Conprossor

COMPONENT

Intake Air Filters: Prevent dust and atmospheric impurities from entering compressor. Dust causes sticking valves, scored cylinders, excessive wear etc.

- Compressor : Pressurizes the air
- Inter-stage Coolers : Reduce the temperature of the air (gas) before it enters the next stage to reduce the work of compression and increase efficiency. They can be water-or air-cooled.
- After Coolers : Reduce the temperature of the discharge air, and thereby reduce the moisture carrying capacity of air.
- Air-dryers : Air dryers are used to remove moisture, as air for instrument and pneumatic equipment needs to be relatively free of any moisture. The moisture is removed by suing adsorbents or refrigerant dryers, or state of the art heatless dryers.
- Moisture Traps : Air traps are used for removal of moisture in the compressed air distribution lines. They resemble steam traps wherein the air is trapped and moisture is removed.
- Receivers : Depending on the system requirements, one or more air receivers are generally provided to reduce output pulsations and pressure variations.

Parts of reciprocating Compressor

1. Induction box and silencer
2. Induction filter.
3. Low pressure stage.
4. Intercooler.
5. High pressure stage.
6. Silencer.
7. Draint trap.
8. After cooler
9. Pressure galuge.
10. Air receiver.
11. Safety pressure e elief valve.
12. Stop valve

COMPRESSOR

What is Compressor?
A compressor is a device that pressurize a working fluid, one of the basic aim of compressor is to compress the fluid and deliver it to a pressure which is higher than its original pressure.

PURPOSE

To provide air for combustion
To transport process fluid through pipeline To provide compressed air for diving pneumatic tools
To circulate process fluid through certain process

Types of compressor

Compressor selection

Capacity of compressor

- Capacity of Compressor basically indicated by following two parameter
I.Pressure

2. FAD

What is FAD- Capacity of a Compressor?

- The FAD is the volume of air drawn into a compressor from the atmosphere. After compression and cooling the air is returned to the original temperature but it is at high pressure
- Suppose atmospheric condition are Pa Ta and $\mathrm{Va}($ the FAD) and the compressed condition are P, V and T

$$
\begin{aligned}
& \frac{p V}{T}=\frac{p a V a}{T a} \\
& V a=\frac{p V T a}{p a T}
\end{aligned}
$$

Some definations

- Bore = Cylinder diameter.
- Stroke = Distance through which the piston moves.
- The two extreme positions of the piston are known as head-end and crank-end dead centers.
- Clearance Volume (Cl) : Volume occupied by the fluid when the piston is
- at head-end dead centre.
- Piston Displacement (PD) : Volume, a piston sweeps through.
- Compression Ratio (rv) : Ratio of cylinder volume with the piston at crank-end dead centre to the cylinder volume with the piston at head-end dead centre.
- Mechanical Efficiency : Brake work Indicated work , which gives an indication of the losses occurring between the piston and driving shaft.

Compressor Efficiency Definitions

Isothermal Efficiency

$$
\text { Isothermal Efficiency }=\quad \frac{\text { IsothermalPower }}{\text { Actual measured input power }}
$$

Isothermal power $(\mathrm{kW})=\mathrm{P}_{1} \times \mathrm{Q}_{1} \times \log _{\mathrm{e}} \mathrm{r} / 36.7$

$$
\begin{aligned}
& \mathrm{P}_{1}=\text { Absolute intake pressure } \mathrm{kg} / \mathrm{cm}^{2} \\
& \mathrm{Q}_{1}=\text { Free air delivered } \mathrm{m}^{3} / \mathrm{hr} . \\
& \mathrm{r}
\end{aligned}=\text { Pressure ratio } \mathrm{P}_{2} / \mathrm{P}_{1} .
$$

Compressor Efficiency Definitions

Volumetric Efficiency

Volumetric efficiency

Compressor Displacement

D	$=$	Cylinder bore, metre
L	$=$	Cylinder stroke, metre
S	$=$	Compressor speed rpm
$\%$	$=$	1 for single acting and
		2 for double acting cylinders

$\mathrm{n} \quad=\quad$ No. of cylinders

Reciprocating Compressors

- Types
I. Single acting

The working fluid compressed at only one side of the piston
2. Double acting

The working fluid compressed alternately on both sides of the piston.

Frame HN2T - I50NP

I Frame Assly.

2 Inner Head Assly. (LP)

3Cylinder Assly. (LP)
4Outer Head Assly. (LP)
5Inner Head Assly. (HP)

6Cylinder Assly. (HP)

7Outer Head Assly. (HP)

Frame, Cross Slide, Crank shaft and Connecting rod assembly
 I. Breather

22. Crosshead
23. Cross Head Nut
24. Connecting Rod
40.Big End Bearing
25. Connecting rod Bolt

28,29. Stud,Nut

Breather: A vent or valve to release pressure or to allow air to move freely around something.

Crosshead: Is a mechanism used in large and reciprocating compressors to eliminate sideways pressure on the piston.
Connecting Rod: connects the pistor the crank or crankshaft. Together with crank, they form a simple mechanism t converts reciprocating motion into rot: motion.

42. Belt wheel

Crank Case

13.Oil Seal Ring

I8. Gasket for Cover Flywheel end
34. Crank Shaft
25. Internal Circlip
24. Cross Head Pin
26. Cross Head Pin
43. Oil Cooler
8. Cover for Oil Pump end

4I. Oil Pump Assembly
44.Oil filter
12.Thrust washer

Oil Seal Ring :It prevent the oil the oil to flow further

Gasket: is a mechanical seal which fills the space between two or more mating surfaces, generally to prevent leakage from or into the joined objects while under compression.
Circlip: It is a type of fastener or retaining ring consisting of a semiflexible metal ring with open ends
 which can be snapped into place, into a machined groove on a dowel pin or other part to permit rotation but to prevent lateral movement. There are two basic types: I nternal and external, referring to whether they are fitted into a bore or over a shaft.

Cross Head Pin : It connects the piston to the connecting rod and provides a bearing for the connecting rod to pivot upon as the piston moves.

Thrust washer: Thrust washers are long-wearing flat bearings in the shape of a washer that transmit and resolve axial forces in rotating mechanisms to keep components aligned along a shaft.

Crank Pin/Gudgeon Pin: Connects the piston to the connecting rod and provides a bearing for the connecting rod to pivot upon as the piston moves

Piston Parts

I.Piston

Assembly
2.Rider Ring
3.Piston Ring
4.Sleeve for piston

Piston Ring: Piston rings, mounted on the pistons of lubricated or non-lube (oil free) compressors, are designed to ensure that the gas is compressed and to provide a seal between the piston and the cylinder.

Rider Ring:The function of rider rings, used mainly in oil free or mini-lube compressors, is to support or guide the piston and rod assembly and prevent contact between the piston and the cylinder (risk of seizure).

Working:

- Reciprocating compressors generally, employ piston-cylinder arrangement where displacement of piston in cylinder causes rise in pressure.

Sequence of operation

Intake

Between d and a gas flows into the cylinder at a pressure lower than p_{1} by the amount of pressure loss through the valve.

Compression

Starting at maximum cylinder volume, point a, slightly below the inlet pressure p, as the volume decreases the pressure rises until it reaches p_{2} at b; the discharge valve does not open until the pressure in the cylinder exceeds p_{2} by enough to overcome the valve spring force.

Discharge

Between b and c gas flows out a pressure higher than p_{2} by the amount of the pressure loss through the valves; at C, the point of minimum volume, the discharge valve is closed by its spring.

Expansion

From c to d, as the volume increases, the gas remaining in the clearance volume expands and its pressure falls; the suction valve does not open until the pressure falls sufficiently below p_{1} to overcome the sprig force.

Ideal indicator diagram

The total work interaction per cycle

$$
w=w_{a-b}+w_{b-c}+w_{c-d}+w_{d-a}
$$

\bullet

$$
\begin{aligned}
& =\frac{p_{b} v_{b}-p_{d} v_{a}}{1-n}+p_{2}\left(v_{c}-v_{b}\right)+\frac{p_{d} v_{d}-p_{c} v_{c}}{1-n}+p_{1}\left(v_{d}-v_{d}\right) \\
& =\frac{p_{2}\left(v_{b}-v_{c}\right)}{1-n}-p_{2}\left(v_{b}-v_{c}\right)+\frac{p_{1}\left(v_{d}-v_{a}\right)}{1-n}-p_{1}\left(v_{d}-v_{a}\right) \\
& =\frac{n}{1-n}\left[p_{2}\left(v_{b}-v_{c}\right)+p_{1}\left(v_{d}-v_{d}\right)\right] \\
& =\frac{n}{1-n}\left[p_{2} m_{f} v_{2}-p_{1} m_{f} v_{1}\right] \\
& =m_{f} \frac{n}{1-n}\left[p_{2} v_{2}-p_{1} v_{1}\right] \\
& =m_{f} \frac{n}{1-n} p_{1} v_{1}\left[\frac{p_{2} v_{2}}{p_{1} v_{1}}-1\right]
\end{aligned}
$$

Since $p v^{n}=$ constant

$$
\frac{p_{2} v_{2}}{p_{1} v_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{m-1}{n}}
$$

substituting this in the above expression

$$
w=m_{f} \cdot \frac{n}{1-n} p_{1} v_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{m}}-1\right]
$$

Chicago Pneumatic: For over a century Chicago Pneumatic has represented tough tools designed to make tough jobs easier.

Way back in 1889 John W. Duntley realized that construction workers in particular had a need for many tools that weren't yet available. He founded Chicago Pneumatic Tool Company and set out on a lifelong mission to provide all types of industries and companies the tools necessary for their success.
Over the years Duntley grew the company through product innovation, always insisting on product quality and reliability.
Manufactures of air \& gas compressors \& pneumatic portable tools like grinders demolition tools, pumps vibrators, rammers hammers, etc.

Decades of innovation

1901 Chicago Pneumatic Tool Company is incorporated, after Duntley persuades young steel magnate Charles M. Schwabto invest in the company

1925 CP seals an agreement to manufacture the Benz diesel engine, used in various racing cars in Europe at the time.

1930s Chicago Pneumatic construction and mining equipment is used in the building of the

Lincoln Tunnel, New York
Triborough Bridge, New York
Chicago subway system
Boulder Dam, Arizona
Grand Coulee Dam, Washington
Eight dams comprising the Tennessee Valley Authority flood control and power generation project
Golden Gate suspension bridge, San Francisco
1940s In response to war effort demands, CP develops the "hot dimpling machine," a device that heats rivets to 1,000 degrees Fahrenheit
1960s Chicago Pneumatic customizes tools for the production of new aircraft designs: the Boeing 737 and 747,
1987 Atlas Copco acquires Chicago Pneumatic Tool Company

Chicago Pneumatic Competition

- Elgi Equipment
- Ingersoll rand
- Revathi Cp

16.1 INTRODUCTION

Compressors are work absorbing devices which are used for increasing pressure of fluid at the expense of work done on fluid.

The compressors used for compressing air are called air compressors. Compressors are invariably used for all applications requiring high pressure air. Some of popular applications of compressor are, for driving pneumatic tools and air operated equipments, spray painting, compressed air engine, supercharging in internal combustion engines, material handling (for transfer of material), surface cleaning, refrigeration and air conditioning, chemical industry etc. Compressors are supplied with low pressure air (or any fluid) at inlet which comes out as high pressure air (or any fluid) at outlet, Fig. 16.1. Work required for increasing pressure of air is available from the prime mover driving the compressor. Generally, electric motor, internal combustion engine or steam engine, turbine etc. are used as prime movers. Compressors are similar to fans and blowers but differ in terms of pressure ratios. Fan is said to have pressure ratio up to 1.1 and blowers have pressure ratio between 1.1 and 4 while compressors have pressure ratios more than 4.

Fig. 16.1 Compressor
Compressors can be classified in the following different ways.
(a) Based on principle of operation: Based on the principle of operation compressors can be classified as,
(i) Positive displacement compressors
(ii) Non-positive displacement compressors

In positive displacement compressors the compression is realized by displacement of solid boundary and preventing fluid by solid boundary from flowing back in the direction of pressure gradient. Due to solid wall displacement these are capable of providing quite large pressure ratios. Positive displacement compressors can be further classified based on the type of mechanism used for compression. These can be
(i) Reciprocating type positive displacement compressors
(ii) Rotary type positive displacement compressors

Reciprocating compressors generally, employ piston-cylinder arrangement where displacement of piston in cylinder causes rise in pressure. Reciprocating compressors are capable of giving large pressure ratios but the mass handling capacity is limited or small. Reciprocating compressors may also be single acting compressor or double acting compressor. Single acting compressor has one delivery stroke per revolution while in double acting there are two delivery strokes per revolution of crank shaft. Rotary compressors employing positive displacement have a rotary part whose boundary causes positive displacement of fluid and thereby compression. Rotary compressors of this type are available in the names as given below;
(i) Roots blower
(ii) Vaned type compressors

Rotary compressors of above type are capable of running at higher speed and can handle large mass flow rate than reciprocating compressors of positive displacement type.

