11 ≤+ nn

uyuyuxux MMMM αα

 
 Here, (43.995/225.28)1.7695 + (39.0/72.0)1.7695  =  0.0556 + 0.3379  =  
0.3935  <  1 
 
 Hence, the column is safe to carry  Pu = 1500 kN. 
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11.27.11  Test 27 with Solutions 
 
Maximum Marks  =  50,     Maximum Time  =  30 minutes 
 
Answer all questions. 
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TQ.1: Determine the primary, additional and total moments of the column shown 
in Fig.10.27.20 for the three different cases:  

 
 (i)  When the column is braced against sidesway and is bent in single 
curvature. 
 
 (ii)  When the column is braced against sidesway and is bent in double 
curvature. 
 
 (iii)  When the column is unbraced. 
 
 Use the following data: Pu = 2000 kN, concrete grade = M 20, steel grade 
= Fe 415, unsupported length l = 8.0 m, lex = 7.0 m, ley = 6.0 m, Asc = 6381 mm2 
(12-25 mm diameter bars), lateral tie = 8 mm diameter @ 250 mm c/c, d  = 60.5 
mm, D = 500 mm and b = 400 mm. The factored moments are: 70 kNm at top 
and 40 kNm at bottom in the direction of larger dimension and 60 kNm at top and 
30 kNm at bottom in the direction of shorter dimension. 

′

 
A.TQ.1:  Solution 
 
 The following are the common steps for all three cases. 
 
Step 1:  Slenderness ratios 
 
 lex/D = 7000/500 = 14 > 12 and  ley/b = 6000/400 = 15 > 12 
 
The column is slender about both axes. 
 
Step 2: Minimum eccentricities and moments due to minimum 

eccentricities (Eq.10.3 of Lesson 21) 
 
 ex min  =  l/500 + D/30  =  8000/500 + 500/30  =  32.67 mm > 20 mm, and  
 
 ey min  =  l/500 + b/30  =  8000/500 + 400/30  =  29.34 mm > 20 mm 
 

Mx (min. ecc.)  =  2000(32.67)(10-3)  =  65.34 kNm, and 
 
 My (min. ecc.)  =  2000(29.34)(10-3)   =  58.68 kNm 
 
 
Step 3:  Additional eccentricities and moments due to additional 
eccentricities (Eq.10.84) 
 
 eax  =  D(lex/D)2/2000  =  500(7000/500)2/2000  =  49 mm  >  ex min (= 32.67 
mm) 
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 eay  =  b(ley/b)2/2000  =  400(6000/400)2/2000  =  45 mm  >  ey min (= 29.34 
mm) 
 
 Max  =  Pu(eax)  =  (2000)(49)(10-3)  =  98 kNm, and 
 
 May  =  Pu(eay)  =  (2000)(45)(10-3)  =  90 kNm 
 
 
Step 4:  Calculation of balanced loads 
 
 Using d ′ /D = 0.121 and p/fck = 3.1905/20 = 0.159525 in Table 60 of SP-
16, we have k1 = 0.20238 and k2 = 0.2755 (by linear interpolation). This gives  
 
 Pbx  =  {0.20238 + 0.2755(0.159525)}(20)(400)(500)(10-3) = 983.32 kN 
 
 Similarly, d /b = 0.15125 and p/f′ ck = 0.159525 in Table 60 of SP-16 gives 
k1 = 0.1957 and k2 = 0.198625 (by linear interpolation). So, we get 
 
 Pby  =  {0.1957 + 0.198625(0.159525)}(20)(400)(500)(10-3) = 909.54 kN 
 
 Both Pbx and Pby are smaller than Pu (= 2000 kN). Hence, modification 
factors are to be incorporated. 
 
Step 5:  Calculation of Puz (Eq.10.59 of Lesson 26) 
 
 Puz  = 0.45 fck Ag + (0.75 fy – 0.45 fck) Asc  
 

       =  0.45(20)(400)(500) + {0.75(415) – 0.45(20)}(6381)  =  3728.66 kN 
 
Step 6:  Modification factors and revised additional moments (Eqs.10.92 
and 10.93) 
 
 kax = (3728.66 - 2000)/(3728.66 – 983.32)  =  0.6297,  and 
 
 kay = (3728.66 - 2000)/(3728.66 – 909.54)  =  0.6132 
 
The revised additional moments are: 
 
 Max  =  98(0.6297)  =  61.71 kNm, and 
 
 May  =  90(0.6132)  =  55.19  kNm 
 
Now, the different cases are explained. 
 
