BTME-602 HEAT TRANSFER
Internal Marks: 40 External Marks: 60 Total Marks: 100
1. Introduction:

Concept of heat transfer, Difference between thogestiof "Heat Transfer" and its parent subject
"Thermodynamics". Different modes of heat transfeonditions, convection, and radiation.

2. Conduction:

Fouier's law of heat conduction, coefficient ofrthal conductivity, effect of temperature and
pressure on thermal conductivity of solids, liquigisd gases and its measurement. Three-
dimensional general conduction equation in rectirgwylindrical and spherical coordinates
involving internal heat generation and unsteadyestamnditions. Derivation of equations for
simple one dimensional steady state heat condufitoon three dimensional equations for heat
conduction though walls, cylinders and sphericatllsh(simple and composite), electrical
analogy of the heat transfer phenomenon in thescdseussed above. Influence of variable
thermal conductivity on conduction through simpkeses of walls / cylinders and spheres.
Equivalent areas, shape factor, conduction throedbes and corners of walls and critical
thickness of insulation layers on electric wiresl @ipes carrying hot fluids. Internal generation
cases along with some practical cases of heat ctioduike heat transfer through piston crown,
through under-ground electrical cables/Hot fluidgs etc and case of nuclear fuel rod with and
without cladding. Introduction to unsteady heatnsfar, Newtonian heating and cooling of
solids; definition and explanation of the term that diffusivity. Numerical.

3. Theory of Fins:

Concept of fin, classification of fins and theimpdipations. Straight fins of uniform cross-section;
e.g. of circular, rectangular or any other crosgien). Straight fins with varying cross-sectional
area and having triangular or trapezoidal profieaa Circumferential fins of rectangular cross-
section provided on the circumference of a cylindl@n performance: fin effectiveness and fin
efficiency, total fin effectiveness, total fin effency. Optimum design of straight fin of
rectangular and triangular profile area. Applicataf fins in temperature measurement of flow
through pipes and determination of error in its sse@ament. Numerical.

4. Convection:

Free and forced convection. Derivation of threedtisional mass, momentum and energy
conservation equations (with introduction to Tensatations).

Boundary layer formation, laminar and turbulent hdary layers (simple explanation only and
no derivation). Theory of dimensional analysis @&sdpplication to free and forced convective



heat transfer. Analytical formulae for heat transfelaminar and turbulent flow over vertical
and horizontal tubes and plates. Numerical.

Newton's law of cooling. Overall coefficient of hdeansfer. Different design criterion for heat
exchangers. Log mean temperature difference fopaasor and condenser tubes, and parallel
and counter flow heat exchangers, Calculation ofilmer and length of tubes in a heat exchanger
effectiveness and number of transfer units(NTU)petical.

5. Convection with Phase Change (Boiling and Condensation):

Pool boiling, forced convection boiling, heat triansduring pool boiling of a liquid. Nucleation
and different theories of nucleation, differentdhes accounting for the increased values of
h.t.c. during nucleate phase of boiling of liquiddferent phases of flow boiling (theory only),
Condensation, types of condensation, film wise easdtion on a vertical and inclined surface,
Numerical.

6. Radiation:

Process of heat flow due to radiation, definitidnhemnissivity, absorptivity, reflectivity and
transmissivity. Concept of black and grey bodielnks law of nonchromatic radiation.
Kirchoff's law and Stefan Boltzman's law. Interchanfactor. Lambert's Cosine law and the
geometric factor. Intensity of Radiation (Definitionly), radiation density, irradiation, radiosity
and radiation shields. Derivation formula for rdolia exchange between two bodies using the
definition of radiosity and irradiation and its dpption to cases of radiation exchange between
three or four bodies (e.g. boiler or other furnjcesmplification of the formula for its
application to simple bodies like two parallel suds, concentric cylinders and a body
enveloped by another body etc. Error in Temperangasurement by a thermocouple probe due
to radiation losses.

Books:

1. Frank P. Incropera and David P. De Witt, Fundaaie of Heat and Mass transfer, John

Wiley

2. P.S. Ghoshdastidar, Heat Transfer, Oxford Press

3. D.S. Kumar, Fundamentals of Heat and Mass TeanSK Kataria & Sons (7" Edition)

4. A.J. Chapman, Heat Transfer, McGraw Hill Bookn@pany, New York.

5. J.P. Holman, Heat Transfer, Tata McGraw-Hill Faliing Company Ltd.(Special Indian
Edition).

6. Yunus A.Cengel, Heat and Mass Transfer, Tata fdeGills Education Private Ltd (Special
Indian Edition).

7. Eckert & Drake, Heat and Mass Transfer, McGralvBbok Company, New York.



BTME 605 HEAT TRANSFER LAB.
Internal Marks; 30 External Marks: 20 Total Marks: 50

A. Two tothree studentsin agroup arerequired to do oneor two practicalsin the form of
Lab. Project in the topic/s related to the subject matter and in consultation with
teacher. The complete theoretical and experimental analysis of the concerned topic is
required to be performed (including design and fabrication of new experimental set up,
if required, or modificationg/retrofitting in the existing experimental set ups). The
following topics can betaken asreference: -

1. Determination of thermal conductivity of:
- a solid insulating material by slab method

- powder materials by concentric spheres method Byosome transient heat transfer
technique

- a metal by comparison with another metal by eiplptwo bars when kept in series
and / or in parallel under different boundary coiodis

- Liquids by employing thin layer

2. Determination of coefficient of heat transfer fiee/forced convection from the surface of
a cylinder / plate when kept:

a) along the direction of flow

b) perpendicular to the direction of flow

c) inclined at an angle to the direction of flow
3. To plot the pool boiling curves for water andd&iermine its critical point
4. Determination of heat transfer coefficient for

i) film condensation i) dropis@ condensation

5. Determination heat transfer coefficient by ridim and hence find the Stefan Boltzman's
constant using two plates/two cylinders of same biz making one of the plates/cylinders
as a black body.

6. Determination of shape factor of a complex bbgyn analog technique.
7. To plot the temperature profile and to deternfineffectiveness and fin efficiency for

1) A rod fin when its tip surface is superimpossgddifferent boundary condition like.



a) Insulated tip

b) Cooled tip

c) Temperature controlled tip
i) Straight triangular fins of various sizes angtimization of fin proportions
iii) Circumferential fins of rectangular/triangulaection

B. Each student isrequired to use Finite Difference Method for analysis of steady state one
dimensional and two dimensional conduction problems (Minimum two problems one
may be from the Lab. Project) such as conduction through plane/cylindrical/spherical
wall with or without internal heat generation, heat transfer through fins, bodies with
irregular boundaries subjected to different boundary conditions.

BTME 606 FLUID MACHINERY LAB
Internal Marks: 30 External Marks: 20 Total Marks: 50
1. Determination of various efficiencies of HydratlRam
2. To draw characteristics of Francis turbine/Kaplarrbine

3. To study the constructional features of reciptiogg pump and to perform test on it for determorat
of pump performance

4. To draw the characteristics of Pelton Turbine
5. To draw the various characteristics of Centafygump
6. Determine the effect of vane shape and vanesamgthe performance of centrifugal fan/Blower

7. A visit to any Hydroelectric Power Station



Heat Transfer

Heat transfer, also referred to simply as heat, is the movement of thermal energy from one thing

to another thing of different temperature.

Difference between Heat Transfer and Thermodynamics

"Thermodynamics™ deals with the amount of energy in form of heat or work during a process
and only considers the end states in equilibrium. "Heat Transfer" deals with the rate of
energy transfer, thus, it gives idea of how long a heat transfer will occur? Heat transfer deals

with time and non equilibrium phenomena.

Thermodynamics gives no indication about how long the process takes. Heat Transfer
determines how fast heat can be transferred to or from a system and thus the times of cooling or

heating.



Heat Transfer: Conduction, Convection, and Radiation

Introduction

We have learned that heat is the energy that makes molecules move. Molecules with more heat
energy move faster, and molecules with less heat energy move slower. We also learned that as
molecules heat up and move faster, they spread apart and objects expand (get bigger). This is called
thermal expansion.
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HEAT TRANSFER

Heat is always moving! If you have two objects or substances
that are different temperatures, heat will always move OUT of
the warmer object or substance, and INTO the cooler object or
substance. This heat transfer will continue until the objects are

the same temperature.

So how, exactly, does heat move out of one thing and into another thing? This is called heat transfer.
(Remember, we learned that energy transfer is when energy moves from one thing or place to
another, but the energy type stays the same). Heat can transfer (or move) in 3 ways: conduction,
convection, and radiation. As you read about the three types of heat transfer, pay attention to:

e What the heat is moving through (solids, liquids and gases, or empty space)

e How the heat is being transferred (touch, currents, or waves)

Conduction
Last weekend, | went to the beach. | was walking >

barefoot on the soft, cool grass. When | got to the sand,
| noticed that my feet were burning! Ouch! This is an

example of conduction.



Conduction is how heat transfers through direct contact with objects

that are touching. Any time that two objects or substances touch, the ot ’_ :
hotter object passes heat to the cooler object. (That hot sand passed - A :
the heat energy right into my poor feet!) y

Think of a row of dominoes that are all lined up. When you push the first domino, it bumps into the
second one, which bumps into the third one...all the way down the line. Heat conduction is like the
dominoes. Imagine that you place one end of a metal pole into a fire. The molecules on the fire end
will get hot. Each hot molecule will pass the heat along to the molecule next to it, which will pass the
heat along to the next molecule, and so on. Before you know it, the heat has traveled all the way
along the metal pole until it reaches your hand.

Some materials are better conductors than others. That's because some materials are able to pass
(conduct) heat more easily. Metals are great conductors. That's why metal objects get hot so easily.
Plastic and wood are poor conductors. They will still get hot, but it takes a lot longer for them to pass
the heat from molecule to molecule.