Non-positive displacement compressors, also called as steady flow compressors use dynamic action of solid boundary for realizing pressure rise. Here fluid is not contained in definite volume and subsequent volume reduction does not occur as in case of positive displacement compressors. Nonpositive displacement compressor may be of 'axial flow type' or 'centrifugal type' depending upon type of flow in compressor.
(b) Based on number of stages: Compressors may also be classified on the basis of number of stages. Generally, the number of stages depend upon the maximum delivery pressure. Compressors can be single stage or multistage. Normally maximum compression ratio of 5 is realized in single stage compressors. For compression ratio more than 5 the multi-stage compressors are used.
Typical values of maximum delivery pressures generally available from different types of compressor are,
(i) Single stage compressor, for delivery pressure up to 5 bar
(ii) Two stage compressor, for delivery pressure between 5 and 35 bar
(iii) Three stage compressor, for delivery pressure between 35 and 85 bar
(iv) Four stage compressor, for delivery pressure more than 85 bar
(c) Based on capacity of compressors: Compressors can also be classified depending upon the capacity of compressor or air delivered per unit time. Typical values of capacity for different compressors are given as;
(i) Low capacity compressors, having air delivery capacity of $0.15 \mathrm{~m}^{3} / \mathrm{s}$ or less
(ii) Medium capacity compressors, having air delivery capacity between 0.15 and $5 \mathrm{~m}^{3} / \mathrm{s}$.
(iii) High capacity compressors, having air delivery capacity more than $5 \mathrm{~m}^{3} / \mathrm{s}$.
(d) Based on highest pressure developed: Depending upon the maximum pressure available from compressor they can be classified as low pressure, medium pressure, high pressure and super high pressure compressors. Typical values of maximum pressure developed for different compressors are as under;
(i) Low pressure compressor, having maximum pressure up to 1 bar
(ii) Medium pressure compressor, having maximum pressure from 1 to 8 bar
(iii) High pressure compressor, having maximum pressure from 8 to 10 bar
(iv) Super high pressure compressor, having maximum pressure more than 10 bar.

16.2 RECIPROCATING COMPRESSORS

Reciprocating compressor has piston cylinder arrangement as shown in Fig. 16.2.

Fig. 16.2 Line diagram of reciprocating compressor
Reciprocating compressor has piston, cylinder, inlet valve, exit valve, connecting rod, crank, piston pin, crank pin and crank shaft. Inlet valve and exit valves may be of spring loaded type which get opened and closed due to pressure differential across them. Let us consider piston to be at top dead centre (TDC) and move towards bottom dead centre (BDC). Due to this piston movement from TDC to BDC suction pressure is created causing opening of inlet valve. With this opening of inlet valve and suction pressure the atmospheric air enters the cylinder.

Air gets into cylinder during this stroke and is subsequently compressed in next stroke with both inlet valve and exit valve closed. Both inlet valve and exit valves are of plate type and spring loaded so as to operate automatically as and when sufficient pressure difference is available to cause deflection in spring of valve plates to open them. After piston reaching BDC it reverses its motion and compresses the air inducted in previous stroke. Compression is continued till the pressure of air inside becomes sufficient to cause deflection in exit valve. At the moment when exit valve plate gets lifted the exhaust of compressed air takes place. This piston again reaches TDC from where downward piston movement is again accompanied by suction. This is how reciprocating compressor keeps on working as flow device. In order to counter for the heating of piston-cylinder arrangement during compression the provision of cooling the cylinder is there in the form of cooling jackets in the body. Reciprocating compressor described above has suction, compression and discharge as three prominent processes getting completed in two strokes of piston or one revolution of crank shaft.

16.3 THERMODYNAMIC ANALYSIS

Compression of air in compressor may be carried out following number of thermodynamic processes such as isothermal compression, polytropic compression or adiabatic compression. Figure 16.3 shows the thermodynamic cycle involved in compression. Theoretical cycle is shown neglecting clearance volume but in actual cycle clearance volume can not be negligible. Clearance volume is necessary in order to prevent collision of piston with cylinder head, accommodating valve mechanism etc. Compression process is shown by process $1-2,1-2^{\prime}, 1-2^{\prime \prime}$ following adiabatic, polytropic and isothermal processes.

On $p-V$ diagram process $4-1$ shows the suction process followed by compression during 1-2 and discharge through compressor is shown by process 2-3.

Air enters compressor at pressure p_{1} and is compressed up to p_{2}. Compression work requirement can be estimated from the area below the each compression process. Area on $p-V$ diagram shows that work requirement shall be minimum with isothermal process $1-2^{\prime \prime}$. Work requirement is maximum with process $1-2$ i.e. adiabatic process. As a designer one shall be interested in a compressor having minimum compression work requirement. Therefore, ideally compression should occur isothermally for minimum work input. In practice it is not possible to have isothermal compression because constancy of temperature

Fig. 16.3 Compression cycle on $\mathrm{p}-\mathrm{V}$ diagram
during compression can not be realized. Generally, compressors run at substantially high speed while isothermal compression requires compressor to run at very slow speed so that heat evolved during compression is dissipated out and temperature remains constant. Actually due to high speed running of compressor the compression process may be assumed to be near adiabatic or polytropic process following law of compression as $p V^{n}=C$ with value of ' n ' varying between 1.25 and 1.35 for air. Compression process following three processes is also shown on T-s diagram in Fig. 16.4. It is thus obvious that actual compression process should be compared with isothermal compression process. A mathematical parameter called isothermal efficiency is defined for quantifying the degree of deviation of actual compression process from ideal compression process. Isothermal efficiency is defined by the ratio of isothermal work and actual indicated work in reciprocating compressor.
\qquad

Fig. 16.4 Compression process on T-s diagram
Isothermal efficiency $=\frac{\text { Isothermal work }}{\text { Actual indicated work }}$
Practically, compression process is attempted to be closed to isothermal process by air/water cooling, spraying cold water during compression process. In case of multi-stage compression process the compression in different stages is accompanied by intercooling in between the stages.

Mathematically, for the compression work following polytropic process, $p V^{n}=C$. Assuming negligible clearance volume the cycle work done,

$$
\begin{aligned}
W_{c} & =\text { Area on } p \text { - } V \text { diagram } \\
& =\left[p_{2} V_{2}+\left(\frac{p_{2} V_{2}-p_{1} V_{1}}{n-1}\right)\right]-p_{1} V_{1} \\
& =\left(\frac{n}{n-1}\right)\left[p_{2} V_{2}-p_{1} V_{1}\right] \\
& =\left(\frac{n}{n-1}\right)\left(p_{1} V_{1}\right)\left[\frac{p_{2} V_{2}}{p_{1} V_{1}}-1\right] \\
W_{c} & =\left(\frac{n}{n-1}\right)\left(p_{1} V_{1}\right)\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right] \\
W_{c} & =\left(\frac{n}{n-1}\right)\left(m R T_{1}\right)\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right]
\end{aligned}
$$

or, $\quad W_{c}=\left(\frac{n}{n-1}\right) m R\left(T_{2}-T_{1}\right)$
In case of compressor having isothermal compression process, $n=1$, i.e. $p_{1} V_{1}=p_{1} V_{2}$

$$
W_{c, \text { iso }}=p_{2} V_{2}+p_{1} V_{1} \ln r-p_{1} V_{1}
$$

$$
W_{c, \text { iso }}=p_{1} V_{1} \ln r, \text { where } r=\frac{V_{1}}{V_{2}}
$$

In case of compressor having adiabatic compression process, $n=\gamma$

$$
W_{c, \text { adiabatic }}=\left(\frac{\gamma}{\gamma-1}\right) m R\left(T_{2}-T_{1}\right)
$$

or,

$$
W_{c, \text { adiabatic }}=m C_{p}\left(T_{2}-T_{1}\right)
$$

$$
W_{c, \text { adiabatic }}=m\left(h_{2}-h_{1}\right)
$$

Hence, isothermal efficiency,

$$
\eta_{\text {iso }}=\frac{p_{1} V_{1} \ln r}{\left(\frac{n}{n-1}\right)\left(p_{1} V_{1}\right)\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right]}
$$

The isothermal efficiency of a compressor should be close to 100% which means that actual compression should occur following a process close to isothermal process. For this the mechanism be derived to maintain constant temperature during compression process. Different arrangements which can be used are:
(i) Faster heat dissipation from inside of compressor to outside by use of fins over cylinder. Fins facilitate quick heat transfer from air being compressed to atmosphere so that temperature rise during compression can be minimized.
(ii) Water jacket may be provided around compressor cylinder so that heat can be picked by cooling water circulating through water jacket. Cooling water circulation around compressor regulates rise in temperature to great extent.
(iii) The water may also be injected at the end of compression process in order to cool the air being compressed. This water injection near the end of compression process requires special arrangement in compressor and also the air gets mixed with water and needs to be separated out before being used. Water injection also contaminates the lubricant film on inner surface of cylinder and may initiate corrosion etc. The water injection is not popularly used.
(iv) In case of multistage compression in different compressors operating serially, the air leaving one compressor may be cooled up to ambient state or somewhat high temperature before being injected into subsequent compressor. This cooling of fluid being compressed between two consecutive compressors is called intercooling and is frequently used in case of multistage compressors.
Considering clearance volume: With clearance volume the cycle is represented on Fig. 16.3 (b). The work done for compression of air polytropically can be given by the area enclosed in cycle 1-2-34. Clearance volume in compressors varies from 1.5% to 35% depending upon type of compressor.

$$
\begin{aligned}
W_{c, \text { with CV }} & =\text { Area1234 } \\
& =\left(\frac{n}{n-1}\right)\left(p_{1} V_{1}\right)\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right]-\left(\frac{n}{n-1}\right)\left(p_{4} V_{4}\right)\left[\left(\frac{p_{3}}{p_{4}}\right)^{\frac{(n-1)}{n}}-1\right]
\end{aligned}
$$

Here $\quad p_{1}=p_{4}, p_{2}=p_{3}$
\qquad

$$
\begin{aligned}
& W_{c, \text { with } C V}=\left(\frac{n}{n-1}\right)\left(p_{1} V_{1}\right)\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right]-\left(\frac{n}{n-1}\right)\left(p_{1} V_{4}\right) \cdot\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right] \\
& W_{c, \text { with } C V}=\left(\frac{n}{n-1}\right) p_{1} \cdot\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right] \cdot\left(V_{1}-V_{4}\right)
\end{aligned}
$$

In the cylinder of reciprocating compressor $\left(V_{1}-V_{4}\right)$ shall be the actual volume of air delivered per cycle. $V_{d}=V_{1}-V_{4}$. This $\left(V_{1}-V_{4}\right)$ is actually the volume of air inhaled in the cycle and delivered subsequently.

$$
W_{c, \text { with } C V}=\left(\frac{n}{n-1}\right) p_{1} V_{d}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}-1\right]
$$

If air is considered to behave as perfect gas then pressure, temperature, volume and mass can be inter related using perfect gas equation. The mass at state 1 may be given as m_{1}, mass at state 2 shall be m_{1}, but at state 3 after delivery mass reduces to m_{2} and at state 4 it shall be m_{2}.

So, at state $1, p_{1} V_{1}=m_{1} R T_{1}$
at state $2, p_{2} V_{2}=m_{1} R T_{2}$
at state $3, p_{3} V_{3}=m_{2} R T_{3}$ or, $p_{2} V_{3}=m_{2} R T_{3}$
at state $4, p_{4} V_{4}=m_{2} R T_{4}$, or $p_{1} V_{4}=m_{2} R T_{4}$
Ideally there shall be no change in temperature during suction and delivery i.e., $T_{4}=T_{1}$ and $T_{2}=T_{3}$. From earlier equation,

$$
W_{c, \text { with } C V}=\left(\frac{n}{n-1}\right) p_{1}\left(V_{1}-V_{4}\right)\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right]
$$

Temperature and pressure can be related as,

$$
\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}=\frac{T_{2}}{T_{1}}
$$

and $\quad\left(\frac{p_{4}}{p_{3}}\right)^{\frac{(n-1)}{n}}=\frac{T_{4}}{T_{3}} \Rightarrow\left(\frac{p_{1}}{p_{2}}\right)^{\frac{(n-1)}{n}}=\frac{T_{4}}{T_{3}}$
Substituting,

$$
W_{c, \text { with } C V}=\left(\frac{n}{n-1}\right)\left(m_{1} R T_{1}-m_{2} R T_{4}\right)\left[\frac{T_{2}}{T_{1}}-1\right]
$$

Substituting for constancy of temperature during suction and delivery.

$$
W_{c, \text { with } C V}=\left(\frac{n}{n-1}\right)\left(m_{1} R T_{1}-m_{2} R T_{1}\right)\left[\frac{T_{2}-T_{1}}{T_{1}}\right]
$$

or,

$$
W_{c, \text { with } C V}=\left(\frac{n}{n-1}\right)\left(m_{1}-m_{2}\right) R\left(T_{2}-T_{1}\right)
$$

Thus, $\left(m_{1}-m_{2}\right)$ denotes the mass of air sucked or delivered. For unit mass of air delivered the work done per kg of air can be given as,

$$
W_{c, \text { with } C V}=\left(\frac{n}{n-1}\right) R\left(T_{2}-T_{1}\right) \text {, per } \mathrm{kg} \text { of air }
$$

Thus from above expressions it is obvious that the clearance volume reduces the effective swept volume i.e. the mass of air handled but the work done per kg of air delivered remains unaffected.

From the cycle work estimated as above the theoretical power required for running compressor shall be as given ahead.

For single acting compressor running with N rpm, power input required, assuming clearance volume.

$$
\begin{aligned}
& \text { Power required }=\left[\left(\frac{n}{n-1}\right) p_{1}\left(V_{1}-V_{4}\right)\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right\}\right] \times N \\
& \text { for double acting compressor, power }=\left[\left(\frac{n}{n-1}\right) p_{1}\left(V_{1}-V_{4}\right)\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right\}\right] \times 2 N
\end{aligned}
$$

Volumetric efficiency: Volumetric efficiency of compressor is the measure of the deviation from volume handling capacity of compressor. Mathematically, the volumetric efficiency is given by the ratio of actual volume of air sucked and swept volume of cylinder. Ideally the volume of air sucked should be equal to the swept volume of cylinder, but it is not so in actual case. Practically the volumetric efficiency lies between 60 and 90%.