Case (i):  Braced column in single curvature 
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 Primary moments = 0.4 M1 + 0.6 M2, but should be equal to or greater 
than 0.4 M2 and moment due to minimum eccentricities. So, we get, 
 
 Mox  =  largest of 58 kNm, 28 kNm and 65.34 kNm = 65.34 kNm 
 
 Moy  =  largest of 48 kNm, 24 kNm and 58.68 kNm = 58.68 kNm 
 
 Additional moments are Max = 61.71 kNm and May = 55.19 kNm 
(incorporating the respective modification factors). 
 
 Total moments  =  Mux  =  Mox + Max  =  65.34 + 61.71  =  127.05 kNm > 
65.34 kNm (moment due to minimum eccentricity), and 
 
 Muy  =  Moy + May  =  58.68 + 55.19  =  113.87 kNm > 58.68 kNm (moment 
due to minimum eccentricity). 
 
Case (ii):  Braced column in double curvature 
 

Primary moments = - 0.4 M1 + 0.6 M2, but should be equal to or greater 
than 0.4M2 and the moment due to minimum eccentricity. So, we get, 
 
 Mox  =  largest of 26 kNm, 28 kNm and 65.34 kNm = 65.34 kNm 
 
 Moy  =  largest of 24 kNm, 24 kNm and 58.68 kNm = 58.68 kNm 
 
 Additional moments are Max = 61.71 kNm and May = 55.19 kNm  
 
 Final moments  =  Mux  =  Mox + Max  =  65.34 + 61.71  =  127.05 kNm > 
65.34 kNm (moment due to minimum eccentricity), and 
 
 Muy  =  58.68 + 55.19  =  113.87 kNm > 58.68 kNm (moment due to 
minimum eccentricity). 
 
Case (iii):  Unbraced column 
 

Primary moments = M2 and should be greater than or equal to moment 
due to minimum eccentricity.  
 
 Mox  =  70 kNm > 65.34 kNm (moment due to minimum eccentricity), and 
 
 Moy = 60 kNm > 58.68 kNm (moment due to minimum eccentricity).  
 
 Additional moments are Max = 61.71 kNm and May = 55.19 kNm  
 
 Final moments  =  Mux  =  Mox + Max  =  70.0 + 61.71  =  131.71 kNm > 
65.34 kNm (moment due to minimum eccentricity), and 
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 Muy  =  Moy + Max  =  60.0 + 55.19  =  115.19 kNm > 58.68 kNm (moment 
due to minimum eccentricity). 
 
 

10.27.12  Summary of this Lesson 
 

This lesson mentions the reasons of increasing importance and popularity 
of slender columns and explains the behaviour of slender columns loaded 
concentrically or eccentrically. The role of minimum eccentricity that cannot be 
avoided in any practical column is explained for slender columns. The moments 
due to minimum eccentricities in both directions should be taken into account for 
a slender column loaded concentrically as it should be designed under biaxial 
bending. On the other hand, the given primary moments are also to be checked 
so that they are equal to or greater than the respective moments due to minimum 
eccentricity for all slender columns. 
 
 Both braced and unbraced columns, bent in single or double curvatures, 
are explained. The importance of modification factors of the additional moments 
due to P-Δ  effect is explained. Effective lengths and important parameter to 
determine the slenderness ratios are illustrated for different types of support 
conditions either in single column or when the column is a part of rigid frames. 
Additional moment method, a simple method for the design of slender columns, 
is explained, which is recommended in IS 456. Numerical problems in illustrative 
example, practice problem and test questions will help in understanding and 
applying the method for the design of slender columns, as stipulated in IS 456. 
Direct computations from the given equations as well as use of design charts and 
tables of SP-16 are illustrated for the design. 
 