Likewise, solids are better conductors than liquids or gases. That's because solids have molecules that
are very tightly packed together, so it's much easier for the molecules to pass the heat along. The
molecules in liquids and gases are spread further apart, so they aren’t touching as much. It takes
longer for liquids and gases to conduct heat.

There are many examples of heat conduction. Any time two object touch, heat conduction will
happen. Touching a hot iron is an example of conduction — the heat passes out of the iron and into
your hand. So is holding an ice cube — the heat is conducted out of your hand, and into the ice cube
(that's why your hand feels cold). Cooking food on the stove is an example of conduction happening
twice — the heat from the burner passes into the metal pan, and then the heat from the metal pan
passes into the food, heating it up.

food touches
the pan

pan touches
hot burner the burner



Convection

Convection is how heat passes through fluids. A fluid is anything that has loosely moving molecules
that can move easily from one place to another. Liquids and gases are fluids.

One important property of fluids is that they rise when heated. That's because the molecules spread
out and move apart when they get hot. The hot fluid becomes less dense and rises up. Cooler fluid is
less dense and so it sinks down. This up-and-down motion creates what are called convection
currents. Convection currents are circular movements of heated fluids that help spread the heat.
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Here's an example. Last night | heated up soup for dinner. Yum! At first, the soup was cold in the pan.
The soup at the bottom of the pan was closest to the hot stove burner, right? So the soup at the
bottom heated up first. As it heated, the molecules spread apart and became less dense. So the
heated soup rose up to the top.

As the hot soup rose up, the cooler soup at the top sank down to the 3 -
bottom. When it was at the bottom, it was closest to the heat, so THAT

convection
current —_ | %

soup got hot and rose up. As the soup continued heating, the hot soup

rose and the cold soup sank. If you were to look closely, you would see the

soup moving up and down in the pot. The up-and-down movement was a = '
convection current. The convection current helped spread the heat around, / @ \

until all of the soup was heated up.
Convection currents explain why the air is hotter at the top of a room and cooler at the bottom.

Convection currents also explain why water is warm at the top of the ocean, but gets colder as you
swim deeper.



One natural example of convection currents is wind. As the Sun shines down on an area of land, it
heats the air above the ground. That warm air rises. As it rises, cooler air moves in to take the place at
the bottom. This moving cooler air creates...wind! Wind happens all over Earth because Earth heats
unevenly. There are always colder parts and warmer parts. The wind blows from the cooler parts of

Earth to the warmer parts.

Other examples of convection are: boiling a pot of water on the stove; using a hot radiator to warm
the air in a room; and using heated air to make a hot-air balloon rise up into the sky.

Radiation
So we've learned that conduction moves heat easiest through solids, and convection moves heat
through liquids and gases. So how does the heat from the Sun get to Earth? There are no molecules

in space! And how do you feel the heat from a campfire, even if you're sitting several feet away?

The answer is radiation. Radiation is how heat moves through places where there are no molecules.

Radiation is actually a form of electromagnetic energy. Remember we learned that electromagnetic
energy moves in waves? Well, radiation is heat moving in waves. Radiation does NOT need molecules
to pass the energy along.

All objects radiate heat, but some radiate much more heat than others. The biggest source of
radiation is the Sun — it sends a HUGE amount of heat to Earth through electromagnetic waves. (Last
weekend, at the beach, | could definitely feel the wonderful heat radiation from the Sun. | guess that's
why | got a sunburn. Oops! A little too much radiation!)




Light bulbs radiate heat. Try it! Hold your hand a few inches away from a light bulb. You can feel the
heat, right? In fact, a good way to remember radiation is that it is how you can feel heat without
touching it. Heat passes through the empty space until it reaches your hand. That's radiation! A fire is
another example of radiation. Even YOU are an example. Your body gives off heat! (That's why a
classroom gets warm when there are a lot of people sitting in it.)

Radiation

W T

Review

Remember — heat always passes from a warmer object to a cooler object until all objects are the same

temperature.

Conduction is how heat travels between objects that are touching. Conduction travels fastest through
solids, but liquids and gases can also conduct heat. Some materials, like metal, can conduct heat very
quickly, while other materials (like plastic or wood) conduct heat very slowly.

Convection is how heat travels through fluids — liquids and gases. Hot fluids rise up, while cold fluids
sink down. This up-and-down motion is called a convection current. Convection current spreads the

heat in a circular, up-and-down pattern.

Radiation is how heat travels through empty space. Radiation does NOT require molecules to travel
through. Any time you can feel heat without touching it, you are experiencing radiation.

Conduction
Convection \ <
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Electrical Analogy of Heat Conduction

Heat conduction in solids is similar to the conduction of electricity in electrical conductors in
many aspects. In a conductor, the flow of electricity is driven by a potential difference and so is
the flow of heat driven by a difference in temperature. In electric conduction, electric charge is
transported from one point in a conductor to another by the motion of the electrons, in thermal
conduction, heat is transported from one point of a solid to another by the vibration of the
molecules of the solid due to their increased energy.

Heat conduction is governed by Fourier's law which states that: the rate of heat transfer (Q)
between two sufficiently close points in a medium is proportional to the temperature difference
between the two points (T:-T,) divided by their separation (Ax) and the area normal to the
direction of heat flow (A). The constant of proportionality is called the coefficient of thermal
conductivity of the material (k). Mathematically, this statement can be written as:

Q=KA(T:-T.)/Ax
where Q is the rate of heat transfer in Watts.

Electric current flow is governed by Ohm's law, which states that the electric current (1) flowing
between two points in a conductor equals the potential difference between the two points (V:-V>)
divided by the electric resistance between them (R). Ohm's law can be written as:

| = ( V1'V2 )/R

The above equations suggest that the following analogy holds:

Thermal Conduction Electric Conduction
Heat flow rate: Q Electric current : |
Temperature difference: AT =T: - T» Potential difference : AV=V,-V,
Thermal resistance: Rinermal = Ax/(KA) Electric resistance = R

A \
\ AX
AV =AT 'I R el
| thermal |4
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2.3. GENERAL HEAT CONDUCTION EQUATION IN
CYLINDRICAL COORDINATES
While dealing with problems of conduction of heat through systems having cylindrical geometries
(e.g., rods and pipes) it is convenient to use cylindrical coordinates.

Consider an elemental volume having the coordinates (r, ¢, z), for three-dimensional heat
conduction analysis, as shown in Fig. 2.2.

Q{:H— dz)
“
i\@ .
Z A | e O+ d
A 0, 08 1 ) / LY Ko+ do)
4.0:9.2) N N
1 / A/lk(”fi’ 54 - Plemental
lal volume
O L ~
o
Z i s
» ¥ dz \x}\
S Q(r + dr)
s r //
VA
#’/ 4 \ \\ 4%_//
X X Q,

Fig. 2.2. Elemental volume for three-dimensional heat conduction analysis - Cylindrical coordinates.
The volume of the element = rd¢.dr.dz
Let, g = Heat generation (uniform) per unit volume per unit time.

Further, let us assume that & (thermal conductivity), p (density), c (specific heat) do not alter with
position.

A. Net heat accumulated in the element due to conduction of heat from all the coordinate directions
considered :

Heat flow in radial direction (x—¢) plane :

Heat influx, Q) = —k (rdo.dz) % .dt ()
Heat efflux, Qlrvary =0 + % (Q,)dr (i)
Heat accumulation in the element due to heat flow in radial direction,
Q' = Q' - Q'(r var) [subtracting (i) from (7)]
=- % Q) dr

P?] ot
=—— |-k (rdddz) — .dt |d
ar[ (”“)ar T]r

J ot
=k (dr.do.dz) — —|d
(ar ¢Z)8r(r ar) '

2
= k (dr.do.dz) (r 9t QJ dt
or
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2
=k (dr.rd.dz) [a— + l ﬂ} dt .(2.16)
or or
Heat flow in tangential direction (r-z) plane :
ot
Heat influx, Q, =~ k (dr.dz) Tq) dt (D)
Heat efflux, Q(,¢+d¢) Q¢ (Q¢) rd¢ .(1v)
Heat accumulated in the element due to heat flow in tangential direction,
agQ’ o = = Q' ¢ -0 @ +do) [subtracting (iv) from (iii)]
= r.d =
a 5 (Q) rdo :
a [ a
= k (dr.dz) — dt} r.do .
r.00 a¢ 1 %“h-.,_;__ ii
—k(drdq)d)—(l iJdr ey, S S
1 9%t
=k (drrdd.dz) — - —.d7
¢ r2 a¢2

Heat flow in axial direction (r-¢ plane) :

, ot
Heat influx, Q, =-k (rdodr) g at ..(v)

’ ’ a ’
Heat efflux, Q;+a; =97 + a_z (Q;)dz (Vi)

Piston assembly. The fins around the
A cylinder are meant to spread the heat
axial direction, and speed-up cooling.

dQ'z = Q'z_ Q'(Z+ &) [subtracting (vi) from (v)]
J ot
=—— |-k (rddodr)—.dt|d
% [ (rdé.dr) % ‘C} Z

Heat accumulated in the element due to heat flow in

9%t
=k (dr.rd$.dz) 8_2 dart ..(2.18)
2

Net heat accumulated in the element

2, 2 2
—kdrrdq)dz{az l‘g+%~a—;+a—;} dt ..(2.19)
or* r dor r* 90" 9z
B. Heat generated within the element (Q' g) :
The total heat generated within the element is given by
Q'g =4, (dr.rd¢.dz).dt ..(2.20)
C. Energy stored in the element :

The increase in thermal energy in the element is equal to

= p(dr.rdq).dz).c.% .dt (221
Now, A)+(B) = (0O ... Energy balance/equation
82 1 o 1 0% 9%

ot
=p(drrdd.dz)c.— .d
p(dr.rdo z)cat T
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Dividing both sides by dr.rd¢.dz.dt, we have
. {azz 1 ot 1 9% 9%

et ——— 4+ — |+ q, =pc.—
ot r or 2 3¢2 972 } 15 =P< ot

ot 1 ot 1 9* | 4z pc o 1 ot
or e e e R
’ or* r dor r* 90° 0oz k k oJt o ot

Equation (2.22) is the general heat conduction equation in cylindrical coordinates.