Volumetric efficiency can be overall volumetric efficiency and absolute volumetric efficiency as given below:

$$
\text { Overall volumetric efficiency }=\frac{\text { Volume of free air sucked into cylinder }}{\text { Swept volume of LP cylinder }}
$$

or

$$
\left.\begin{array}{l}
(\text { Volumetric efficiency } \\
\text { referred to free air conditions })
\end{array}=\frac{(\text { Mass of air delivered per unit time })}{\left(\begin{array}{l}
\text { Mass of air corresponding to swept } \\
\text { volume of LP cylinder per unit time } \\
\text { for free air conditions }
\end{array}\right.}\right)
$$

Here free air condition refers to the standard conditions. Free air condition may be taken as 1 atm or 1.01325 bar and $15^{\circ} \mathrm{C}$ or 288 K . Consideration for free air is necessary as otherwise the different compressors can not be compared using volumetric efficiency because specific volume or density of air varies with altitude. It may be seen that a compressor at datum level (sea level) shall deliver large mass than the same compressor at high altitude.

This concept is used for giving the capacity of compressor in terms of 'free air delivery' (FAD). "Free air delivery is the volume of air delivered being reduced to free air conditions." In case of air the free air delivery can be obtained using perfect gas equation as,
\qquad

$$
\frac{p_{a} \cdot V_{a}}{T_{a}}=\frac{p_{1}\left(V_{1}-V_{4}\right)}{T_{1}}=\frac{p_{2}\left(V_{2}-V_{3}\right)}{T_{2}}
$$

where subscript a or p_{a}, V_{a}, T_{a} denote properties at free air conditions
or,

$$
V_{a}=\frac{p_{1} \cdot T_{a} \cdot\left(V_{1}-V_{4}\right)}{p_{a} \cdot T_{1}}=\text { FAD per cycle. }
$$

This volume V_{a} gives 'free air delivered' per cycle by the compressor.
Absolute volumetric efficiency can be defined, using NTP conditions in place of free air conditions.

$$
\begin{aligned}
\text { Absolute volumetric efficiency } & =\frac{\text { Volume of air sucked into cylinder at NTP }}{\begin{array}{c}
\text { Swept volume of LP cylinder }
\end{array}} \\
& =\frac{\text { (Mass of air delivered per unit time) }}{\binom{\text { Mass of air corresponding to swept volume }}{\text { of LP cylinder per unit time estimated at NTP }}}
\end{aligned}
$$

Thus, volumetric efficiency referred to free air conditions.

$$
\begin{aligned}
\eta_{\text {vol. }} & =\frac{\text { Volume of air sucked referred to free air conditions (FAD) }}{\text { Swept volume }} \\
& =\frac{V_{a}}{\left(V_{1}-V_{3}\right)} \\
& =\frac{p_{1} T_{a}\left(V_{1}-V_{4}\right)}{p_{a} T_{1}\left(V_{1}-V_{3}\right)} \\
\eta_{\text {vol. }} & =\left(\frac{p_{1} T_{a}}{p_{a} T_{1}}\right) \cdot\left\{\frac{\left(V_{s}+V_{c}\right)-V_{4}}{V_{s}}\right\} .
\end{aligned}
$$

Here, $\quad V_{s}$ is swept volume, $V_{s}=V_{1}-V_{3}$
and $\quad V_{c}$ is clearance volume, $V_{c}=V_{3}$

$$
\eta_{\text {vol. }}=\left(\frac{p_{1} T_{a}}{p_{a} T_{1}}\right)\left\{1+\left(\frac{V_{c}}{V_{s}}\right)-\left(\frac{V_{4}}{V_{s}}\right)\right\}
$$

Here,

$$
\begin{aligned}
\frac{V_{4}}{V_{s}} & =\frac{V_{4}}{V_{c}} \cdot \frac{V_{c}}{V_{s}} \\
& =\left(\frac{V_{4}}{V_{3}} \cdot \frac{V_{c}}{V_{s}}\right)
\end{aligned}
$$

Let the ratio of clearance volume to swept volume be given by C.i.e. $\frac{V_{c}}{V_{s}}=C$.

$$
\eta_{\text {vol. }}=\left(\frac{p_{1} T_{a}}{p_{a} T_{1}}\right) \cdot\left\{1+C-C \cdot\left(\frac{V_{4}}{V_{3}}\right)\right\}
$$

or,

$$
\eta_{\text {vol. }}=\left(\frac{p_{1} T_{a}}{p_{a} T_{1}}\right) \cdot\left\{1+C-C \cdot\left(\frac{p_{2}}{p_{1}}\right)^{1 / n}\right\}
$$

Volumetric efficiency depends on ambient pressure and temperature, suction pressure and temperature, ratio of clearance to swept volume, and pressure limits. Volumetric efficiency increases with decrease in pressure ratio in compressor.

16.4 ACTUAL INDICATOR DIAGRAM

Theoretical indicator diagram of reciprocating compressor as shown in earlier discussion refers to the ideal state of operation of compressor. The practical limitations, when considered in the indicator diagram yield actual indicator diagram as shown in Fig. 16.5.

Fig. 16.5 Actual indicator diagram
Actual $p-V$ diagram varies from theoretical $p-V$ diagram due to following: Compressor has mechanical types of valves so the instantaneous opening and closing of valves can never be achieved. Also during suction and discharge there occurs throttling due to reduction in area of flow across inlet and exit valve. 1234 shows theoretical indicator diagram and actual indicator diagram is shown by $12^{\prime} 34^{\prime}$ on $p-V$ diagram. Compression process $1-2$ ends at state 2 . At state 2 exit valve should open instantaneously which does not occur and also due to restricted opening there shall be throttling causing drop in pressure. Due to time lag in opening of exit valve compression process is continued up to 2^{\prime}. Thus, additional work is done during delivery from compressor as shown by hatched area $22^{\prime} 3$.

After delivery stroke the inlet valve should theoretically open at 4 but does not open at this point instead is opened fully at 4^{\prime}. Shift from state 4 to 4^{\prime} is there due to inertia in opening of valve throttling, gradual opening, and friction losses etc. Thus it is seen that during suction there occurs intake depression as shown in actual indicator diagram. Work required as shown in actual indicator diagram is more than theoretical diagram. In order to have compressor close to ideal compressor with minimum losses it shall be desired to have actual indicator diagram close to theoretical diagram, which requires less inertia and efficient operation of valves. Friction losses in pipings and across valves should be minimized.

16.5 MULTISTAGE COMPRESSION

Multistage compression refers to the compression process completed in more than one stage i.e. a part of compression occurs in one cylinder and subsequently compressed air is sent to subsequent cylinders for further compression. In case it is desired to increase the compression ratio of compressor then multi-stage compression becomes inevitable. If we look at the expression for volumetric efficiency then it shows that the volumetric efficiency decreases with increase in pressure ratio. This aspect can also be explained using p - V representation shown in Fig. 16.6.

Fig. 16.6 Multistage compression
Figure 16.6 a, shows that by increasing pressure ratio i.e. increasing delivery pressure the volume of air being sucked goes on reducing as evident from cycles 1234 and $12^{\prime} 3^{\prime} 4^{\prime}$. Let us increase pressure from p_{2} to $p_{2^{\prime}}$ and this shall cause the suction process to get modified from $4-1$ to $4^{\prime}-1$. Thus volume sucked reduces from $\left(V_{1}-V_{4}\right)$ to $\left(V_{1}-V_{4^{\prime}}\right)$ with increased pressure ratio from $\left(\frac{p_{2}}{p_{1}}\right)$ to $\left(\frac{p_{2}{ }^{\prime}}{p_{1}}\right)$, thereby reducing the free air delivery while swept volume remains same.

Therefore, the volumetric efficiency reduces with increasing pressure ratio in compressor with single stage compression. Also for getting the same amount of free air delivery the size of cylinder is to be increased with increasing pressure ratio. The increase in pressure ratio also requires sturdy structure from mechanical strength point of view for withstanding large pressure difference.

The solution to number of difficulties discussed above lies in using the multistage compression where compression occurs in parts in different cylinders one after the other. Figure 16.6 b, shows the multistage compression occurring in two stages. Here first stage of compression occurs in cycle 12671 and after first stage compression partly compressed air enters second stage of compression and occurs in cycle 2345 . In case of multistage compression the compression in first stage occurs at low temperature and subsequent compression in following stages occurs at higher temperature. The compression work requirement depends largely upon the average temperature during compression. Higher average temperature during compression has larger work requirement compared to low temperature so it is always desired to keep the low average temperature during compression.

Apart from the cooling during compression the temperature of air at inlet to compressor can be reduced so as to reduce compression work. In multistage compression the partly compressed air leaving first stage is cooled up to ambient air temperature in intercooler and then sent to subsequent cylinder (stage) for compression. Thus, intercoolers when put between the stages reduce the compression work and compression is called intercooled compression. Intercooling is called perfect when temperature at
inlet to subsequent stages of compression is reduced to ambient temperature. Figure 16.6 c, shows multistage (two stage) intercooled compression. Intercooling between two stages causes temperature drop from 2 to 2^{\prime} i.e. discharge from first stage (at 2) is cooled up to the ambient temperature state (at 2^{\prime}) which lies on isothermal compression process $1-2^{\prime}-3^{\prime \prime}$. In the absence of intercooling the discharge from first stage shall enter at 2 . Final discharge from second stage occurs at 3^{\prime} in case of intercooled compression compared to discharge at 3 in case of non-intercooled compression. Thus, intercooling offers reduced work requirement by the amount shown by area $22^{\prime} 3^{\prime} 3$ on p - V diagram. If the intercooling is not perfect then the inlet state to second/subsequent stage shall not lie on the isothermal compression process line and this state shall lie between actual discharge state from first stage and isothermal compression line.

Fig. 16.7 Schematic for two-stage compression (Multistage compressor)
Figure 16.7 shows the schematic of multi stage compressor (double stage) with intercooler between stages. $T-s$ representation is shown in Fig. 16.8. The total work requirement for running this shall be algebraic summation of work required for low pressure (LP) and high pressure (HP) stages. The size of HP cylinder is smaller than LP cylinder as HP cylinder handles high pressure air having smaller specific volume.

Fig. 16.8 T-s representation of multistage compression
Mathematical analysis of multistage compressor is done with following assumptions:
(i) Compression in all the stages is done following same index of compression and there is no pressure drop in suction and delivery pressures in each stage. Suction and delivery pressure remains constant in the stages.
(ii) There is perfect intercooling between compression stages.
(iii) Mass handled in different stages is same i.e. mass of air in LP and HP stages are same.
(iv) Air behaves as perfect gas during compression.

From combined $p-V$ diagram the compressor work requirement can be given as,
Work requirement in LP cylinder, $W_{\mathrm{LP}}=\left(\frac{n}{n-1}\right) p_{1} V_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(n-1)}{n}}-1\right\}$
Work requirement in HP cylinder, $W_{\mathrm{HP}}=\left(\frac{n}{n-1}\right) p_{2} V_{2}\left\{\left(\frac{p_{2^{\prime}}}{p_{2}}\right)^{\frac{(n-1)}{n}}-1\right\}$
For perfect intercooling, $p_{1} V_{1}=p_{2} V_{2}$, and

$$
W_{\mathrm{HP}}=\left(\frac{n}{n-1}\right) p_{2} V_{2^{\prime}}\left\{\left(\frac{p_{2^{\prime}}}{p_{2}}\right)^{\frac{(n-1)}{n}}-1\right\}
$$

Therefore, total work requirement, $W_{c}=W_{\mathrm{LP}}+W_{\mathrm{HP}}$, for perfect intercooling

$$
\begin{aligned}
W_{c} & =\left(\frac{n}{n-1}\right)\left[p_{1} V_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}-1\right\}+p_{2} V_{2^{\prime}}\left\{\left(\frac{p_{2^{\prime}}}{p_{2}}\right)^{\frac{n-1}{n}}-1\right\}\right] \\
& =\left(\frac{n}{n-1}\right)\left[p_{1} V_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}-1\right\}+p_{1} V_{1}\left\{\left(\frac{p_{2^{\prime}}}{p_{2}}\right)^{\frac{n-1}{n}}-1\right\}\right] \\
W_{c} & =\left(\frac{n}{n-1}\right) p_{1} V_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}+\left(\frac{p_{2^{\prime}}}{p_{2}}\right)^{\frac{n-1}{n}}-2\right]
\end{aligned}
$$

Power required can be given in HP as below, considering speed to be $N \mathrm{rpm}$.

$$
\text { Power }=\frac{W_{c} \times N}{75 \times 60}, \mathrm{HP}
$$

If we look at compressor work then it shows that with the initial and final pressures p_{1} and $p_{2^{\prime}}$ remaining same the intermediate pressure p_{2} may have value floating between p_{1} and $p_{2^{\prime}}$ and change the work requirement W_{c}. Thus, the compressor work can be optimized with respect to intermediate pressure p_{2}. Mathematically, it can be differentiated with respect to p_{2}.