 
 
 

Version 2 CE IIT, Kharagpur 
 



















Curved Beams

Derivation of stress equations



ro

ri

h
t

M

M

O



O

M
M

r-

ro

ri

yco

ci

dφ
φ

a
b

cd

b’

c’

Neutral Axis

Centroidal Axis

r-r

e

ρ

dA

Note that y is measured 
positive inward from the 

neutral axis.



CURVED MEMBERS IN FLEXURE

The distribution of stress in a curved flexural member is determined by using the following 
assumptions.

1 The cross section has an axis of symmetry in a plane along the length of the beam.
2 Plane cross sections remain plane after bending.
3 The modulus of elasticity is the same in tension as in compression.

It will be found that the neutral axis and the centroidal axis of a curved beam, unlike a straight beam, 
are not coincident and also that the stress does not vary linearly from the neutral axis. The notation 
shown in the above figures is defined as follows:

ro = radius of outer fiber
ri = radius of inner fiber 
h  = depth of section
co = distance from neutral axis to outer fiber
ci = distance from neutral axis to inner fiber 
r   = radius of neutral axis

= radius of centroidal axis
e = distance from centroidal axis to neutral axis

To begin, we define the element abcd by the angle φ. A bending moment M causes section bc to 
rotate through dφ to b’c’. The strain on any fiber at distance ρ from the center 0 is

r

( )
ρφ

φρδε dr

l

l −==



The normal stress corresponding to this strain is

(1)( )
ρφ

φρεσ drE
E

−==

Since there are no axial external forces acting on the beam, the sum of the normal 
forces acting on the section must be zero. Therefore

(2)

Now arrange Eq. (2) in the form

(3)

and solve the expression in parentheses. This gives

or (4)

This important equation is used to find the location of the neutral axis with respect to 
the center of curvature 0 of the cross section. The equation indicates that the neutral 
and the centroidal axes are not coincident.

( )
0=−= ∫∫ ρ

ρ
φ
φσ dArd

EdA

0=






 −∫ ∫ dA
dA

r
d

E
ρφ

φ

0=−∫ A
dA

r
ρ ∫

=

ρ
dA
A

r



Our next problem is to determine the stress distribution. We do this by balancing the 
external applied moment against the internal resisting moment. Thus, from Eq. (2),

(5)

Since ,   Eq. (5) can be written in the form

(6)

Note that r is a constant; then compare the first two terms in parentheses with Eq. 
(4). These terms vanish, and we have left

The first integral in this expression is the area A, and the second is the product rA. 
Therefore

Now, using Eq. (1) once more, and rearranging, we finally obtain

( )( ) ( )
M

dArd
EdAr =−=− ∫∫ ρ

ρ
φ
φσρ

2

( ) 222 2 ρρρ +−=− rrr








 +−−= ∫ ∫ ∫ ∫ dAdArdAr
dA

r
d

EM ρ
ρφ

φ 2

( )∫ ∫+−= dAdAr
d

EM ρ
φ
φ

( ) eA
d

EArr
d

EM
φ
φ

φ
φ =−=

( )yrAe

My

−
=σ



This equation shows that the stress distribution is hyperbolic. The algebraic maximum 
stresses occur at the inner and outer fibers and are

(7)

The sign convention used is that M is positive if it acts to straighten on the beam. The 
distance y is positive inwards to the center of curvature and is measured from the 
neutral axis. It follows that ci is positive and co is negative.

These equations are valid for pure bending. In the usual and more general case such 
as a crane hook, the U frame of a press, or the frame of a clamp, the bending moment 
is due to forces acting to one side of the cross section under consideration. In this case 
the bending moment is computed about the centroidal axis, not the neutral axis. Also, 
an additional axial tensile (P/A) or  compressive (-P/A) stress must be added to the 
bending stress given by Eq. (7) to obtain the resultant stress acting on the section.

Formulas for Some Common Sections

Sections most frequently encountered in the stress analysis of curved beams are shown 
below.
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For the rectangular section shown in (a), 
the formulae are

For the trapezoidal section in (b), the 
formulae are 
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For the T section in  we have The equations for the solid round section
of Fig. (d) are 
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