(2.22)

In case there are no heat sources present and the heat flow is steady and one-dimensional, then
eqn. (2.22) reduces to

% 1 or
—+—-—-—=0 ..(2.23
orr r or ( )
2
or, ﬂ + l . ﬂ =0
o r dr
1 d dt
——lr-=1=0
ot r dr ( dr)
. 1
Since — # 0, therefore,
4 (r . ﬂ) or r- dr _ constant 2.24
dr dr dr +(2:24)

Equation (2.22) can also be derived by transformation of coordinates, as follows :
x=rcos@,y=rsindpandz=z2
Now, by chain rule :

a’-i.é+i.a_y=icos¢+%sin¢
y

o ox or dy Jr Ox

or, cos ¢ % = cos? 0 % + sin ¢ . cos ¢ % (D)
(Multiplying both sides by cos ¢)
dt Jdt ox Ot dy ot . ot
_— = — 4 — = — (= + —
Also, % ar 20 3y 20 ox (- r sin ¢) % (r cos ¢)
_qu) .iz sin? ¢£+sin¢.cos¢.i

or, . 30 - o 3y ..(@D)
- . sin¢
(Multiplying both sides by T)

From Eqns. (i) and (ii), we have

e =t St a0 S cost o
r 0o ox or o
9 ot
=-3 +cos ¢ >
or ot sin¢ ot
= - cos 0 = - % . (D)

Differentiating both sides with respect to x, we have

i(i):i cosq).g_Sin_q).ﬁ
dx \ ox
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2 .

w Pl 2 (%) 5o 2 (%)
Ox

dr \ox r 00 \ox
=cosq).i cosq).g——smq) ﬁ _sino i cos¢~g——sm¢ i
or ar r d r d ar r 09
ot
[Substituting the value of B_x from (iii)]
2 0%t cos¢.sing ot sin’¢ ot sin’¢ 0%t sin¢.cos¢ of
= Cos ¢,_2_—2._+_._+ o t—
or r a0 roor r dé r a0
..(1v)
0t ., 9% cos’d ot «cos¢.sing o cos’0 @’  cosd.sing Of
. . —— =35 ._+_.__ —t —_ e
Similarly, P in” ¢ FYe . or 2 a2 3¢ 2 90
(V)

By adding (#ii) and (iv), we get
Or 0% 9t 1 o 1 It
oax?  yr orr r or 3¢
Substituting it in eqn (2.8), we get,
0t 1 ot 1 9% 9d%| 4q3 1 ot
_ |+ == . —
o2 r or * 9* %] k o ot
which is the same as eqn. (2.22)

2.4. GENERAL HEAT CONDUCTION EQUATION IN SPHERICAL
COORDINATES

Consider an elemental volume having the coordinates (r, ¢, 0), for three dimensional heat
conduction analysis, as shown in Fig. 2.3.

e Q[u -y
A
¥ A \
rsin0.dp_~7| | ; \
A(r. ¢,6) g | i \
P Y —a |
g \ ! O + ap)
7 il | T e
I | \";\ & o T W—
| » 7 rd0) | AT "
I

B | / ) N 4« yolume
// ¢ s #’ g i " % /
X ¥ " 2 i / * //

Fig. 2.3. Elemental volume for three-dimensional heat conduction analysis - Spherical coordinates.

The volume of the element = dr.rd6.rsin 6 do
Let, q, = Heat generation (uniform) per unit volume per unit time.

Further let us assume that & (thermal conductivity), p (density), c (specific heat) do not alter with
position.
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2 .

w Pl 2 (%) 5o 2 (%)
Ox

dr \ox r 00 \ox
=cosq).i cosq).g——smq) ﬁ _sino i cos¢~g——sm¢ i
or ar r d r d ar r 09
ot
[Substituting the value of B_x from (iii)]
2 0%t cos¢.sing ot sin’¢ ot sin’¢ 0%t sin¢.cos¢ of
= Cos ¢,_2_—2._+_._+ o t—
or r a0 roor r dé r a0
..(1v)
0t ., 9% cos’d ot «cos¢.sing o cos’0 @’  cosd.sing Of
. . —— =35 ._+_.__ —t —_ e
Similarly, P in” ¢ FYe . or 2 a2 3¢ 2 90
(V)

By adding (#ii) and (iv), we get
Or 0% 9t 1 o 1 It
oax?  yr orr r or 3¢
Substituting it in eqn (2.8), we get,
0t 1 ot 1 9% 9d%| 4q3 1 ot
_ |+ == . —
o2 r or * 9* %] k o ot
which is the same as eqn. (2.22)

2.4. GENERAL HEAT CONDUCTION EQUATION IN SPHERICAL
COORDINATES

Consider an elemental volume having the coordinates (r, ¢, 0), for three dimensional heat
conduction analysis, as shown in Fig. 2.3.

e Q[u -y
A
¥ A \
rsin0.dp_~7| | ; \
A(r. ¢,6) g | i \
P Y —a |
g \ ! O + ap)
7 il | T e
I | \";\ & o T W—
| » 7 rd0) | AT "
I

B | / ) N 4« yolume
// ¢ s #’ g i " % /
X ¥ " 2 i / * //

Fig. 2.3. Elemental volume for three-dimensional heat conduction analysis - Spherical coordinates.

The volume of the element = dr.rd6.rsin 6 do
Let, q, = Heat generation (uniform) per unit volume per unit time.

Further let us assume that & (thermal conductivity), p (density), c (specific heat) do not alter with
position.
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A. Net heat accumulated in the element due to conduction of heat from all the coordinate directions
considered :

Heat flow through r—0 plane; ¢-direction :

’ ot
Heat influx, Qy = —k(dr.rd®) 5in6.90 dt ()
’ ’ a ’ .
Heat efflux, Quoran = Qo + 550 (o) 7 5in0.40 (i)
Heat accumulated in the element due to heat flow in the ¢-direction,
dQ'¢ = Q'¢— Q' (6 +d6) [subtracting (i) from (7)]
1 J , .
= — rsin6.d
rsin® do Q) ¢
——L~i — k (dr.rd®) — -i.d‘c rsin0.d¢
rsin® do rsin® d¢
1 9%t
=k (dr.rd6.r sin6.d¢) — - —
¢ +2sin 0 8¢2 ..(2.25)
Heat flow in r—0¢ plane, 0-direction :
’ . ot
Heat influx, Qg = — k (dr.rsin 0. d¢) e dt (i)
’ ’ a ’ .
Heat efflux, Qo+a0) = 0o + 38 (Qy) rd® (i)
Heat accumulated in the element due to heat flow in the O-direction,
dQ'y=0's Q' 4. 40 [subtracting (iv) from (iif)]
.,
= — r.do
r.00 (@)
J

=_ [— k (dr.r sin6.d¢) i d‘c] r.do
r.00

Spherical vessels.
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_k drrd¢.rd® 9 [Sm 5. g} Jr

r r 00 00
. 1 0 [ ) at}
=k (dr.rd0.r sin 0.d -—|sin 0. —|d7t
( » r?sin@ 00 00 -(2.26)
Heat flow in 0-¢ plane, r-direction :
’ . ot
Heat influx, Q, = - k (rd6.r sin 0.d¢) 3 ot (V)
’ ’ a ’
Heat efflux, Q+ar) =0 + > (Q,) dr (Vi)
Heat accumulation in the element due to heat flow in the r-direction,
dQ', = Q' - Q' v an [subtracting (vi) from (v)]
2 .,
=—-— d
3 (Q,) ar
=- i [— k (rd©.r sin 6.d¢) g . d‘c] dr
or or
. J 2 Bt]
=k do. 0.dd dr — -—|dt
sin 0.d¢ dr 3 [r 3
. 1 o at]
=k (dr.rd0.rsin 0.do) — - — | r? - — | dt
( o) o [r 5 (2.27)

Net heat accumulated in the element

2
— k dr.rd.r sin 0.0 | —— . 9L 1 ‘i(sin e.ﬁ}ii(rz ﬁ) dr
r*sin’@ 90> r’sin@ 00

B. Heat generated within the element (Q' g) :
The total heat generated within the element is given by,
Q'g =q, (dr.rd®.r sin 6.d¢) dt ..(2.29)
C. Energy stored in the element :
The increase in thermal energy in the element is equal to

p(dr.rd0 . r sin 6.d¢) c. % .dt ..(2.30)
Now, A)+(B) = (0O ...Energy balance/equation
2
kdr.rd®.r sin 6.0 %.ﬁ N .i(sin e.ﬁ}ii (rzﬁj Ldt
r* sin? 8 d9> r*sin § 90 00/ r* or or

+q, (dr.rdO.r sin6.d¢) d1=p(dr.rd6.r sin 6.d0) C.%.d‘t

Dividing both sides by k.(dr.rd8. r sin 6.d¢)dt, we get

1 9%t 1 9 (. ot 1 9(, ot 9,
ot —5———|sin. — |+ ——| . = ||+-E
r* sin®@ d¢° r° sin 6 00 /) r* or or k

_pc o _1 o
k ot o 9ot

Equation (2.31) is the general heat conduction equation in spherical coordinates.