$$
\begin{aligned}
& \frac{d W_{c}}{d p_{2}}=\frac{d}{d p_{2}}\left[\left(\frac{n}{n-1}\right) p_{1} V_{1}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}+\left(\frac{p_{2^{\prime}}}{p_{2}}\right)^{\frac{n-1}{n}}-2\right\}\right] \\
& \frac{d W_{c}}{d p_{2}}=\left(\frac{n}{n-1}\right) p_{1} V_{1} \cdot \frac{d}{d p_{2}}\left\{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}+\left(\frac{p_{2^{\prime}}}{p_{2}}\right)^{\frac{n-1}{n}}-2\right\}
\end{aligned}
$$

$$
\frac{d W_{c}}{d p_{2}}=\left(\frac{n}{n-1}\right) p_{1} V_{1}\left\{\left(\frac{n-1}{n}\right) \cdot p_{1}^{\frac{1-n}{n}} \cdot p_{2}^{\frac{-1}{n}}-\left(\frac{n-1}{n}\right) \cdot p_{2^{n^{n}}}^{\frac{n-1}{\frac{1-2 n}{n}}} p_{2}^{n}\right\}
$$

Equating,

$$
\frac{d W_{c}}{d p_{2}}=0 \text { yields. }
$$

$$
p_{1}^{\frac{1-n}{n}} \cdot p_{2}^{\frac{-1}{n}}=p_{2^{\prime}}^{\frac{n-1}{n}} \cdot p_{2}^{\frac{1-2 n}{n}}
$$

or

$$
p_{2}^{\frac{-2+2 n}{n}}=p_{2^{\prime}}^{\frac{n-1}{n}} \cdot p_{1}^{\frac{n-1}{n}}
$$

or

$$
p_{2}^{2\left(\frac{n-1}{n}\right)}=\left(p_{1} \cdot p_{2^{\prime}}\right)\left(\frac{n-1}{n}\right) \text { or, } \quad p_{2}^{2}=p_{1} \cdot p_{2^{\prime}}, \quad p_{2}=\sqrt{p_{1} \cdot p_{2^{\prime}}}
$$

or

$$
\frac{p_{2}}{p_{1}}=\frac{p_{2^{\prime}}}{p_{2}} \text { or } \frac{p_{2}}{p_{1}}=\left(\frac{p_{2^{\prime}}}{p_{1}}\right)^{1 / 2}
$$

Pressure ratio in Ist stage $=$ Pressure ratio in IInd stage
Thus, it is established that the compressor work requirement shall be minimum when the pressure ratio in each stage is equal.

In case of multiple stages, say i number of stages, for the delivery and suction pressures of p_{i+1} and p_{1} the optimum stage pressure ratio shall be,

Optimum stage pressure ratio $=\left(\frac{p_{i+1}}{p_{1}}\right)^{1 / i}$ for pressures at stages being $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, \cdots$, p_{i-1}, p_{i}, p_{i+1}

Minimum work required in two stage compressor can be given by

$$
W_{c, \min }=\left(\frac{n}{n-1}\right) p_{1} V_{1} \cdot 2\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}-1\right]
$$

For i number of stages, minimum work,

$$
\begin{gathered}
W_{c, \min }=\left(\frac{n}{n-1}\right) p_{1} V_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}+\left(\frac{p_{3}}{p_{2}}\right)^{\frac{n-1}{n}}+\left(\frac{p_{4}}{p_{3}}\right)^{\frac{n-1}{n}}+\cdots+\left(\frac{p_{i+1}}{p_{i}}\right)^{\frac{n-1}{n}}-i\right] \\
W_{c, \text { min }}=i \cdot\left(\frac{n}{n-1}\right) p_{1} V_{1}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}-1\right]
\end{gathered}
$$

or,

$$
W_{c, \min }=i \cdot\left(\frac{n}{n-1}\right) p_{1} V_{1}\left[\left(\frac{p_{i+1}}{p_{i}}\right)^{\frac{n-1}{n \cdot i}}-1\right]
$$

It also shows that for optimum pressure ratio the work required in different stages remains same for the assumptions made for present analysis. Due to pressure ratio being equal in all stages the temperature ratios and maximum temperature in each stage remains same for perfect intercooling.
\qquad
Cylinder dimensions: In case of multistage compressor the dimension of cylinders can be estimated basing upon the fact that the mass flow rate of air across the stages remains same. For perfect intercooling the temperature of air at suction of each stage shall be same.

If the actual volume sucked during suction stroke is $V_{1}, V_{2}, V_{3} \ldots$, for different stages then by perfect gas law, $p_{1} V_{1}=R T_{1}, p_{2} V_{2}=R T_{2}, p_{3} V_{3}=R T_{3}$

For perfect intercooling $\left(T_{1}=T_{2}=T_{3}=\ldots\right)$ so

$$
p_{1} V_{1}=R T_{1}, p_{2} V_{2}=R T_{1}, p_{3} V_{3}=R T_{1}
$$

or

$$
p_{1} V_{1}=p_{2} V_{2}=p_{3} V_{3}=\ldots
$$

If the volumetric efficiency of respective stages in $\eta_{V_{1}}, \eta_{V_{2}}, \eta_{V_{3}}, \ldots$
Then theoretical volume of cylinder $1, V_{1, \text { th }}=\frac{V_{1}}{\eta_{V_{1}}} ; V_{1}=\eta_{V_{1}} \cdot V_{1, \text { th }}$
cylinder 2,

$$
V_{2, \text { th }}=\frac{V_{2}}{\eta_{V_{2}}} ; V_{2}=\eta_{V 2} \cdot V_{2, \text { th }}
$$

cylinder 3 ,

$$
V_{3, \mathrm{th}}=\frac{V_{3}}{\eta_{V_{3}}} ; V_{3}=\eta_{V 3} \cdot V_{3, \text { th }}
$$

Substituting,

$$
p_{1} \cdot \eta_{V 1} \cdot V_{1, \mathrm{th}}=p_{2} \cdot \eta_{V 2} \cdot V_{2, \mathrm{th}}=p_{3} \cdot \eta_{V 3} \cdot V_{3, \mathrm{th}}=\ldots
$$

Theoretical volumes of cylinder can be given using geometrical dimensions of cylinder as diameters $D_{1}, D_{2}, D_{3}, \ldots$ and stroke lengths $L_{1}, L_{2}, L_{3}, \ldots$
or

$$
\begin{aligned}
& V_{1, \mathrm{th}}=\frac{\pi}{4} D_{1}^{2} \cdot L_{1} \\
& V_{2, \mathrm{th}}=\frac{\pi}{4} D_{2}^{2} \cdot L_{2} \\
& V_{3, \mathrm{th}}=\frac{\pi}{4} D_{3}^{2} \cdot L_{3}
\end{aligned}
$$

or,

$$
\begin{gathered}
p_{1} \cdot \eta_{V i} \cdot \frac{\pi}{4} D_{1}^{2} L_{1}=p_{2} \cdot \eta_{V 2} \cdot \frac{\pi}{4} D_{2}^{2} L_{2}=p_{3} \cdot \eta_{V 3} \cdot \frac{\pi}{4} D_{3}^{2} \cdot L_{3}=\ldots \\
p_{1} \eta_{V 1} \cdot D_{1}^{2} L_{1}=p_{2} \cdot \eta_{V 2} \cdot D_{2}^{2} \cdot L_{2}=p_{3} \cdot \eta_{V 3} \cdot D_{3}^{2} \cdot L_{3}=\ldots
\end{gathered}
$$

If the volumetric efficiency is same for all cylinders, i.e. $\eta_{V 1}=\eta_{V 2}=\eta_{V 3}=\ldots$ and stroke for all cylinder is same i.e. $L_{1}=L_{2}=L_{3}=\ldots$

Then,

$$
D_{1}^{2} p_{1}=D_{2}^{2} p_{2}=D_{3}^{2} p_{3}=\ldots
$$

These generic relations may be used for getting the ratio of diameters of cylinders of multistage compression.

Energy balance: Energy balance may be applied on the different components constituting multistage compression.
\qquad
For LP stage the steady flow energy equation can be written as below:

$$
\begin{aligned}
m \cdot h_{1}+W_{\mathrm{LP}} & =m h_{2}+Q_{\mathrm{LP}} \\
Q_{\mathrm{LP}} & =W_{\mathrm{LP}}-m\left(h_{2}-h_{1}\right) \\
Q_{\mathrm{LP}} & =W_{\mathrm{LP}}-m C_{p}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

Fig. 16.9
For intercooling (Fig. 16.10) between LP and HP stage steady flow energy equation shall be;

$$
m h_{2}=m h_{2^{\prime}}+Q_{\mathrm{Int}}
$$

or,

$$
\begin{aligned}
& Q_{\mathrm{Int}}=m\left(h_{2}-h_{2^{\prime}}\right) \\
& Q_{\mathrm{Int}}=m C_{p}\left(T_{2}-T_{2^{\prime}}\right)
\end{aligned}
$$

Fig. 16.10
For HP stage (Fig. 16.11) the steady flow energy equation yields.

$$
\begin{aligned}
m h_{2^{\prime}}+W_{\mathrm{HP}} & =m h_{3^{\prime}}+Q_{\mathrm{HP}} \\
Q_{\mathrm{HP}} & =W_{\mathrm{HP}}+m\left(h_{2^{\prime}}-h_{3^{\prime}}\right) \\
Q_{\mathrm{HP}} & =W_{\mathrm{HP}}+m C_{p}\left(T_{2^{\prime}}-T_{3^{\prime}}\right)=W_{\mathrm{HP}}-m C_{p}\left(T_{3}^{\prime}-T_{2}\right)
\end{aligned}
$$

Fig. 16.11
In case of perfect intercooling and optimum pressure ratio, $T_{2^{\prime}}=T_{1}$ and $T_{2}=T_{3^{\prime}}$
Hence for these conditions,

$$
Q_{\mathrm{LP}}=W_{\mathrm{LP}}-m C_{p}\left(T_{2}-T_{1}\right)
$$

$$
\begin{aligned}
& Q_{\mathrm{Int}}=m C_{p}\left(T_{2}-T_{1}\right) \\
& Q_{\mathrm{HP}}=W_{\mathrm{HP}}-m C_{p}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

Total heat rejected during compression shall be the sum of heat rejected during compression and heat extracted in intercooler for perfect intercooling.

Heat rejected during compression for polytropic process $=\left(\frac{\gamma-n}{\gamma-1}\right) \times$ Work

16.6 CONTROL OF RECIPROCATING COMPRESSORS

Output from the compressors can be controlled by different measures which regulate the compressor output. In practical applications the compressors are fitted with air receiver to store the high pressure air and supply as and when required. Therefore, the compressors are run only for the duration required to maintain the limiting pressure inside receiver. When the pressure inside receiver starts dropping down then the compressor again starts supplying compressed air till the level is restored. Different ways for this control are based on throttle, clearance, blow off control and speed control.
(i) Throttle control has the regulation of opening/closing of inlet valve so that the quantity of air entering can be varied. With partial opening of inlet valve throttling occurs at valve and quantity of air entering is reduced while the pressure ratio gets increased.
(ii) Clearance control is the arrangement in which the clearance volume is increased when pressure ratio exceeds the limit. For this cylinder has clearance openings which are closed by spring loaded valves. Whenever pressure exceeds, then the clearance openings get opened and the increased clearance volume reduces maximum pressure.
(iii) Blow-off control has spring loaded safety valve or by pass valve for blowing out excess air in receiver. After release of excess air automatically the valve gets closed on its own.
(iv) Speed of compressor can also be controlled by regulating the prime mover, thereby regulating compressor output. Thus, compressor is run on variable speed for its' control.

16.7 RECIPROCATING AIR MOTOR

Air motors are actually prime movers run using the compressed air. It is used extensively in the applications where electric motor/IC engine/Gas turbine etc. can not be used due to fire hazard, specially in coal/oil mining applications. Apart from use of air motors in coal/oil mines these are also used for running pneumatic tools in workshops and manufacturing/assembly lines. Air motors have a reciprocating piston-cylinder arrangement where compressed air is admitted in cylinder with inlet valve open for limited period in suction stroke and this causes piston movement to yield shaft work. Thus air motors are reverse of air compressors. Schematic for air motor and $p-V$ diagram for cycle used is shown in Fig. 16.12.

Compressed air enters the cylinder up to state 1 and expands up to state 2 . Expansion process is generally polytropic and yields expansion work. Expansion is terminated even before the atmospheric pressure is reached because in later part of expansion the positive work is less than negative work. The exhaust valve opens causing drop in pressure from 2 to 3 . Exhaust pressure is slightly more or nearly equal to atmospheric pressure. The exhaust of air occurs at constant pressure up to state 4 where the closing of exhaust valve occurs. The inlet valve is opened at state 5 causing sudden rise in pressure upto state 6 after which piston displacement begins and is continued with compressed air inlet up to state 1 after which expansion occurs with inlet valve closed. Here point of cut-off is at state 1 which can be

10

Fuels and Combustion

10.1 INTRODUCTION

Every real life system requires energy input for its' performance. Energy input may be in the form of heat. Now question arises from where shall we get heat? Traditionally heat for energy input can be had from the heat released by fuel during combustion process. Fuels have been provided by nature and the combustion process provides a fluid medium at elevated temperature. During combustion the energy is released by oxidation of fuel elements such as carbon C , hydrogen H_{2} and sulphur S , i.e. high temperature chemical reaction of these elements with oxygen O_{2} (generally from air) releases energy to produce high temperature gases. These high temperature gases act as heat source.

In this chapter the detailed study of fuels and their combustion is being made.
Air fuel ratio: It refers to the ratio of amount of air in combustion reaction with the amount of fuel. Mathematically, it can be given by the ratio of mass of air and mass of fuel.

$$
A F=\frac{\text { Mass of air }}{\text { Mass of fuel }}=\left(\frac{\text { Molecular wt. of air } \times \text { no. of moles of air }}{\text { Molecular wt. of fuel } \times \text { no. of moles of fuel }}\right)
$$

Fuel-air ratio is inverse of Air-fuel ratio. Theoretical air-fuel ratio can be estimated from stoichiometric combustion analysis for just complete combustion.

Equivalence ratio: It is the ratio of actual fuel-air ratio to the theoretical fuel-air ratio for complete combustion. Fuel-air mixture will be called lean mixture when equivalence ratio is less than unity while for equivalence ratio value being greater than unity the mixture will be rich mixture.

Theoretical air: Theoretical amount of air refers to the minimum amount of air that is required for providing sufficient oxygen for complete combustion of fuel. Complete combustion means complete reaction of oxygen present in air with $\mathrm{C}, \mathrm{H}_{2}, \mathrm{~S}$ etc. resulting into carbon dioxide, water, sulphur dioxide, nitrogen with air as combustion products. At the end of complete reaction there will be no free oxygen in the products. This theoretical air is also called "stoichiometric air".

Excess air: Any air supplied in excess of "theoretical air" is called excess air. Generally excess air is 25 to 100% to ensure better and complete combustion.

Flash point and Fire point: Flash point refers to that temperature at which vapour is given off from liquid fuel at a sufficient rate to form an inflammable mixture but not at a sufficient rate to support continuous combustion.

Fire point refers to that temperature at which vaporization of liquid fuel is sufficient enough to provide for continuous combustion.

These temperatures depend not only on the fuel characteristics but also on the rate of heating, air movement over fuel surface and means of ignition. These temperatures are specified in reference to certain standard conditions. Although flash point and fire point temperatures are defined in relation with ignition but these temperatures are not measure of ignitability of fuel but of the initial volatility of fuel.

Adiabatic flame temperature: Adiabatic flame temperature refers to the temperature that could be attained by the products of combustion when the combustion reaction is carried out in limit of adiabatic operation of combustion chamber. Limit of adiabatic operation of combustion chamber means that in the absence of work, kinetic and potential energies the energy released during combustion shall be carried by the combustion products with minimum or no heat transfer to surroundings. This is the maximum temperature which can be attained in a combustion chamber and is very useful parameter for designers. Actual temperature shall be less than adiabatic flame temperature due to heat transfer to surroundings, incomplete combustion and dissociation etc.

Wet and dry analysis of combustion: Combustion analysis when carried out considering water vapour into account is called "wet analysis" while the analysis made on the assumption that vapour is removed after condensing it, is called "dry analysis".

Volumetric and gravimetric analysis: Combustion analysis when carried out based upon percentage by volume of constituent reactants and products is called volumetric analysis.

Combustion analysis carried out based upon percentage by mass of reactants and products is called gravimetric analysis.

Pour point: It refers to the lowest temperature at which liquid fuel flows under specified conditions.

Cloud point: When some petroleum fuels are cooled, the oil assumes cloudy appearance. This is due to paraffin wax or other solid substances separating from solution. The temperature at which cloudy appearance is first evident is called cloud point.

Composition of air: Atmospheric air is considered to be comprising of nitrogen, oxygen and other inert gases. For combustion calculations the air is considered to be comprising of nitrogen and oxygen in following proportions. Molecular weight of air is taken as 29 .

Composition of air by mass $=$ Oxygen $(23.3 \%)+$ Nitrogen (76.7%)
Composition of air by volume $=$ Oxygen $(21 \%)+$ Nitrogen (79%)
Enthalpy of combustion: Enthalpy of combustion of fuel is defined as the difference between the enthalpy of the products and enthalpy of reactants when complete combustion occurs at given temperature and pressure. It may be given as higher heating value or lower heating value. Higher heating value (HHV) of fuel is the enthalpy of combustion when all the water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ formed during combustion is in liquid phase. Lower heating value (LHV) of fuel refers to the enthalpy of combustion when all the water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ formed during combustion is in vapour form. The lower heating value will be less than higher heating value by the amount of heat required for evaporation of water.

HHV $=$ LHV + (Heat required for evaporation of water)
It is also called calorific value of fuel and is defined as the number of heat units liberated when unit mass of fuel is burnt completely in a calorimeter under given conditions.

Enthalpy of formation: Enthalpy of formation of a compound is the energy released or absorbed when compound is formed from its elements at standard reference state. Thus enthalpy of formation shall equal heat transfer in a reaction during which compound is formed from its' elements at standard reference state. Enthalpy of formation will have positive (+ ve) value if formation is by an endothermic reaction and negative (-ve) value if formation is by an exothermic reaction.

Standard reference state: It refers to thermodynamic state at which the enthalpy datum can be set for study of reacting systems. At standard reference state, zero value is assigned arbitrarily to the enthalpy of stable elements. Generally, standard reference state is taken as $25^{\circ} \mathrm{C}$ and 1 atm ,
i.e. $\quad T_{\text {reff }}=25^{\circ} \mathrm{C}=298.15 \mathrm{~K}, p_{\text {ref }}=1 \mathrm{~atm}$

Dissociation: It refers to the combustion products getting dissociated and thus absorbing some of energy. Such as, the case of carbon dioxide getting formed during combustion and subsequently getting dissociated can be explained as below,

$$
\text { Combustion: } \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\text { Heat }
$$

Dissociation: Heat $+\mathrm{CO}_{2} \rightarrow \mathrm{C}+\mathrm{O}_{2}$
Thus generally, dissociation has inherent requirement of high temperature and heat.

10.2 TYPES OF FUELS

'Fuel' refers to a combustible substance capable of releasing heat during its combustion. In general fuels have carbon, hydrogen and sulphur as the major combustible chemical elements. Sulphur is found to be relatively less contributor to the total heat released during combustion. Fuels may be classified as solid, liquid and gaseous fuel depending upon their state.

Solid fuel: Coal is the most common solid fuel. Coal is a dark brown/black sedimentary rock derived primarily from the unoxidized remains of carbon-bearing plant tissues. It can be further classified into different types based upon the composition. Composition can be estimated using either "proximate analysis" or by "ultimate analysis". Proximate analysis is the one in which the individual constituent element such as $\mathrm{C}, \mathrm{H}_{2}, \mathrm{~S}, \mathrm{~N}_{2}$ etc. are not determined rather only fraction of moisture, volatile matter, ash, carbon etc. are determined. Thus proximate analysis is not exact and gives only some idea about the fuel composition. Proximate analysis of coal gives, various constituents in following range, Moisture $3-30 \%$, Volatile matter 3-50\%, Ash 2-30\% and Fixed carbon 16-92\%.

In "ultimate analysis" the individual elements such as $\mathrm{C}, \mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{~S}$ and ash etc. present in the fuel are determined on mass basis. Thus, it gives relative amounts of chemical elements constituting fuel. In general the percentage by mass of different elements in coal lies in the following range:

Carbon	$:$	50 to 95%
Hydrogen	$:$	2 to 50%
Oxygen	$:$	2 to 40%
Nitrogen	$:$	0.5 to 3%
Sulphur	$:$	0.5 to 7%
Ash	$:$	2 to 30%

Different types of coal available are listed in the table hereunder. These are typical values for particular types of coal samples and may change for different types of coal.

Table 10.1 Different types of coal

$S l$. No.	Type	\% by mass		Ultimate analysis, \% by mass					Lower calorific value, kcal/kg
		Moisture	Volatile matter in dry coal	C	H_{2}	O_{2}	$N_{2}+S_{2}$	Ash	
1.	Peat	20	65	43.70	6.42	44.36	1.52	4.00	3200
2.	Lignite	15	50	56.52	5.72	31.89	1.62	4.25	2450
3.	Bituminous coal	2	25	74.00	5.98	13.01	2.26	4.75	7300
4.	Anthracite coal	1	4	90.27	3.30	2.32	1.44	2.97	7950

Liquid fuels: Fuels in liquid form are called liquid fuels. Liquid fuels are generally obtained from petroleum and its by-products. These liquid fuels are complex mixture of different hydrocarbons, and obtained by refining the crude petroleum oil. Commonly used liquid fuels are petrol, kerosene diesel, aviation fuel, light fuel oil, heavy fuel oil etc.

Various liquid fuels of hydrocarbon family lie in Paraffin ($\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ - chain structure), Olefins $\left(\mathrm{C}_{n} \mathrm{H}_{2 n}\right.$ - chain structure), Napthalene ($\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$ - ring structure), Benzene ($\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n-6}$ - ring structure),

Nepthalene $\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-12}\right.$ - ring structure) category. Percentage by volume composition of some of liquid fuels is given below.

Table 10.2 Composition of liquid fuels

Sl.No.	Fuel		\% by volume	
		Carbon	Hydrogen	Sulphur
1.	Petrol	85.5	14.4	0.1
2.	Kerosene	86.3	13.6	0.1
3.	Diesel	86.3	12.8	0.9
4.	Benzole	91.7	8.0	0.3
5.	Light fuel oil	86.2	12.4	1.4
6.	Heavy fuel oil	86.1	11.8	2.1

Liquid fuels offer following advantages over solid fuel.
(i) Better mixing of fuel and air is possible with liquid fuel.
(ii) Liquid fuels have no problem of ash formation.
(iii) Storage and handling of liquid fuels is easy compared to solid fuels.
(iv) Processing such as refining of liquid fuels is more convenient.

Gaseous fuels: These are the fuels in gaseous phase. Gaseous fuels are also generally hydrocarbon fuels derived from petroleum reserves available in nature. Most common gaseous fuel is natural gas. Gaseous fuels may also be produced artificially from burning solid fuel (coal) and water. Some of gaseous fuels produced artificially are coal gas, producer gas etc. Volumetric analysis of gaseous fuels is presented in Table 10.3. Gaseous fuels offer all advantages as there in liquid fuels except ease of storage.

Table 10.3 Composition of gaseous fuels

Sl.No.	Fuel		\% by volume							
		H_{2}	O_{2}	$\mathrm{~N}_{2}$	CO	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{4} \mathrm{H}_{8}$	CO_{2}
1.	Natural gas	-	-	3	1	93	-	3	-	-
2.	Coal gas	53.6	0.4	6	9	25	-	-	3	3
3.	Producer gas	12	-	52	29	2.6	0.4	-	-	4

10.3 CALORIFIC VALUE OF FUEL

During combustion, the chemical energy of fuel gets transformed into molecular kinetic or molecular potential energy of products. This energy associated with combustion also called calorific value of fuel is very important to be known for thermodynamic design and calculations of combustion systems. "Bomb calorimeter" is one of the ways to get the heating value of solid and liquid fuels when burnt at constant volume. Different types of bomb calorimeters as given by At water, Davis, Emerson, Mahler, Parr, Peters and Williams are available. Bomb calorimeter as given by Emerson is discussed here. For getting the heating value of gaseous fuel the gas calorimeter is also discussed here.

10.4 BOMB CALORIMETER

Emerson's bomb calorimeter is shown in Fig. 10.1 here. Its major components are bomb, bucket, stirrer, crucible or fuel pan, jacket, thermometer etc. A known quantity of fuel under investigation is kept in the crucible. Crucible has a electric coil with d.c. supply in it. Bomb is charged with oxygen under
pressure. Bomb is surrounded by a bucket containing water to absorb the heat released as fuel burns. Bomb also has an outer jacket with dead air space surrounding the bucket to minimise heat loss to surroundings. When electricity is flown into coil the fuel gets ignited. Bomb is actually a strong shell capable of withstanding about 100 atmosphere pressure. Inner bomb wall surface is lined with enamel and external wall surface is plated so as to prevent corrosion due to high temperature combustion products. Different operations while using it for calorific value measurement are as given ahead. First weigh the empty calorimeter bucket and fill it with a definite quantity of water at temperature about $2-3^{\circ} \mathrm{C}$ less than jacket water temperature. Charge bomb with oxygen at high pressure without disturbing the fuel kept in crucible. Ensure that there are no leaks in bomb and after ensuring it as leak proof place it in bomb jacket. Install thermometer and stirrer. Start stirrer for 3 to 4 minutes for temperature uniformity in bucket. Take temperature readings at definite interval, say after every five minutes.

Fig. 10.1 Bomb calorimeter
Active the coil so as to fire fuel. Record temperature every 30 seconds until maximum temperature is reached and after attaining maximum temperature read temperature after every 5 minutes. These temperatures are required to account for the heat exchange with jacket water.

Later on remove bomb from calorimeter, release the gases and dismantle the bomb. Collect and weigh the iron fuse wire which remains. For getting accurate result the bomb should be washed with distilled water and washings titrated to obtain the amount of nitric acid and sulphuric acid formed. Corrections are made for small amount of heat transfer which occurs.

For making the calculations a curve of temperature is plotted with time. Determine the rate of temperature rise before firing.

Also, determine the rate of temperature drop after the maximum temperature is reached. Cooling correction may be added to the measured temperature rise. Heat balance may be applied as,

Heat released by fuel during combustion + Heat released by combustion of fuse wire

$$
=\text { Heat absorbed by water and calorimeter }
$$

For getting heat absorbed by calorimeter the water equivalent of calorimeter is used which can be determined by burning a fuel of known calorific value. Generally benzoic acid and napthalene having calorific value of $6325 \mathrm{kcal} / \mathrm{kg}$ and $9688 \mathrm{kcal} / \mathrm{kg}$ are being used for finding water equivalent of calorimeter.