(2.31)

In case there are not heat sources present and the heat flow is steady and one-dimensional, then

eqn. (2.31) reduces to
1 df , dt)
— .22 200
2 ( ar ..(2.32)
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Equation (2.31) can also be derived by transformation of coordinates as follows :

x=rsinBsind;y=rsinBcosd;z=rcosB

2.5. HEAT CONDUCTION THROUGH PLANE AND COMPOSITE

WALLS
2.5.1. HEAT CONDUCTION THROUGH A PLANE WALL
Case I : Uniform thermal conductivity ¥
Refer to Fig. 2.4 (a) Consider a plane wall of
homogeneous material through which heat is flowing
only in x-direction. = e e T
Let, L = Thickness of the plane wall, ‘ : : 4 Plane wall
A = Cross-sectional area of the e
wall, R _I_ |
k = Thermal conductivity of the o L4t :Il _.: : o
wall material, and > A [l ’
t,, t, = Temperatures maintained at P
the two faces 1 and 2 of the h
wall, respectively. 1 [ .
The general heat conduction equation in cartesian fe— i —
coordinates is given by (@)
o % 9% 4 _1 o o 4, b 9
a*  dy* diF ko ot . L
..[Eqn. 2.8] Rdeona. = 31
If the heat conduction takes place under the ®
ot Fig. 2.4. Heat conduction through a
conditions, steady state (g = 0) , one-dimensional plane wall.
°t 9t q,
W = 82_2 ~ VY |and with no internal heat generation s =0 | then the above equation is
reduced to
0t d*t
F = 0, or E =0 (233)
By integrating the above differential twice, we have
dt
e (& and t=Cx+C, ..(2.34)

where C, and C, are the arbitrary constants. The values of these constants may be calculated
from the known boundary conditions as follows :

At x=0 t=1
At x=1L t= 12
Substituting the values in the eqn. (2.34), we get
L=0+C, and t,=CL+C,
e t, - 4
After simplification, we have, C,=1?, and C = L

ThuS, the eqn. (2.34) I‘eduCeS to:
t l] ...( . 5)



Chapter : 2 : Conduction-Steady-State One Dimension [JETJ}

The eqn. (2.35) indicates that temperature distribution across a wall is linear and is independent
of thermal conductivity. Now heat through the plane wall can be found by using Fourier’s equation as
follows :

t dt
S a -
Q0 e (where, — = Temperature gradient)
[Eqn.(1.1)]
dt d t2—11) } t, -4
i | o amiily o
But, dx  dx [( L ! L
(t, - t) KkKA(y -t,)
=-kA = (2.
o I I (2.36)
Eqn (2.36) can be written as :
(4 - t,) t, - t,)
Q=121 2 (2.37)

(L/kA) (Rth )cond.
where, (R,).ona. = Thermal resistance to heat conduction. Fig. 2.4 (b) shows the equiva-
lent thermal circuit for heat flow through the plane wall.
Let us now find out the condition when instead of space, weight is the main criterion for selection
of the insulation of a plane wall.

L
Thermal resistance (conduction) of the wall, (R,,),. 4 = @ (D)
Weight of the wall, W =p AL (i)
Eliminating L from (i) and (i7), we get
W=pA (R KA= (p‘k)Az‘(Rrh)cond. ..(2.38)

The eqn., (2.38) stipulates the condition that, for a specified thermal resistance, the lightest
insulation will be one which has the smallest product of density (p) and thermal conductivity (k).

Case II. Variable thermal conductivity

A. Temperature variation in terms of surface temperatures (1, t,) :

A diesel engine is more efficient due to internal combustion and better heat.

www. TechnicalBooksPdf.com
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But, Q =k,A (%) ..[Eqn. (2.43)]
Equating these eqns. (2.47) and (2.43), we have
L fwroal
k, = [k f(2) dt
t - 1,) J‘t. of
S It' ko f (2) dr] (2.48)
G —1) % (2

The effect of + B and — 3 on temperature is depicted in Fig. 2.5.

2.5.2. HEAT CONDUCTION THROUGH A COMPOSITE WALL

Refer to Fig. 2.6 (a). Consider the transmission of heat through a composite wall consisting of a
number of slabs.

Let, L,, Ly, L. = Thicknesses of slabs A, B and C respectively (also called path lengths),
kA, kB, kc = Thermal conductivities of the slabs A, B, and C respectively,
1,1, (t, > 1,) = Temperatures at the wall surfaces 1 and 4 respectively, and
t,, t; = Temperatures at the interfaces 2 and 3 respectively.
Since the quantity of heat transmitted per unit time through each slab/layer is same, we have,
Q=kA‘A(t1 b)) _ky Ay —t) ke A - 1)
L, Ly L

(Assuming that there is a perfect contact between the layers and no temperature drop occurs
across the interface between the materials).

N - / Intertaces
- ;
—»Q \.\. L '
. Temperature
\ & profile
® ®|© |-
Ky kg ke
1 2 3 4
[ L, —>jeL ple— L.
(@)
Q tl t2 t3 t4 Q
=AM —— AN —o— AN o>
Ria Rip Ryc
L, L, L
Rpa= o Ryp= 0 Rye=
k,. A ky. A kc. A
®

Fig. 2.6. Steady state conduction through a composite wall.
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Rearranging the above expression, we get

_Q.L,
b= ()
_0.Ly
t, — 1, = -~ (i)
_0.L
=ty = K .; ...(ii)
Adding (i), (if) and (iii), we have
t-t)=0 L, + Ly + Le
ki A ky.A kp.A
or, 0= 7 A (tlL_ t4)L
AL By C ..(249)
ky kg k¢
o 0= 4 1) - (h ~ 1) 249(a)]
Ly + Ly + Lc [Rya + Ry + Ry_c]
ky A kg.A ke.A

If the composite wall consists of n slabs/layers, then

[t = Y]
i L (2.50)
T kA

In order to solve more complex problems involving both series and parallel thermal resistances,
the electrical analogy may be used. A typical problem and its analogous electric circuit are shown in
Fig. 2.7.

Q:

At

overall

o W .(2.51)

Composite
A wall

=(®

© "
K, ke .
Rin.p Ry g
WWWY
Ry
Ry ¢ Ring

Fig. 2.7. Series and parallel one-dimensional heat transfer through a composite wall and electrical analog.
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For the proper design of fins, the knowledge of temperature distribution along the fin is necessary.
In this article the mathematical analysis for finding out the temperature distribution and heat flow
from different types of fins is dealt with.

The following assumptions are made for the analysis of heat flow through the fin :
Steady state heat conduction.
No heat generation within the fin.
Uniform heat transfer coefficient (k) over the entire surface of the fin.
Homogeneous and isotropic fin material (i.e. thermal conductivity of material constant).
Negligible contact thermal resistance.
Heat conduction one-dimensional.

NN R

. Negligible radiation.
2.10.2. HEAT FLOW THROUGH “RECTANGULAR FIN”

Consider a rectangular fin protruding from a wall surface as shown in Fig. 2.121.

—~ Perimeter, P=2 (b +y)
-
J//'F/u Qcom'.
Ip ) oo f ’I
- F '> o - y
. x —=l~—dx » T
e e L,.f-""' b Cross-sectional
) / area, 4, =b.y
ht,
Wall ‘
A~ Element
/—/_/
/_/--/_
= x
Fig. 2.121. Rectangular fin of uniform cross-section.
Let, | = Length of the fin (perpendicular to surface from which heat is to be removed),

b = Width of the fin (parallel to the surface from which heat is to be removed),
y = Thickness of the fin,
P = Perimeter of the fin [=2(b + y)],
A, = Area of cross-section (=by),
t, = Temperature at the base of the fin, and
t, = Temperature of the ambient/surrounding fluid,
k = Thermal conductivity (constant), and
h = Heat transfer coefficient (convective).

In order to determine the governing differential equation for the fins, shown in Fig. 2.121, consider
the heat flow to and from an element dx thick at a distance x from the base.
Heat conducted into the element at plane x,
dt
Q,=-kA, [;]x (i)

Heat conducted out of the element at plane (x + dx)



m Heat and Mass Transfer

dt
—_kA | ..
Ox +ax cs |:dxi|x+dx ()]

Heat convected out of the element between the planes x and (x + dx),
Qo =h(P.dx)(t-1t)
Applying an energy balance on the element, we can write

Qx = Q(x+dx) + Qconv.

dt dt
—kA || =-kA;|— + h(P.dx)(t -t
© [dx ] cs [dedx (P.dx)(t —1,) (2.128)

Making a Taylor’s expansion of the temperature gradient at (x + dx) in terms of that at x, we get

(dt) (dt) d(dt) d’ (dt)(dx)2
— =|—| +—|—| dx+—|— +
dx /i 4 ax dx/, dx\dx), dx? \dx 2!

Substituting this in eqn. (2.128), we have
2 3 2
_kAcsliﬂil =_kAcs|:£i| _kACS ﬂ dx—kAcS ﬂj|(dx) + ..+ h(P.dx)(t—ta)
dx 1y dx 1y dx? di’

21

X
Neglecting higher terms as dx — 0, we have

dt dt d’t
—kA, [;} =-kA, [E} kA, |:?:|dx + h(P.dx)(t -t,)

d’t
KA | = v~ h(P.d0) @ ~1,) =0

Dividing both sides by A __ dx, we get,

d’t hP
k— - —(@-1,)=0
dx A
d’t hP
—_— - t—-1)=0
or, 2 kA (t-1t,) ..(2.129)

Eqn. (2.129) is further simplified by transforming the dependent variable by defining the
temperature excess 9 as,

0 =1 ~ta
As the ambient temperature ¢, is constant, we get by differentiation
do _dr  d%®  d%

E - E’ ax?  dx?
42
Thus, _9 -m?0=0 ...(2.130)
dx?

m hP
where kA,

Eqns. (2.129) and (2.130) represent a general form of the energy equation for one-dimensional
heat dissipation from an extended surface (fin). The parameter m, for a given fin, is constant provided
the convective film coefficient 4 is constant over the whole surface and the thermal conductivity k is
constant within the temperature range considered. Then the general solution of this linear and
homogeneous second order differential equation is of the form :

0=Ce™+C,e™ ..(2.131)
or, [t—2,=Ce™+C,e™]
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2.10.2.4. Efficiency and effectiveness of fin
Efficiency of fin ('rlﬁn) :

The efficiency of a fin is defined as the ratio of the actual heat transferred by the fin to the
maximum heat transferable by fin, if entire fin area were at base temperature.