Mathematically,

$$
\begin{aligned}
& m_{\text {fuel }} \times \mathrm{CV}_{\text {fuel }}+m_{f w} \times \mathrm{CV}_{f w}=\left(m_{w}+m_{c}\right) \cdot R \\
& \mathrm{CV}_{\text {fuel }}=\left\{\frac{\left(m_{w}+m_{c}\right) \cdot R-m_{f w} \cdot \mathrm{CV}_{f w}}{m_{\text {fuel }}}\right\}
\end{aligned}
$$

where $m_{\text {fuel }}$ and $m_{f w}$ are mass of fuel and mass of fuse wire, m_{w} and m_{c} are mass of water in calorimeter and water equivalent of calorimeter, R is correct temperature rise, $\mathrm{CV}_{\text {fuel }}$ is higher calorific value of fuel, $\mathrm{CV}_{f w}$ is calorific value of fuse wire. Calorific value of fuel estimated is higher calorific value as the water formed during combustion is condensed.

10.5 GAS CALORIMETER

Schematic of gas calorimeter is shown in Fig.10.2 It is used for estimating the heating value of gaseous fuels. It has burner with arrangement to regulate and measure flow rate and pressure of gaseous fuel. Combustion products pass through tubes which are surrounded by flowing water. Here the volume flow rate of gas flowing through calorimeter is measured. Water conditions are adjusted so as to cool the products of combustion to ambient air temperature. Rate of water flow through the calorimeter is measured and its' temperature rise is determined. If the heat exchange between the calorimeter and its' surroundings is neglected then the heat received by water shall be equal to the heating value of fuel. For precise estimation of heating value of gaseous fuels the procedure as specified by ASTM is to be followed.

10.6 COMBUSTION OF FUEL

Combustion of fuel refers to the chemical reaction that occurs between fuel and air to form combustion products with energy release i.e. oxidation of combustible fuel results into energy and products of combustion.

In other words, during chemical reaction the bonds within fuel molecules get broken and atoms and electrons rearrange themselves to yield products. During complete combustion carbon present in fuel transforms into carbon dioxide, hydrogen into water, sulphur into sulphur dioxide and nitrogen into nitrogen oxides. Thus it is obvious that the total mass before combustion and after combustion remains constant although the elements exist in form of different chemical compounds in reactants and products. Generic form of combustion equations shall be as follows;

$$
\begin{equation*}
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \tag{i}
\end{equation*}
$$

On mass basis, (12) $+(32) \rightarrow(44)$
$1 \mathrm{~kg}(\mathrm{C})+\frac{8}{3} \mathrm{~kg}\left(\mathrm{O}_{2}\right) \rightarrow \frac{11}{3} \mathrm{~kg}\left(\mathrm{CO}_{2}\right)$
$1 \mathrm{~mol}(\mathrm{C})+1 \mathrm{~mol}\left(\mathrm{O}_{2}\right) \rightarrow 1 \mathrm{~mol}\left(\mathrm{CO}_{2}\right)$

Fig. 10.2 Gas calorimeter
(ii)

$$
2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}
$$

On mass basis, $(24)+(32) \rightarrow(56)$

$$
1 \mathrm{~kg}(\mathrm{C})+\frac{4}{3} \mathrm{~kg}\left(\mathrm{O}_{2}\right) \rightarrow \frac{7}{3} \mathrm{~kg}(\mathrm{CO})
$$

On mole basis, $2 \mathrm{~mol}(\mathrm{C})+1 \mathrm{~mol}\left(\mathrm{O}_{2}\right) \rightarrow 2 \mathrm{~mol}(\mathrm{CO})$

$$
2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}
$$

On mass basis, $56+32 \rightarrow 88$
$1 \mathrm{~kg}(\mathrm{CO})+\frac{4}{7} \mathrm{~kg}\left(\mathrm{O}_{2}\right) \rightarrow \frac{11}{7} \mathrm{~kg}\left(\mathrm{CO}_{2}\right)$
On mole basis, $2 \mathrm{~mol}(\mathrm{CO})+1 \mathrm{~mol}\left(\mathrm{O}_{2}\right) \rightarrow 2 \mathrm{~mol}\left(\mathrm{CO}_{2}\right)$
(iv)

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

On mass basis, $4+32 \rightarrow 36$
$1 \mathrm{~kg}\left(\mathrm{H}_{2}\right)+8 \mathrm{~kg}\left(\mathrm{O}_{2}\right) \rightarrow 9 \mathrm{~kg}\left(\mathrm{H}_{2} \mathrm{O}\right)$
On mole basis, $2 \mathrm{~mol}\left(\mathrm{H}_{2}\right)+1 \mathrm{~mol}\left(\mathrm{O}_{2}\right) \rightarrow 2 \mathrm{~mol}\left(\mathrm{H}_{2} \mathrm{O}\right)$
(v)

$$
\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}
$$

On mass basis, $32+32 \rightarrow 64$
\qquad
$1 \mathrm{~kg}(\mathrm{~S})+1 \mathrm{~kg}\left(\mathrm{O}_{2}\right) \rightarrow 2 \mathrm{~kg}\left(\mathrm{SO}_{2}\right)$
On mole basis, $1 \mathrm{~mol}(\mathrm{~S})+1 \mathrm{~mol}\left(\mathrm{O}_{2}\right) \rightarrow 1 \mathrm{~mol}\left(\mathrm{SO}_{2}\right)$
(vi)

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

On mass basis, $16+64 \rightarrow 44+36$
$1 \mathrm{~kg}\left(\mathrm{CH}_{4}\right)+4 \mathrm{~kg}\left(\mathrm{O}_{2}\right) \rightarrow \frac{11}{4} \mathrm{~kg}\left(\mathrm{CO}_{2}\right)+\frac{9}{4} \mathrm{~kg}\left(\mathrm{H}_{2} \mathrm{O}\right)$
On mole basis,
$1 \mathrm{~mol}\left(\mathrm{CH}_{4}\right)+2 \mathrm{~mol}\left(\mathrm{O}_{2}\right) \rightarrow 1 \mathrm{~mol}\left(\mathrm{CO}_{2}\right)+2 \mathrm{~mol}\left(\mathrm{H}_{2} \mathrm{O}\right)$
(vii)

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

On mass basis, $60+224 \rightarrow 176+108$
$1 \mathrm{~kg}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)+\frac{56}{15} \mathrm{~kg}\left(\mathrm{O}_{2}\right) \rightarrow \frac{44}{15} \mathrm{~kg}\left(\mathrm{CO}_{2}\right)+\frac{27}{15} \mathrm{~kg}\left(\mathrm{H}_{2} \mathrm{O}\right)$
On mole basis,
$2 \mathrm{~mol}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)+7 \mathrm{~mol}\left(\mathrm{O}_{2}\right) \rightarrow 4 \mathrm{~mol}\left(\mathrm{CO}_{2}\right)+6 \mathrm{~mol}\left(\mathrm{H}_{2} \mathrm{O}\right)$
(viii) In general, for any hydrocarbon's complete combustion,

$$
a \cdot \mathrm{C}_{8} \mathrm{H}_{18}+b \cdot \mathrm{O}_{2} \rightarrow d \cdot \mathrm{CO}_{2}+e \cdot \mathrm{H}_{2} \mathrm{O}
$$

Equating C, H and O on both sides of above equation,

$$
\begin{aligned}
a \times 8 & =d & \text { or, } \quad d & =8 a \\
a \times 18 & =e \times 2 & \text { or, } \quad e & =9 a \\
b \times 2 & =(d \times 2)+e & \text { or, } \quad 2 b & =2 d+e, \text { or } 2 b=16 a+9 a
\end{aligned}
$$

Above yield, $b=12.5 a, d=8 a, e=9 a$
In order to avoid fraction let us round it off by multiplying by 2 ,

$$
2 a \mathrm{C}_{8} \mathrm{H}_{18}+25 a \cdot \mathrm{O}_{2} \rightarrow 16 a \cdot \mathrm{CO}_{2}+18 a \cdot \mathrm{H}_{2} \mathrm{O}
$$

Combustion equation shall now be,

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

On mass basis, $\quad 228+800 \rightarrow 704+324$
$1 \mathrm{~kg}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)+\frac{200}{57} \mathrm{~kg}\left(\mathrm{O}_{2}\right) \rightarrow \frac{176}{57} \mathrm{~kg}\left(\mathrm{CO}_{2}\right)+\frac{81}{57} \mathrm{~kg}\left(\mathrm{H}_{2} \mathrm{O}\right)$
On mole basis,
$2 \mathrm{~mol}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)+25 \mathrm{~mol}\left(\mathrm{O}_{2}\right) \rightarrow 16 \mathrm{~mol}\left(\mathrm{CO}_{2}\right)+18 \mathrm{~mol}\left(\mathrm{H}_{2} \mathrm{O}\right)$
Theoretically, the calorific value of fuel can be determined based upon the fuel constituents and the heat evolved upon their oxidation.

Heat evolved during oxidation of some of the fuel constituents are as under,
Table 10.4

Fuel constituent	Higher calorific value, kcal/kg	Lower calorific value, kcal/kg	Products of oxidation
C	8100	-	CO_{2}
C	2420	-	CO
CO	2430	-	CO_{2}
H_{2}	34400	29000	$\mathrm{H}_{2} \mathrm{O}$
S	2200	-	SO_{2}

In any fuel containing carbon (C), hydrogen $\left(\mathrm{H}_{2}\right)$, oxygen (O) and sulphur (S) the higher calorific value of fuel can be estimated using respective calorific values for constituents. In the fuel oxygen is not present in free form but is associated with hydrogen.

$$
\underset{(2)}{\mathrm{H}_{2}}+\underset{\text { (16) }}{\mathrm{O}} \underset{\text { (18) }}{\mathrm{H}_{2} \mathrm{O}}
$$

On mass basis,

$$
\begin{aligned}
& 1 \mathrm{~kg}\left(\mathrm{H}_{2}\right)+8 \mathrm{~kg}(\mathrm{O}) \rightarrow 9 \mathrm{~kg}\left(\mathrm{H}_{2} \mathrm{O}\right) \\
& \frac{1}{8} \mathrm{~kg}\left(\mathrm{H}_{2}\right)+1 \mathrm{~kg}(\mathrm{O}) \rightarrow \frac{9}{8} \mathrm{~kg}\left(\mathrm{H}_{2} \mathrm{O}\right)
\end{aligned}
$$

Above chemical equation indicates that with every unit mass of oxygen, $\frac{1}{8}$ of oxygen mass shall be the mass of hydrogen associated with it. Thus, the free hydrogen available for oxidation (combustion) shall be only $\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right)$ where H refers to hydrogen mass and O refers to oxygen mass.

The higher calorific value of fuel can thus be given as under using the mass fractions of constituent elements known. If percentage mass fractions of fuel constituents are given by $\mathrm{C}, \mathrm{H}, \mathrm{O}$ and S then.

$$
\text { H.C.V. of fuel }=\frac{1}{100}\left[8100 \cdot \mathrm{C}+34,400\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right)+2220 \cdot \mathrm{~S}\right] \mathrm{kcal} / \mathrm{kg}
$$

Lower calorific value of fuel can be given by,
L.C.V. of fuel $=($ H.C.V. of fuel $)-($ Heat carried by water vapour formed per kg of fuel burnt)

The amount of latent heat carried depends upon the pressure at which evaporation takes place and quantity of water vapour formed. Generally, the evaporation is considered to take place at saturation temperature of $15^{\circ} \mathrm{C}$ and the latent heat of water vapour at this saturation temperature is $588.76 \mathrm{kcal} / \mathrm{kg}$. During combustion of fuel the water shall be formed due to hydrogen present in fuel, therefore mass of water vapour can be given by the mass fraction of hydrogen. Thus,

$$
\text { L.C.V. of fuel }=\left\{(\mathrm{H} . \mathrm{C} . \mathrm{V} . \text { of fuel })-\left(\frac{9 \times \mathrm{H} \times 588.76}{100}\right)\right\}, \mathrm{kcal} / \mathrm{kg}
$$

10.7 COMBUSTION ANALYSIS

From earlier discussions it is seen how the combustion of a fuel can be written in the form of chemical reactions for the oxidation of different elements constituting fuel. Based on chemical reactions the mass of oxygen required per kg of element can be estimated. From these the oxygen requirement per kg of fuel constituents and subsequently mass of air required for the estimated oxygen requirement can be known. Let us see how air required for complete burning of a fuel having 85.5% carbon, 12.3% hydrogen and 2.2% ash is calculated;

Mass of oxygen required for constituents;
1 kg of carbon shall require $\frac{8}{3} \mathrm{~kg}$ of oxygen
1 kg of hydrogen shall require 8 kg of oxygen
Ash shall not undergo oxidation.

Table 10.5 Air requirement for fuel (on mass basis)

Mass of constituents per kg of fuel (A)	Oxygen required per kg of constituent	Oxygen required per kg of fuel $(C)=(A) \times(B)$	Mass of air required, (theoretical, for air having 23% oxygen, 77% nitrogen) $D=\frac{\Sigma(C) \times 100}{23}$
$\mathrm{C}=0.855$	8/3	2.28	
$\mathrm{H}_{2}=0.123$	8	0.984	$\frac{3.264 \times 100}{23}=14.19$
Ash $=0.022$	-	-	
		$\Sigma(\mathrm{C})=3.264$	

Above calculations show that for the given fuel composition 14.19 kg of minimum air shall be theoretically required for complete combustion of one kg of fuel. Combustion analysis can be carried out either on mass basis or volume basis. Similar kind of analysis can be made on volume basis. Let us take heptane $\left(\mathrm{C}_{7} \mathrm{H}_{16}\right)$ as the fuel and consider its' complete combustion.

Table 10.6 Air required for fuel (on volume basis)

Consti- tuent	Proportional mass, A	Propor- tional volume, $B=\frac{A}{m o l . w t .}$	Percentage volume, $C=\frac{B}{\Sigma B}$	$\begin{aligned} & O_{2} \\ & \text { required } \\ & \text { per } m^{3} \\ & \text { of } D \\ & \times 100 \end{aligned}$	O_{2} required per $100 \mathrm{~m}^{3}$ of element, $E=D \times C$ element	Air required for $100 \mathrm{~m}^{3}$ of fuel (theoretical for air having $21 \% \mathrm{O}_{2}$ and $79 \% N_{2}$), F $=\frac{\Sigma E}{21} \times 100$
C H_{2}	$\begin{aligned} & 12 \times 7=84 \\ & 2 \times 8=16 \end{aligned}$	$\frac{8}{\Sigma \mathrm{~B}=15}$	$\begin{aligned} & 46.67 \\ & 53.33 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 46.67 \\ & \frac{26.665}{\Sigma \mathrm{E}=73.335} \end{aligned}$	$\begin{aligned} & =\frac{73.335}{21} \times 100 \\ & =349.21 \end{aligned}$

Hence volume of air required is $349.21 \mathrm{~m}^{3}$ for $100 \mathrm{~m}^{3}$ of fuel.
Volumetric analysis of combustion can be transformed into gravimetric analysis and vice versa. Such conversion is required because the volumetric analysis is available experimentally. Let us take an exhaust gas sample containing $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{~N}_{2}$ and O_{2}. Let their volume fractions be X_{1}, X_{2}, X_{3} and X_{4} respectively.

Table 10.7 Conversion from volume based analysis to mass based analysis

Constituent	Volume of Constituent per m^{3}, V	Molecular weight, M	Proportional masses, $X=M . V$	Mass of constituent per kg of dry exhaust gases, $m=\frac{M . V}{\Sigma X}$
CO	X_{1}	28	$28 . X_{1}$	$\left(\frac{28 \cdot X_{1}}{\Sigma X}\right)$
CO_{2}	X_{2}	44	$44 . X_{2}$	$\left(\frac{44 \cdot X_{2}}{\Sigma X}\right)$ N_{2}
O_{2}	X_{4}	28	$28 . X_{3}$	$\left(\frac{28 \cdot X_{3}}{\Sigma X}\right)$
$\left(\frac{32 \cdot X_{4}}{\Sigma X}\right)$				

Total of proportional masses $\Sigma X=28 X_{1}+44 X_{2}+28 X_{3}+32 X_{4}$

10.8 DETERMINATION OF AIR REQUIREMENT

(a) From combustion equations of fuel constituents (percentage basis) such as $\mathrm{C}, \mathrm{H}, \mathrm{O}$ and S as described earlier the total oxygen required per kg of fuel for complete combustion can be given as;

$$
=\frac{1}{100}\left[\frac{8}{3} \mathrm{C}+8\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right)+\mathrm{S}\right]
$$

As air is taken to have 23% of oxygen by mass, therefore total air requirement per kg of fuel shall be;

$$
=\frac{1}{100}\left[\frac{8}{3} \mathrm{C}+8\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right)+\mathrm{S}\right] \times \frac{100}{23}
$$

Minimum air required per kg of fuel for complete combustion

$$
=\frac{1}{23}\left[\frac{8}{3} \mathrm{C}+8\left(\mathrm{H}-\frac{\mathrm{O}}{8}\right)+\mathrm{S}\right]
$$

(b) Air requirement per kg of fuel can also be determined if the volumetric analysis of dry flue gases and mass fraction of carbon per kg of fuel is known. Let us take the dry flue gases having mass fractions as defined earlier as,

$$
1 \mathrm{~kg} \text { of flue gas has }\left(\frac{28 X_{1}}{\Sigma X}\right) \mathrm{kg} \text { of } \mathrm{CO} \text { and }\left(\frac{44 X_{2}}{\Sigma X}\right) \mathrm{kg} \text { of } \mathrm{CO}_{2} .
$$

Now the total mass of carbon present in CO and CO_{2} present in 1 kg of flue gas can be estimated and equated with mass of carbon present per kg of fuel.

Mass of carbon per kg of flue gas $=$ Mass of carbon in CO per kg flue gas

+ Mass of carbon in CO_{2} per kg flue gas
Mass of carbon in CO per kg flue gas $=\left(\frac{28 X_{1}}{\Sigma X}\right) \times \frac{12}{28}=\left(\frac{12 X_{1}}{\Sigma X}\right)$

Mass of carbon in CO_{2} per kg flue gas $=\left(\frac{44 X_{2}}{\Sigma X}\right) \times \frac{12}{44}=\left(\frac{12 X_{2}}{\Sigma X}\right)$
Total carbon per kg of flue gas $=\left\{\frac{12 X_{1}}{\Sigma X}+\frac{12 X_{2}}{\Sigma X}\right\}$

$$
=\frac{12}{\Sigma X} \quad\left(X_{1}+X_{2}\right) \mathrm{kg} \text { per } \mathrm{kg} \text { of flue gas. }
$$

Now if we look at the fact that from where carbon is coming in flue gases then it is obvious that carbon is available only in fuel. Let us assume that carbon present in fuel completely goes into flue gases. Let us also assume that fuel does not contain nitrogen so what ever nitrogen is there in flue gas it will be because of nitrogen present in air. Let the mass of flue gases formed per kg of fuel after combustion be ' m_{g} '. The mass of carbon in per kg fuel say C can be equated to total mass of carbon calculated above.

Mass fraction of carbon in fuel $=$ Total mass of carbon in m_{g} mass of flue gases.

$$
\mathrm{C}=\left\{\frac{12}{\Sigma X}\left(X_{1}+X_{2}\right)\right\} \times m_{g}
$$

$$
\text { Mass of flue gases, } m_{g}=\left\{\frac{\mathrm{C} \cdot \Sigma X}{12\left(X_{1}+X_{2}\right)}\right\}
$$

Mass of air supplied per kg of fuel can be known from the nitrogen fraction present in flue gases as only source of nitrogen is air. 0.77 kg of N_{2} is available in 1 kg of air. From flue gas analysis $\left(\frac{28 X_{3}}{\Sigma X}\right)$ is the mass of nitrogen available in per kg of flue gas so total mass of nitrogen present in flue gases $\left(m_{g}\right)$ due to combustion of unit mass of fuel shall be $\left\{\left(\frac{28 X_{3}}{\Sigma X}\right) \cdot m_{g}\right\}$.

From air composition $0.77 \mathrm{~kg} \mathrm{~N}_{2}$ is present per kg of air so the mass of air supplied per kg of flue gas formed,

$$
=\left(\frac{28 X_{3}}{\Sigma X}\right) \times \frac{1}{0.77}, \mathrm{~kg} \text { air per } \mathrm{kg} \text { of flue gas }
$$

Mass of air supplied per kg of fuel $=\left(\frac{28 X_{3}}{\Sigma X}\right) \times \frac{m_{g}}{0.77}$
Substituting for $m_{g}, \quad=\left(\frac{28 X_{3}}{\Sigma X}\right) \times \frac{1}{0.77} \times\left\{\frac{C \cdot \Sigma X}{12\left(X_{1}+X_{2}\right)}\right\}$
Mass of air supplied per kg of fuel $=\frac{28 X_{3} \cdot \mathrm{C}}{9.24\left(X_{1}+X_{2}\right)}$
where X_{1}, X_{2}, X_{3} are volume fractions of $\mathrm{CO}, \mathrm{CO}_{2}$ and N_{2} present in unit volume of flue gas and C is mass fraction of carbon present in unit mass of fuel.

For complete combustion of fuel there shall be no CO and only CO_{2} shall contain carbon i.e. $X_{1}=0$.
(c) Generally for ensuring complete combustion of fuel, excess air is supplied. In case of combustion if there is incomplete combustion of carbon resulting into formation of carbon monoxide, then
additional oxygen shall be required for converting carbon monoxide (CO) into carbon dioxide $\left(\mathrm{CO}_{2}\right)$. From earlier discussions let us consider unit mass of flue gas containing $\left(\frac{28 X_{1}}{\Sigma X}\right) \mathrm{kg}$ of CO and $\left(\frac{32 X_{4}}{\Sigma X}\right) \mathrm{kg}$ of O_{2}. The oxygen present in fuel remains in association with hydrogen. For combustion of CO into CO_{2} the mass of oxygen required is $\frac{4}{7} \mathrm{~kg}$ per kg of CO . Thus oxygen required for CO present in 1 kg flue gas

$$
\begin{aligned}
& =\left(\frac{28 X_{1}}{\Sigma X}\right) \times \frac{4}{7} \\
& =\left(\frac{16 X_{1}}{\Sigma X}\right) \mathrm{kg} \text { of oxygen }
\end{aligned}
$$

Therefore, excess oxygen available per kg of flue gas formed,

$$
\begin{aligned}
& =\left(\frac{32 X_{4}}{\Sigma X}\right)-\left(\frac{16 X_{1}}{\Sigma X}\right) \\
& =\frac{16}{\Sigma X}\left(2 X_{4}-X_{1}\right)
\end{aligned}
$$

Excess oxygen supplied per kg of fuel burnt $=\left\{\frac{16}{\Sigma X}\left(2 X_{4}-X_{1}\right) m_{g}\right\}$

$$
\begin{aligned}
& =\frac{16}{\Sigma X}\left(2 X_{4}-X_{1}\right)\left\{\frac{C \Sigma X}{12\left(X_{1}+X_{2}\right)}\right\} \\
& =\frac{4}{3} \frac{\left(2 X_{4}-X_{1}\right) \cdot \mathrm{C}}{\left(X_{1}+X_{2}\right)}
\end{aligned}
$$

Hence excess air supplied per kg of fuel

$$
=\frac{4 C\left(2 X_{4}-X_{1}\right)}{3\left(X_{1}+X_{2}\right)} \times \frac{1}{0.23}
$$

Excess air supplied per kg of fuel burnt $=\frac{4 C \cdot\left(2 X_{4}-X_{1}\right)}{0.69\left(X_{1}+X_{2}\right)}$

10.9 FLUE GAS ANALYSIS

Flue gas analysis refers to the determination of composition of exhaust gases. Flue gas analysis can be done theoretically and experimentally. Here experimental method of flue gas analysis is described. Various devices available for measuring the composition of products of combustion (flue gas) are Orsat Analyzer, Gas chromatograph. Infrared analyzer and Flame ionisation detector etc. Data from these devices can be used to determine the mole fraction of flue gases. Generally this analysis is done on dry basis which may also be termed as "dry product analysis" and it refers to describing mole fractions for all gaseous products except water vapour.

Orsat analyzer: It is also called as Orsat apparatus and is used for carrying out volumetric analysis of dry products of combustion. Schematic of apparatus is shown in Fig.10.3 It has three flasks containing different chemicals for absorption of $\mathrm{CO}_{2}, \mathrm{O}_{2}$ and CO respectively and a graduated eudiometer tube connected to an aspirator bottle filled with water.

Fig. 10.3 Orsat analyzer
Flask I is filled with NaOH or KOH solution (about one part of KOH and 2 parts of water by mass). This $33 \% \mathrm{KOH}$ solution shall be capable of absorbing about fifteen to twenty times its own volume of CO_{2}. Flask II is filled with alkaline solution of pyrogallic acid and above KOH solution. Here 5 gm of pyrogallic acid powder is dissolved in 100 cc of KOH solution as in Flask I. It is capable of absorbing twice its own volume of O_{2}. Flask III is filled with a solution of cuprous chloride which can absorb CO equal to its' volume. Cuprous chloride solution is obtained by mixing 5 mg of copper oxide in 100 cc of commercial HCl till it becomes colourless. Each flask has a valve over it and C_{1}, C_{2}, C_{3} valves are put over flasks I, II and III. All the air or any other residual gas is removed from eudiometer by lifting the aspirator bottle and opening main value. The flue gas for analysis is taken by opening the main valve (three way valve) while valves C_{1}, C_{2} and C_{3} are closed. 100 cc of flue gas may be taken into eudiometer tube by lowering aspirator bottle until the level is zero and subsequently forced into flasks for absorbing different constituents. Aspirator bottle is lifted so as to inject flue gas into flask I with only valve C_{1} in open state where CO_{2} present shall be absorbed. Aspirator bottle is again lowered and reading of eudiometer tube taken. Difference in readings of eudiometer tube initially and after CO_{2} absorption shall give percentage of CO_{2} by volume. Similar steps may be repeated for getting O_{2} and CO percentage by volume for which respective flask valve shall be opened and gas passed into flask. Thus Orsat analyzer directly gives percentage by volume of constituents. In case of other constituents to be estimated the additional flasks with suitable chemical may be used. The remaining volume in eudiometer after absorption of all constituents except N_{2} shall give percentage volume of N_{2} in flue gas.

As in combustion of hydrocarbon fuel the $\mathrm{H}_{2} \mathrm{O}$ is present in flue gases but in orsat analysis dry flue gases are taken which means $\mathrm{H}_{2} \mathrm{O}$ will be condensed and separated out. Therefore the percentage
by volume of constituents estimated shall be on higher side as in actual product $\mathrm{H}_{2} \mathrm{O}$ is there but in dry flue gas it is absent. Orsat analyzer does not give exact analysis.

10.10 FUEL CELLS

Fuel cell refers to a device having fuel and oxidizer in it which undergoes controlled chemical reaction to produce combustion products and provide electric current directly. In fuel cells the fuel and oxidizer react in stages on two separate electrodes i.e. anode (+ ive electrode) and cathode (- ive electrode). Two electrodes are separated by electrolyte in between. The chemical reaction is carried out to produce electric power without moving parts or the use of intermediate heat transfers as in power cycles. Thus fuel cell does not work on any cycle. Fuel cells based on hydrogen-oxygen fuel cells have been used to provide power to the spacecrafts. Fuel cells based on natural gas are also under process of development. Fuel cells are also being developed to power automobiles. Let us look at hydrogen-oxygen fuel cell in detail.