Actual heat transferred by the fin (Q ﬁn)

ie., Nsan = : ; "
fin Maximum heat that would be transferred if whole surface of the fin
is maintained at the base temperature (Q,,,.)

For a fin which is infinitely long (Art. 2.10.2.1)

_ [PrkA, @, - \/ )
N =P, — 1, P ‘m (2.138)

For a fin which is insulated at the tip (Art. 2.10.2.2) :

_ JPhKA, (1, — t,)tanh (ml) _ tanh (mi)
hPI(t, - 1,) ml .(2.139)

, fh(Zb + 2y)
where, [ P=2(b+y)]

Now, if the fin is sufflclently w1de then the term 26 will be large compared to 2y, then

ml = %.1: z_h.1= z_h.13/2= Z_h.13/2
kby ky kyl KA,

where, y.l=A ,= Profile area of the fin.

Zh a2
Thus the fin efficiency is a function of mlor 44 :
4

The efficiency of areal rectangular fin which is long, wide and thin can be calculated by replacing
I by a corrected length / , given by

L=1+ % .(2.140)

This corrected length compensates for the fact that there is connective heat loss from the tip of a
real fin. The efficiency is then written as

lanh{thfky([ + %H
n = T 2.141
J2hiky| i+ ;} ~(2.141)

The heat flow becomes,

Q = JhPKA, (1, - 1,) tanh [ /2h/ky(1 + %)]

=M g Pl (1,—1,) .(2.142)
The efficiency of a fin forms a criterion for judging the relative merits of fins of different geometrics
or materials.

Effectiveness of fin (g, ) :
Effectiveness of fin is the ratio of the fin heat transfer rate to the heat transfer rate that would

exist without a fin.
Qwithfin — \/ PhkAcx (to B ta) — Pk

Qwithour fin hAcs (to - ta) hAcs
(...in case of infinitely long fin.)

€ fin = (2.143)
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For a straight rectangular fin of thickness of y and width b,
P 20b+y 2

A b-y y
Em= |
fin hy ..(2.144)
From the relation for fin effectiveness, following results can be inferred :
Pk

1. Fin effectiveness hA_ should be greater than unity if the rate of heat transfer from the
cs

primary surface is to be improved. It has been observed that use of fins on surfaces is justified
L PR s
only if hA :

cs
2. If the ratio of P (perimeter) and A (cross-sectional area) is increased the effectiveness of fin
is improved. Due to this reason, thin and closely spaced fins are preferred; the lower limit on
the distance between two adjacent fins (pitch) is governed by the thickness of boundary
layer that develops on the surface of the fin.

3. Useoffins is only justified where A is small; finning is hardly justified unless s < 0.25 [%} .
If the value of h is large (as experienced in boiling, condensation and high velocity fluids),
the fins may actually produce a reduction is heat transfer.

4. It is also apparent that the use of fins will be more effective with materials of large thermal
conductivities [Although copper is superior to aluminium regarding thermal conductivity,
yet fins are generally made of aluminium since it (aluminium) is cheaper in cost and lighter
in weight].

Relation between Mgy and €4y

The performance parameters (i.e. Mg and eﬁn), in case of a fin insulated at the tip, are related to

each other by the following expressions :

_ \[PhKA (1, - 1,) tanh (1)
=

Efficiency of fin, Ny hPL(ty— 1) (D)
. PhKA (ty — t,) tanh (ml)

Effectiveness of fin, = (i

sim hAcs (to - ta) (l )
Dividing eqn. (ii) by eqn. (i), we have
Em _ PL

N = A, ...(2.145)

e 1 Pl N X Surface area of the fin (2.145 (a)]

or, = —= (2.
fin i g~ "™ Cross-sectional area of the fin 4

It is evident from the above equations that an increase in fin effectiveness can be obtained by
increasing the length of the fin but it decreases the efficiency of the fin on the other hand.

Example 2.126. A longitudinal copper fin (k = 380 W/m°C) 600 mm long and 5 mm diameter is
exposed to air stream at 20°C. The convective heat transfer coefficient is 20W/m?°C. If the fin base
temperature is 150°C, determine :

(i) The heat transferred, and

(ii) The efficiency of the fin. [P.U., 1997]
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From the properties of Bessel's functions, we know that

d[1,)] _

i Loy sy (Z)_(Z)

so that for n =0

AnCBR] 1) apy)a

0,1, (2Bx)
Q=kx(bxy) X X{W] [using eqn. (2.161)]

0= M[%{[O (23\/;)}}
x=1

o I,2BVLa
kbyO -1/2
= I, (2B B
or, Q= 10(2Bf>[( o) B?]
_ kbyo,
or, €= 10<2Bf>[ f)xf}

0= kBby®, I, ): N
or, \/Z Io (23\/-) .(2.162)

2h!

ky
kbye, ~[2hl 1, ) ND)
J ky 10(2Bf)
o Li2BD)

* I,2BI)

Note: The straight fins can be of rectangular, triangular and parabolic profiles; parabalic fins are the most
effective but are difficult to manufacture.

2.10.4. ESTIMATION OF ERROR IN TEMPERATURE MEASUREMENT IN A
THERMOMETER WELL

For estimating error in the value of temperature measured by a thermometer dipped in a
thermometer well, the theory of extended surfaces is very helpful. A thermometer well is defined as a
small tube welded radially into a pipeline through which a fluid whose temperature is to be measured
is flowing.

Refer to Fig. 2.139.

Let, | = Length of the well/tube,

But

Q:

Parabolic fins.

or, @in =b2hky (2.163)

d = Internal diameter of the well/tube,
6 = Thickness of well/tube,

= Temperature of the fluid flowing through the pipe (which is to be measured), and
t, = Temperature of the pipe-wall.

When the temperature of the fluid flowing through the pipeline is higher than the ambient
temperature, the heat flows from the fluid towards the tube walls along the well. Consequently the
temperature at the bottom of well becomes colder than the fluid flowing around, obviously the

www. TechnicalBooksPdf.com
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temperature shown by the thermometer will not be the true temperature of the fluid. This error may be
calculated by assuming the well to be a spine protruding from the wall of a pipe in which fluid is
flowing. It may be assumed, for simplicity, that there is no flow of heat from the tip of the well (i.e.,
the tip of the well is insulated). The temperature distribution at any distance x measured from pipe
wall along the temperature well is given by

8, t—tr cosh[m(l - x)]

X

..[Eqn. (2.134)]

8, f,—1f cosh (ml)
g Thermometer
Pipeline t, t &
LTI S I et
¢ (atx=0) ! e |
. L— oil —\(r» :
= i
= <« ] 4 Well j \ :
E ] temp. N
. 4, (at x = 1) \|
1| ¥
LT T L T T T LT ) v I
X
Fig. 2.139. Thermometer well. Fig. 2.140. Temperature varitation in well.
At x = [, we have
h—ty _cosh[m@-D] 1 (2.164)
L, =1 cosh (ml) cosh (ml)

[Thermometeric error]
(where, = Temperature recorded by the thermometer at the bottom of the well.)

Now, perimeter of the well, P =7n(d+20) = nd,
and cross-sectional area, A“ =1ndd
P md 1
A, mdd B

me | PP _ |
Then, kA, \kd

Thus, the temperature measured by the thermometer is not affected by the diameter of the well.

From the Eqn. (2.164) it is obvious that in order to reduce the temperature measurement error, m!
should be large necessitating the following :

(i) Large value of & (heat transfer coefficient).

(if) Small value of of k (thermal conductivity).

(i#ii) Long and thin well, the pocket (protruding small tube) may be placed obliquely/inclined, if
necessary, to provide a longer insertion of thermometer.

Example 2.130. A mercury thermometer placed in oil well is required to measure temperature of
compressed air flowing in a pipe. The well is 140 mm long and is made of steel (k = 50 W/m°C) of 1
mm thickness. The temperature recorded by the well is 100°C while pipe wall temperature is 50°C.

Heat transfer coefficient between the air and well wall is 30 W/m?°C. Estimate true temperature of
air. (M.U.)
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Let us consider a body whose initial temperature is £, throughout and which is placed suddenly in
ambient air or any liquid at a constant temperature ¢, as shown in Fig. 4.1(a). The transient response
of the body can be determined by relating its rate of change of internal energy with convective
exchange at the surface. That is:

Control Eom = Qconv.

surface  \ /,//i—-l‘\\ / =hA (t-1t,)
A_ ol
(-//F S ¥\ ——pre 4t = Cy=ple == % Ry=——
( Negligible )/ dr - s hA
44

\ s

N\ internal thermal
resistance J ]l
Body i = / {

" e i i

System
1=0,1=t
1>0,1=£(1)

(a) General system for unsteady (b) Equivalent thermal circuit for lumped
heat conduction capacitance solid

Fig. 4.1. Lumped heat capacity system.
dt
=—-pVe—=hA, (t-1,) (4.1
p it s a 4.1

where, p = Density of solid, kg/m?,
V = Volume of the body, m?,
¢ = Specific heat of body, J/kg°C,
h = Unit surface conductance, W/m2°C,
t = Temperature of the body at any time, °C,
A_ = Surface area of the body, m2,
t, = Ambient temperature, °C, and
7 = Time, s.

After rearranging the eqn. (4.1), and integrating, we get

dt hA
I =-— Idf (4.2
(t - ta) pVC
hA
nt-t)=-——"31+¢C
or, (t-1) oVe ! ..(4.3)
The boundary conditions are:
Att=0, t = 1, (initial surface temperature)
C, =ln(-1) [From eqn. (4.3)]
hA,
Hence Int—1)=- oVe T+ (4 -1,) [Substituting the values in eqn. (4.3)]

U —E—ex —ﬂt
PR p oVe (4.4)

or,



Chapter : 4 : Conduction-Unsteady-State (Transient) [PTE)]

Following points are worth noting:

1. Eqn. (4.4) gives the temperature distribution in the body for Newtonian heating or cooling and
it indicates that temperature rises exponentially with time as shown in Fig. 4.2.

— 1% 1
2 A 0E ““g’ ' : K 1
. P =
s | ( M,.) (p¥e)
T S | —R.C
v | h i
o I
& |
2 |
5 _ |
2 ,
g ous
= G‘:bo S I N
Bep,. | T
’?E}e! o | P CUTU UL « e e N
Ooﬁn : —{_ ; T : |
M [
ta __________________ | 0 | i |
Time, 1 —» i K E
Time, 1 —»
Fig. 4.2. Newtonian heating or cooling. Fig. 4.3. Transient temperature response.

. pYe . . . .
2. The quantity has the dimensions of time and is called thermal time constant, denoted

hA

s
by t,,. Its value is indicative of the rate of response of a system to a sudden change in its environmental
temperature i.e., how fast a body will response to a change in the environmental temperature.

1
T = [E] (pVe) =Ry, Cy,

s

1
where, Ry, = [_h A J = Resistance to convection heat transfer, and
S

C,, (=pV,) = Lumped thermal capacitance of solid.

Fig. 4.3 shows that any increase in R, or C,, will cause a solid to respond more slowly to
changes in its thermal environmental and will increase the time required to attain the thermal
equilibrium (6 = 0).

Fig. 4.1(b) shows an analogus electric network for a lumped heat capacity system, in which
C,, = pVc represents the thermal capacity of the system. The value of C,, can be obtained from the
following thermal and electrical equations, by similarity.

Q = (pVoyr=C,t ...Thermal equation.
s =CE ...Electrical equation.
where, s = Capacitor charge,

C = Capacitance of the condenser, and
E = Voltage.
When the switch is closed [Fig. 4.1 (b)] the solid is charged to the temperature 8. On opening the

1
switch, the thermal energy stored as C,, is dissipated through the thermal resistance R, = (H] and
;)

the temperature of the body decays with time. From this analogy it is concluded that RC electrical
circuits may be used to determine the transient behaviour of thermal systems.
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S

pVc
(10111 (o
pVe = KA, szc |k Lz ..(4.5)

k
where o = [—} = Thermal diffusivity of the solid
pc

The power on exponential, i.e., T can be arranged in dimensionless form as follows.

Volume of the solid (V)
Surface area of the solid (A,)
The values of characteristic length (L), for simple geometric shapes, are given below:

L, = Characteristic length =

LBH
Flat plate : L. = v = —— = L/2 = semi-thickness
A, 2BH
where L, B and H are thickness, width and height of the plate.
Cylinder (1 )'L—ERZL—R h R = radius of the cylind
ylinder (long) : L, wRL 2 where, = radius of the cylinder.
i R3
Sphere: L = 3 R where, R = radius of the sphere.
4nR* 3
L L _
Cube: L, = ? = o where, L = Side of the cube.

Further, from eqn. (4.5):

hL
(1) The non-dimensional factor Tc is called the Biot member B,

Le. B, = hll: = Biot number.

It gives an indication of the ratio of internal (conduction) resistance to surface (convection)
resistance. When the value of B, is small, it indicates that the system has a small internal (conduction)
resistance, i.e., relatively small temperature gradient or the existence of practically uniform temperature
within the system. The convective resistance then predominates and the transient phenomenon is
controlled by the convective heat exchange.

If B,;< 0.1, the lumped heat capacity approach can be used to advantage with simple shapes such
as plates, cylinders, spheres and cubes. The error associated is around 5%.

ot
(ii) The non-dimensional factor ? is called the Fourier number, F,.
(o

. oT .
ie. F, = = Fourier number

It signifies the degree of pecnetration of heating or cooling effect through a solid.
Using non-dimensional terms, eqn. (4.4) takes the form of
b _t1-1, -BiF,
— = =¢ o
o, -1, ...(4.6)
The graphical representation of eqn. (4.5) for different solids (Infinite plates, infinite cylinders
and infinite square rods and cubes and spheres) is shown in Fig. 4.4.
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Likewise th
o € mass f] :
face is p fv 4 (dv/ay) dy?";xﬂxﬂnng the bottom face is p vdx dt and the mass leaving the top

mass balance on the element yields -

Padydr 4+ p vdxy dt = p[u-l-gﬂdedym+p[u+%ﬂderd‘:
X
Simplificatir,:n gives :

e .(123)
dy dy
This is the mass continuity equation for two-dimensional steady flow of an incompressible

fluid. The continuity equation is a mathematical expression of the fact that flow! is contmIoRs
it has no breaks in it.

12.2.2. Force or momentum equation

For a two-dimensional infinitesimal control volume (dx x dy x unit depth) within the t;“;f;i?f
layer region, the viscous forces acting along with the momentum of fluid entering an B
the elementary volume have been indicated in Fig. 12.5.

au afau), | ,E
| = |dy|dx ¢
“[B?IJ'W{EY]_ J o i Ll
P — 3

” "

d
— dx
Control U+ o)
i ]
m, . dy 'w:d:ma —_—

A s - B
7 S

cul
m, u Fﬁ—?‘, dx

¥

Fig. 12.5. Elomental comlod voleme and force bakiinoo
in x-direction is duct of mass flowing in
tum change : The momentum flux in x-direction is the pro
x dir:hl?c:znand the Iﬁcﬂmpnnent u of velocity. A fluid mass enters the left face at the rate
: i - influx
dv producing an x-momentum in
ot m = (pudy) u=putdy L(12.4)
The momentum efflux through the right face is

= m.u + ix{m'_tu}.n‘x

o
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d
=(pudy) u+ a—{pmf].r u)dy
X

3 . 4
=pu? dy + 2pu a—:d.t dy .(12.5)

S_inc% we are ff)ncl_zmed only with momentum in x-direction, the momentum of the fluid
moving in y-direction is obtained by multiplying the mass moving in y-direction also with the
x-component u of the velocity. Therefore the momentum influx from the bottom face is

mou=(podx)n=puuvdr w1 12.6)
and the momentum effux from the top face is

d
=myi + E{ntyli}dy
= (prdxju+ %[p v dx u)dy

or dut
=puvdr+pu —dedy+pv—drdy ~{12.7)
dy dy
The resultant momentum change in x-direction is,

= momentum efflux from the right and top faces
— momentum influx from the left and bottom faces

d
=[pu1 dy?_pn%drdy}+[purrdx+pu%dxa‘y+pv$dxdy]-puz dy - pu vdx
die dv dit
" ik dats? & dxd
=2pu ax:ixdy+puay Id““”ay x dy

du  du du dv
=plu—+v— 2+ |dxd
p[uax+Pay}dxdy+pu[ax+ay]dr i}

For the continuity equation. (du/ax) + (dv/ dy) = 0 and therefore the net momentum transfer

in x-direction becomes :
uﬂ'i-i-‘c:E dx dy 1 1
o d e W .{12.8)
Viscous forces : The shearing stress due to fluid viscosity is proportional to the velocity

gradient and is given by Newtons' law of viscosity.
ou
Shear stress, T =H E’

where | is the dynamic viscosity of the fluid
The shearing stress at the lower face of the control volume is T = i (i /dy) and the coresponding
shearing force for the area (dx x 1) is p (/9y} dx. The shearing stress due to viscosity at the

upper face of the control volume is |1 + (dt/dy) dy] and the corresponding shearing force for

the area (dx x 1) is
dt dhi a[ ﬂ}d‘ ][ [ du du ] )
o= — e — X — fv |d
[1+aydy]d:r “[“ay E» "By ¥ uay+pa—¢y_=y x
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. < . A raet v B !
Since the main stream flows in r-direction, the shearing force in i/ direction can be neglected

Therefore the net viscous force in the direction of motion 15

. : :
[I—lﬂ"l-l—liﬁdy]dx—-u M S dedy .{12.9)
ry £ ﬂy

n's second law of motion stipulates

ady flow, the Newto
For a fixed control volume and ste ‘ transfer out of the volume,

that the resultant applied x-force equals the net rate of x-momentum

ic.,
£F, = (x-momentum efflux) = (x-momentum influx)

Therefore, in the abaenn:e of any pressure and grawtatmnal forces

Py ot du
—dxdy =p|u—+v_ |dxd
- Sk [r o dyJ 4
Fu o r'.ll:e o ou
or r',l_!..rl r'h' ﬂy
By substituting p/p = v, (the kinematic viscosity), we obtain
. -7
g du ..{12.10)

u e
dx Ay oy’
This is the force or momentum equation of the boundary layer with constant properties.
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POOL BOILING
In pool boiling, vapor is generated at a superheated wall that is small compared to the
dimensions of the pool of nominally stagnant liquid in which it is immersed. The motion of the
liquid is induced by the boiling process itself (analogous to single-phase natural convection at a
heated wall in an unbounded fluid) and the velocities are assumed to be low. These conditions
are convenient for small-scale laboratory experiments and much of the understanding of boiling,
such as the basic division into nucleate, transition and film boiling and studies of bubble
nucleation and motion discussed in the article on Boiling, has been derived from pool boiling
experiments. However, pool boiling is unusual in industrial equipment. Even if there is no forced
flow of liquid past the heated wall, confinement of the liquid and close spacing of multiple
heaters, as in kettle reboilers, means that conditions are closer to Forced Convective Boiling. The
heat source is often a hot fluid separated from the boiling liquid by a thin metal wall, whereas
electrical resistance heating is often used in pool boiling experiments. Consequently it is
important to appreciate the special conditions of pool boiling experiments and to exercise caution
in transferring the information they provide to large-scale industrial systems in which flow
effects are generally significant. This article reviews the techniques that are used in pool boiling
experiments. Pool boiling behavior is described in more detail in the articles

on Boiling, Nucleate Boiling, and Burnout (Pool Boiling).

Pool boiling can be classified according to conditions in the pool, the geometry of the heated
wall and the method of heating. These conditions influence the methods used to measure the
primary variables of wall superheat and heat flux that are conventionally used to present boiling

heat transfer performance as a "boiling curve".

In saturated pool boiling, or bulk boiling, the pool is maintained at or slightly above the
saturation temperature by interaction with the vapor bubbles rising from the superheated boiling
surface. (Subsidiary heaters may be used to compensate for heat lost from the walls of the
containing vessel.) The pool has a free surface at which the bubbles burst; the vapor space is
usually connected to a condenser that returns liquid to the pool. The system pressure is controlled
by the cooling applied to the condenser. In subcooled boiling, the pool temperature distant from

the boiling surface is below the saturation temperature. There can be no escape of vapor from a


http://thermopedia.com/content/589/
http://thermopedia.com/content/1517/
http://thermopedia.com/content/589/
http://thermopedia.com/content/990/
http://thermopedia.com/content/606/

subcooled pool, unless it is very shallow, so a heat sink must be provided by cooling regions on
the walls of the vessel. Alternatively, a subcooled experiment can be run for a short period
without heat sink, relying on the thermal capacity of the cold pool. A subcooled pool cannot have
a free surface in contact with its own pure vapor. Either the boiling vessel must be connected to a
separate vessel in which the pressure is controlled, or there must be a gas space above the pool.
Use of a cover gas leads to a concentration of dissolved gas which can influence boiling,
particularly by improving the stability of nucleation sites and reducing the superheat required for
their activation. Dissolved gas can be removed by a preliminary period of saturated boiling,
either in the experimental vessel or in a separate vessel from which the experimental vessel is
filled. The temperature-time-dissolved gas history can influence the subsequent boiling
experiments, as described in the article on Nucleate Boiling, and may be different in industrial

systems.

In both saturated and subcooled pool boiling, the operation of the heat sink requires a
recirculatory flow in the pool that may interact with the boiling process in ways that depend on
the geometry of the pool and of the superheated boiling surface. The shape of the vessel may be
constrained by the need to observe the boiling process. Early experiments on pool boiling used
heating surfaces that were thin horizontal wires of materials such as platinum, heated by the
passage of direct electrical current. The electrical resistance of the wire provided a measure of its
temperature, averaged over its length. Such experiments are useful to demonstrate some of the
basic characteristics of boiling but they suffer from the disadvantage that the length scale of the
bubbles is similar to that of the heater so that their behavior is atypical of the extensive surfaces
in industrial plant. Most experiments now use larger heaters in the form of horizontal cylinders
with diameters in the range 10 to 20 mm, horizontal plates of circular or rectangular shape and
vertical or sloping rectangular plates, with dimensions in the range 5 to 100 mm. Heaters much
larger than this are rarely used because of the large power requirements resulting from the high
heat fluxes in nucleate boiling. The small heaters interact with the recirculation of liquid in the
pool through edge effects or because their dimensions are comparable with the critical
wavelengths of interfacial instabilities in film boiling. The recirculatory flows that must return
liquid right to the wall in nucleate boiling are rarely considered, except in the special case of

vertical flow counter to the vapor flow.
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Nucleation

Nucleation is typically defined to be the process that determines how long an observer has to
wait before the new phase or self-organized structure appears. For example, if a volume of water
is cooled (at atmospheric pressure) below 0 °C, it will tend to freeze into ice, but volumes of
water cooled only a few degrees below 0 °C often stay completely free of ice for long periods. At
these conditions, nucleation of ice is either slow or does not occur at all. However, at lower
temperatures ice crystals appear after little or no delay. At these conditions ice nucleation is
fast. Nucleation is commonly how first-order phase transitions start, and then it is the start of the
process of forming a new thermodynamic phase. In contrast, new phases at continuous phase

transitions start to form immediately.

Nucleation is often found to be very sensitive to impurities in the system. These impurities may
be too small to be seen by the naked eye, but still can control the rate of nucleation. Because of
this, it is often important to distinguish between heterogeneous nucleation and homogeneous
nucleation. Heterogeneous nucleation occurs at nucleation siteson surfaces in the

system. Homogeneous nucleation occurs away from a surface.

The time until the appearance of the first crystal is also called primary nucleation time, to
distinguish it from secondary nucleation times. Primary here refers to the first nucleus to form,
while secondary nuclei are crystal nuclei produced from a preexisting crystal. Primary nucleation
describes the transition to a new phase that does not rely on the new phase already being present,
either because it is the very first nucleus of that phase to form, or because the nucleus forms far

from any pre-existing piece of the new phase. Particularly in the study of crystallisation,


https://en.wikipedia.org/wiki/Phase_transition
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secondary nucleation can be important. This is the formation of nuclei of a new crystal directly

caused by pre-existing crystals.

For example, if the crystals are in a solution and the system is subject to shearing forces, small
crystal nuclei could be sheared off a growing crystal, thus increasing the number of crystals in
the system. So both primary and secondary nucleation increase the number of crystals in the
system but their mechanisms are very different, and secondary nucleation relies on crystals

already being present.



Laminar and Turbulent Boundary Layers

A boundary layer may be laminar or turbulent. A laminar boundary layer is one where the flow
takes place in layers, i.e., each layer slides past the adjacent layers. This is in contrast to

Turbulent Boundary Layers shown in Fig. 1 where there is an intense agitation.

In a laminar boundary layer any exchange of mass or momentum takes place only between

adjacent layers on a microscopic scale which is not visible to the eye. Consequently molecular

viscosity * is able predict the shear stress associated. Laminar boundary layers are found only

when the Reynolds numbers are small.

y Laminar y : Turbulent

-
-

® |/
Ut
ty
i
w1
o

Y

Figure 1: Typical velocity profiles for laminar and turbulent boundary layers

A turbulent boundary layer on the other hand is marked by mixing across several layers of it. The
mixing is now on a macroscopic scale. Packets of fluid may be seen moving across. Thus there is
an exchange of mass, momentum and energy on a much bigger scale compared to a laminar

boundary layer. A turbulent boundary layer forms only at larger Reynolds numbers. The scale of



mixing cannot be handled by molecular viscosity alone. Those calculating turbulent flow rely on
what is called Turbulence Viscosity or Eddy Viscosity, which has no exact expression. It has to

be modelled. Several models have been developed for the purpose.

Laminar

Turbulent

=
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Figure 2: Typical velocity profiles for laminar and turbulent boundary layers



Dimensional Analysis for Free and Forced Convection:

If number of variables influencing convective heat transfer coefficient are known, then the following two
methods can be used to develop a mathematical expression relating the variables with the convective heat
transfer coefficient.

i) Rayleigh’s Method
i) Buckingham’s ©-theorem

However, in application of dimensional analysis for determining convective heat transfer coefficient for
free and forced convection, Rayleigh’s method will not be used as it has certain limitations that can be
overcome by using Buckingham’s n-theorem method.

Buckingham’s ©-Theorem Method

In the Rayleigh’s method of dimensional analysis, solution becomes more and more cumbersome and
laborious if number of influencing variables become more than the fundamental units (M, L, T and 6)
involved in the physical phenomenon.. The use of Buckingham’s n-theorem method enables to overcome
this limitation and states that if there are ‘n’ variables (independent and dependent) in a physical
phenomenon and if these variables contain ‘m’ number of fundamental dimensions (M, L, T and 0), then
the variables are arranged in to (n-m) dimensionless terms called n-terms.

Buckingham’s n-Theorem Method can be applied for forced and free convection processes to determine
the heat transfer coefficient.

Dimensional Analysis for Forced Convection

On the basis of experience, it is concluded that forced convection heat transfer coefficient is a function of
variables given below in Table -2

S. No. | Variable / Parameter Symbol | Dimensions
1 Fluid density p ML

2 Dynamic viscosity of fluid n MLT

3 Fluid Velocity \Y; LT

4 Thermal conductivity of fluid k MLT3 0%

5 Specific heat of fluid Co L*T? 0"




6 Characteristic length of heat transfer area D L

Therefore, convective heat transfer coefficient is expressed as

h=f(p, u, V. k, Cp, D) 1)

f(h, p,n, V,k, Cp D)= 0 )

Convective heat transfer coefficient, h is dependent variable and remaining are independent variables.
Total number of variables, n =7

Number of fundamental units, m= 4

According to Buckingham’s n-theorem, number of z-terms is given by the difference of total number of
variables and number of fundamental units.

Number of ©-terms = (n-m) = 7-4 =3
These non-dimensional z-terms control the forced convection phenomenon and are expressed as
f(nl, T2, 11?3) =0 (3)

Each z-term is written in terms of repeating variables and one other variable. In order to select repeating
variables following method should be followed.

o« Number of repeating variables should be equal to number of fundamental units involved
in the physical phenomenon.

¢ Dependent variable should not be selected as repeating variable.

¢ The repeating variables should be selected in such a way that one of the variables should
contain a geometric property such as length, diameter or height. Other repeating
variable should contain a flow property such as velocity or acceleration and the third
one should contain a fluid property such as viscosity, density, specific heat or specific
weight.

o The selected repeating variables should not form a dimensionless group.

e The selected repeating variables together must have same number of fundamental
dimensions.

o No two selected repeating variables should have same dimensions.

The following repeating variables are selected
i) Dynamic viscosity, p having fundamental dimensions ML T™

ii) Thermal conductivity, k having fundamental dimensions MLT™ ¢!



iii) Fluid velocity, V having fundamental dimensions LT

iv) Characteristic length, D having fundamental dimensions L
Each n-term is expressed as:

m=pt kP, V¢ DY h )
Writing down each term in above equation in terms of fundamental dimensions
MOLOT? 00 = (MLTH)* (MLT2 6 (LT (L) MT2 0

Comparing the powers of M, we get

0 = a+b+1, a+h= -1
()

Comparing powers of L, we get

0 = -a+b+c +d (6)
Comparing powers of T, we get

0= -a- 3b-c -3 ()
Comparing powers of 0, we get
0=-b-1,

b=-1 (®)
Substituting value of ‘b’ from equation (8) in equation (5), we get

a=0 9)
Substituting values of ‘a’ and ‘b’ in equation (7), we get
c=0 (10)
Substituting the values of ‘a’, ‘b’ and ‘c’ in equation (6), we get
d=1
Substituting the values of ‘a’, ‘b’, ‘¢’ and ‘d’ in equation (4), we get
m=p’k? VO, DY h
n=hD/k (112)
The second 7t —term is expressed as

m =1t kP, V& DY p 12)



MOLOTO 0% = (MLITH (MLT3 o) (LT (L)! ML
Comparing the powers of M, we get

0 = a+b+1, a+b=-1

Comparing powers of L, we get
0=-a+b+c+d-3

Comparing powers of T, we get
0=-a- 3b-c

Comparing powers of 0, we get

0=-b,

b=0

Substituting value of ‘b’ from equation (16) in equation (13), we get

a=-1

Substituting values of ‘a’ and ‘b’ in equation (15), we get

c=1

Substituting the values of ‘a’, ‘b’ and ‘c’ in equation (14), we get

d=1

Substituting the values of ‘a’, ‘b’, ‘c’ and ‘d’ in equation (12), we get

m=utk’ VL, DY p
m=pVD/pn
The third & —term is expressed as

m = p? kP, V¢, DY, C,p

MPLOT® 6° = (MLT)? (MLT 0)° (LT)° (L)* L2T 6

Comparing the powers of M, we get
O=a+h, a+h=0
Comparing powers of L, we get

O=-at+b+c+d+2

(14)

(15)

(16)

A7)

(18)

(19)

(20)

(1)

(22)

(13)



Comparing powers of T, we get
0 =-a- 3b-c-2 (23)
Comparing powers of 0, we get
0=-b-1,
b=-1 (24)
Substituting value of ‘b’ from equation (24) in equation (21), we get
a=1 (25)
Substituting values of ‘a’ and ‘b’ in equation (23), we get
c=0 (26)
Substituting the values of ‘a’, ‘b’ and ‘c’ in equation (22), we get
d=0
Substituting the values of ‘a’, ‘b’, ‘¢’ and ‘d’ in equation (12), we get
M3 = ul k't VO D Cp
3 =p Cplk (27)
Substituting the values of w1, m, w3 in equation (3), we get
f(hD/k, p VD /p, nCpk)=0
hD/k=¢(p VD /pu, nCplk)
Nu = o(Re, Pr)
The above correlation is generally expressed as
Nu = C (Re)*(Pr)°
The constant C and exponents ‘a’ and ‘b’ are determined through experiments.
Dimensional Analysis for Free Convection:
In free convection heat transfer process, convective heat transfer coefficient depends upon the same
parameters/variable as in case of forced convection except velocity of fluid. It is on account of the fact
that in free convection motion of fluid occurs due to difference in density of various layers of fluid caused
by temperature difference whereas in case of forced convection motion of fluid is caused by an external

source. The fluid velocity in case of free convection depends upon the following parameters;

i) Temperature difference between solid surface and bulk fluid, AT



i)  Acceleration due to gravity, g

iii) Coefficient of volumetric expansion of fluid,

The change in the volume when temperature changes can be expressed as

dv = V1 B (Tz— Tl)

where

dV - change in volume (m?)

=V2—V1

B = Coefficient of volumetric expansion of fluid,(m*m?°C)

T, - Final temperature (°C)

T1- Initial temperature (°C)

Therefore, free convection heat transfer coefficient is a function of variables given in Table 3

Table 3
S. No. | Variable Symbol | Dimensions
1 Fluid density p ML
2 Dynamic viscosity of fluid n MLAT?
3 Thermal conductivity of fluid k MLT3 0%
4 Specific heat of fluid Co L?T20?
5 Characteristic length of heat transfer area D L
6 Temperature difference between surface and bulk fluid | AT 0
7 Coefficient of volumetric expansion B 0"
8 Acceleration due to gravity g LT?




Therefore, convective heat transfer coefficient is expressed as
h=f(p, u, k, Cp, D, AT, B, g) (28)

However, in free convection, (AT B g) will be treated as single parameter as the velocity of fluid particles
is a function of these parameters. Therefore, equation (28) can be expressed as

fth, p, 1, k, Cp, D, (AT B g))=0 (29)

Convective heat transfer coefficient, h is dependent variable and remaining are independent variables.
Total number of variables,n=7

Number of fundamental units, m =4

According to Buckingham’s n-theorem, number of 7-terms is given by the difference of total number of
variables and number of fundamental units.

Number of n-terms = (n-m) =7-4 =3
These non-dimensional z-terms control the forced convection phenomenon and are expressed as
f(m1, M2, m3) = 0 (30)

Each n-term is written in terms of repeating variables and one other variable and the following repeating
variables are selected

i) Dynamic viscosity, p having fundamental dimensions ML T™

i) Thermal conductivity, k having fundamental dimensions MLT* @™
iii) Fluid density, p having fundamental dimensions ML

iv) Characteristic length, D having fundamental dimensions L

Each n-term is expressed as:

m=p? kK’ p% DY h (31)
Writing down each term in above equation in terms of fundamental dimensions
MOLOTO 0 = (ML T2 (MLT2 01 (ML) (L) MT3 9

Comparing the powers of M, we get

0 = a+b+c+1, a+b+c= -1
(32)

Comparing powers of L, we get

0 = -at+b+c +d (33)



Comparing powers of T, we get

0=-a-3b-c-3

Comparing powers of 0, we get

0=-b-1,

b=-1

Substituting value of ‘b’ from equation (35) in equation (32), we get
a=0

Substituting values of ‘a’ and ‘b’ in equation (34), we get

c=0

Substituting the values of ‘a’, ‘b’ and ‘c’ in equation (33), we get

d=1

(34)

(35)

(36)

(37)

Substituting the values of ‘a’, ‘b’, ‘¢’ and ‘d’ in equation (31), we get

m=p?k’ p%, DY, p

m=hD/k

The second 7 —term is expressed as

m=p? Kk, p%, DY, Cp

MOLOTO 00 = (MLTH)? (MLT? 64> (ML®) (L)! L2T2 0
Comparing the powers of M, we get

0 =

Comparing powers of L, we get
0 =-a+Db-3c +d +2

Comparing powers of T, we get
0 = -a- 3b-2

Comparing powers of 0, we get

0 = -b-1, b=-1
(43)

(38)

(39)

atb+c
(40)

(41)

(42)



Substituting value of ‘b’ from equation (43) in equation (40), we get

a=1 (44)
Substituting values of ‘a’ and ‘b’ in equation (42), we get

c=0 (45)
Substituting the values of ‘a’, ‘b’ and ‘c’ in equation (41), we get

d=0

Substituting the values of ‘a’, ‘b’, ‘¢’ and ‘d’ in equation (39), we get

m=pt k%, p°, D% Cp

2 = Cp / k =Prandtl Number = Pr (46)

The third & —term is expressed as

3 = K%, p° D ((AT B g) (47)
MPLOT? 07 = (ML T (MLT3 0" (ML3)® (L) (0L T2 0

MPLOT® 6° = (ML'T)* (MLT® 67)° (ML?)° (L) (LT?)

Comparing the powers of M, we get

0 = at+b+c, at+b+c= 0
(48)

Comparing powers of L, we get

0 = -a+b-3c +d +1 (49)
Comparing powers of T, we get

0=-a-3b-2 (50)
Comparing powers of 0, we get

0=-b, b=0 (51)
Substituting value of ‘b’ from equation (51) in equation (48), we get

a=-2 (52)
Substituting values of ‘a’ and ‘b’ in equation (50), we get

c=2 (53)



Substituting the values of ‘a’, ‘b’ and ‘c’ in equation (49), we get

d=3

Substituting the values of ‘a’, ‘b’, ‘¢’ and ‘d’ in equation (47), we get

3= p? K, p%, D (AT B g)

3= p° D* (AT B g) / p?

= D* (AT p g)
v? (54)

Substituting the values of w1, m, 73in equation (30), we get

f(hD /k, u Cy/k, D* (AT B g) / v?) =0

hD/k=o(uCyk, D (AT B g) / v?)

Nu = o(Pr, Gr) asGr=D*(AT B g)/v? (55)
The above correlation is generally expressed as

Nu = C (Pr)®(Gr)° (56)

The constant C and exponents a and b are determined through experiments.
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