Figure 10.4 shows the schematic of hydrogen-oxygen fuel cell. Here H_{2} supplied diffuses through the porous anode and reacts on anode surface with OH^{-i} ions resulting into $\mathrm{H}_{2} \mathrm{O}$ and free electrons, the reaction for it is given in figure.

Fig. 10.4 Hydrogen-Oxygen fuel cell
Free electrons liberated enter the circuit while water goes into electrolyte. Oxygen supplied combines with water in electrolyte and electrons coming from electric circuit to produce OH^{-}ions and $\mathrm{H}_{2} \mathrm{O}$ as per chemical reaction given in figure. OH^{-}ions are transported through the electrolyte. Overall fuel cell has chemical reaction as

$$
\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Thus in hydrogen-oxygen fuel cell electricity and water are produced.

EXAMPLES

1. Coal having following composition by mass is burnt with theoretically correct amount of air. $86 \% \mathrm{C}, 6 \% \mathrm{H}, 5 \% \mathrm{O}, 2 \% \mathrm{~N}, 1 \% \mathrm{~S}$
Determine the air-fuel ratio.

Solution:

Combustion equation for the coal (100 kg of coal) can be given as under;

$$
\left(\frac{86}{12} \cdot \mathrm{C}+\frac{6}{1} \cdot \mathrm{H}+\frac{5}{16} \cdot \mathrm{O}+\frac{2}{14} \cdot \mathrm{~N}+\frac{1}{32} \cdot \mathrm{~S}\right)+n\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow
$$

From above equation $\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{S}, \mathrm{N}$ can be equated on both the sides as under,

$$
a \cdot \mathrm{CO}_{2}+b \cdot \mathrm{SO}_{2}+d \cdot \mathrm{~N}_{2}+e \cdot \mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{C} ; 7.16=a
$$

$$
\mathrm{H} ; 6=2 e
$$

$$
\mathrm{O} ;(0.3125+2 n)=2 a+2 b+e
$$

$$
\mathrm{N} ;(0.1429+3.76 \times 2 n)=2 d
$$

$$
\mathrm{S} ; 0.03125=b
$$

Solving we get $a=7.16$

$$
\begin{aligned}
b & =0.03125 \\
d & =32.163 \\
e & =3 \\
n & =8.535
\end{aligned}
$$

Amount of air required shall be [$8.535 \times(4.76)] \mathrm{kg}$ mol per 100 kg of coal.

$$
\begin{aligned}
\text { Air-fuel ratio } & =\frac{8.535 \times 4.76 \times 28.97}{100} \\
& =11.77 \mathrm{~kg} \text { air per } \mathrm{kg} \text { of fuel }
\end{aligned}
$$

> | Air-fuel ratio = 11.77 | Ans. |
| :--- | :--- |

2. One $\mathrm{kg} C_{8} H_{18}$ fuel is supplied to an engine with 13 kg of air. Determine the percentage by volume of CO_{2} in dry exhaust gas considering exhaust gas to consist of $\mathrm{CO}_{2}, \mathrm{CO}$ and N_{2}.

Solution:

Combustion equation in mol. basis for one kg of fuel supplied shall be as under.
$\frac{1}{114}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)+n\left(0.21 \mathrm{O}_{2}+0.79 \mathrm{~N}_{2}\right) \rightarrow a \cdot \mathrm{CO}_{2}+b \cdot \mathrm{CO}+d \cdot \mathrm{~N}_{2}+e \cdot \mathrm{H}_{2} \mathrm{O}$
Equating the coefficients on both sides,
C; $\frac{8}{114}=0.0702=a+b$
$\mathrm{O}_{2} ; 0.21 n=a+\frac{b}{2}+\frac{e}{2}$
$\mathrm{H} ; \frac{18}{114}=0.1579=2 e$
$\mathrm{N}_{2} ; 0.79 n=d$. Also it is given that 13 kg of air per kg of fuel is supplied, therefore
$n=\frac{13}{28.97}=0.4487$
Solving above following are available,

$$
\begin{aligned}
& a=0.0393 \\
& b=0.0309
\end{aligned}
$$

Fuels and Combustion

$$
\begin{aligned}
d & =0.3545 \\
e & =0.07895 \\
n & =0.4487
\end{aligned}
$$

Constituents of dry exhaust gas shall be $\mathrm{CO}_{2}, \mathrm{CO}$ and N_{2} as indicated,

$$
\begin{aligned}
\text { Therefore dry exhaust gas } & =(a+b+d) \\
& =(0.0393+0.0309+0.3545)=0.4247
\end{aligned}
$$

Percentage by volume of CO_{2} in dry exhaust gas $=\frac{a}{(a+b+d)} \times 100$

$$
\begin{aligned}
& =\frac{0.0393 \times 100}{0.4247} \\
& =9.25 \%
\end{aligned}
$$

$$
\text { \% by volume of } \mathrm{CO}_{2}=9.25 \% \quad \text { Ans. }
$$

3. In a boiler the coal having $88 \% \mathrm{C}, 3.8 \% \mathrm{H}_{2}, 2.2 \% \mathrm{O}_{2}$ and remaining ash is burnt in the furnace. It is found that CO_{2} going with flue gases constitute to be 12% and temperature of flue gases is $260{ }^{\circ} \mathrm{C}$. The flue gas sample is analyzed using Orsat apparatus at room temperature. Determine the percentage of CO_{2} that would be there for complete combustion of fuel.

Solution:

Actual percentage of CO_{2} in flue gases $=12 \%$

Constituent mass per kg of fuel	Combustion product (x)	Molecular weight (y)		Volume fraction$z=(x) /(y)$	
	$\overline{\mathrm{CO}_{2}} \quad \mathrm{H}_{2} \mathrm{O}$	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}=0.88$	$\left(0.88 \times \frac{44}{12}\right)$	44		0.0733	
$\mathrm{H}_{2}=0.038$	$\left(0.038 \times \frac{18}{2}\right)$		18		0.019

Exhaust gases shall comprise of $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$ and N_{2}
Actual percentage of $\mathrm{CO}_{2}=\frac{\mathrm{CO}_{2} \times 100}{\left(\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{N}_{2}\right)}$

$$
\begin{aligned}
12 & =\frac{0.0733 \times 100}{\left(0.0733+0.019+\left(\mathrm{O}_{2}+\mathrm{N}_{2}\right)\right)} \\
\left(\mathrm{O}_{2}+\mathrm{N}_{2}\right) & =0.5185
\end{aligned}
$$

Orsat apparatus analyzes only dry flue gas so the percentage of CO_{2} can be obtained as,

$$
\% \mathrm{CO}_{2}=\frac{\mathrm{CO}_{2} \times 100}{\left(\mathrm{CO}_{2}+\mathrm{O}_{2}+\mathrm{N}_{2}\right)}=\frac{0.0733 \times 100}{(0.0733+0.5185)}=12.38 \%
$$

$$
\% \mathrm{CO}_{2}=12.38 \% \text { Ans. }
$$

\qquad Applied Thermodynamics
4. Determine the percentage analysis of combustion products by mass and by volume when gravimetric analysis of a hydrocarbon fuel indicates 86% C and $14 \% H_{2}$. Excess air supplied is 50% for combustion. Consider air to have 23.2% of oxygen by mass and remaining as nitrogen, molecular weights of carbon, oxygen, nitrogen and hydrogen are 12, 16, 14 and 1 respectively. Also estimate the change in internal energy of per kg of products when cooled from $2100^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ when the internal energies of combustion products are as under,

$T^{\circ} \mathrm{C}$		Internal energy, $\mathrm{kJ} / \mathrm{kg}$		
	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$	N_{2}	O_{2}
2100	2040	3929	1823	1693
900	677	1354	694	635

Solution:

Theoretical mass of oxygen required per kg of fuel depending upon its' constituents

$$
\begin{aligned}
\mathrm{C}+\mathrm{O}_{2} & \rightarrow \mathrm{CO}_{2} \\
12 \mathrm{~kg}+32 \mathrm{~kg} & \rightarrow 44 \mathrm{~kg} \\
\text { or, } \quad 1 \mathrm{~kg}+\frac{8}{3} \mathrm{~kg} & \rightarrow \frac{11}{3} \mathrm{~kg} \\
\text { or, } \quad 0.86 \mathrm{~kg}+2.29 \mathrm{~kg} & \rightarrow 3.15 \mathrm{~kg}
\end{aligned}
$$

For hydrogen,

$$
\begin{aligned}
2 \mathrm{H}_{2}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
4 \mathrm{~kg}+32 \mathrm{~kg} & \rightarrow 36 \mathrm{~kg} \\
1 \mathrm{~kg}+8 \mathrm{~kg} & \rightarrow 9 \mathrm{~kg} \\
0.14 \mathrm{~kg}+1.12 \mathrm{~kg} & \rightarrow 1.26 \mathrm{~kg}
\end{aligned}
$$

Hence, minimum mass of oxygen required kg per kg of fuel $=\left(0.86 \times \frac{8}{3}+0.14 \times 8\right)=3.41 \mathrm{~kg}$
As it is given that 50% excess air is supplied so the excess oxygen $=3.41 \times 0.5=1.705 \mathrm{~kg}$
Total oxygen supplied $=3.41+1.705=5.115 \mathrm{~kg}$
Constituents of exhaust gases per kg of fuel, $\mathrm{CO}_{2}=\frac{11}{3} \times 0.86=3.15 \mathrm{~kg}$

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O} & =9 \times 0.14=1.26 \mathrm{~kg} \\
\mathrm{~N}_{2} & =\left(\frac{5.115 \times 76.8}{23.2}\right)=16.932 \mathrm{~kg}
\end{aligned}
$$

Excess $\mathrm{O}_{2}=1.705 \mathrm{~kg}$
For one kg of fuel the composition of combustion products is as under,

Exaust gas constituents (x)	Gravimetric analysis \% $g=\frac{(x \times 100)}{\Sigma(x)}$	Molecular weight, y	Proportional volume, $z=\frac{g}{y}$	Volumetric analysis \%, $v=\frac{(z \times 100)}{\Sigma(z)}$
$\mathrm{CO}_{2}=3.15 \mathrm{~kg}$	13.67	44	0.311	8.963
$\mathrm{H}_{2} \mathrm{O}=1.26 \mathrm{~kg}$	5.47	18	0.304	8.761
$\mathrm{~N}_{2}=16.932 \mathrm{~kg}$	73.47	28	2.624	75.619
$\mathrm{O}_{2}=1.705 \mathrm{~kg}$	7.39	32	0.231	6.657
Total $=23.047$	100%		3.47	100%

Change in internal energy for given temperature variation shall be estimated as under, on gravimetric basis

Mass fraction of constituents of exhaust gases (g)	Change in internal energy per kg of constituents, $(b) \quad \mathrm{kJ} / \mathrm{kg}$	Change in internal energy $(\mathrm{c})=(\mathrm{g} \times \mathrm{b})$, kJ
$\mathrm{CO}_{2}=0.1367$	$2040-677=1363$	186.32
$\mathrm{H}_{2} \mathrm{O}=0.0547$	$3929-1354=2575$	140.85
$\mathrm{~N}_{2}=0.7347$	$1823-694=1129$	829.48
$\mathrm{O}_{2}=0.0739$	$1693-635=1058$	78.19

Total change in internal energy $=1234.84 \mathrm{~kJ} / \mathrm{kg}$ of exhaust gases
Change in internal energy $=1234.84 \mathrm{~kJ} / \mathrm{kg}$ of exhaust gases
Ans.
5. Determine the percentage excess air supplied to boiler for burning the coal having following composition on mass basis,

$$
\begin{array}{r}
\mathrm{C}: 0.82 \\
\mathrm{H}_{2}: 0.05 \\
\mathrm{O}_{2}: 0.08 \\
\mathrm{~N}_{2}: 0.03 \\
\mathrm{~S}: 0.005 \\
\text { moisture: } 0.015
\end{array}
$$

Volumetric analysis of dry flue gases shows the following composition,

$$
\begin{aligned}
\mathrm{CO}_{2} & =10 \% \\
\mathrm{CO} & =1 \% \\
\mathrm{~N}_{2} & =82 \% \\
\mathrm{O}_{2} & =7 \%
\end{aligned}
$$

Solution:

For constituent components combustion reactions are as under. Out of given constituents only C, H_{2}, and S shall require oxygen for burning reaction.

$$
\begin{aligned}
\mathrm{C}+\mathrm{O}_{2} & \rightarrow \mathrm{CO}_{2} \\
12 \mathrm{~kg}+32 \mathrm{~kg} & \rightarrow 44 \mathrm{~kg} \\
1 \mathrm{~kg}+\frac{8}{3} \mathrm{~kg} & \rightarrow \frac{11}{3} \mathrm{~kg} \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
4 \mathrm{~kg}+32 \mathrm{~kg} & \rightarrow 36 \mathrm{~kg} \\
1 \mathrm{~kg}+8 \mathrm{~kg} & \rightarrow 9 \mathrm{~kg} \\
\mathrm{~S}+\mathrm{O}_{2} & \rightarrow \mathrm{SO}_{2} \\
32 \mathrm{~kg}+32 \mathrm{~kg} & \rightarrow 64 \mathrm{~kg} \\
1 \mathrm{~kg}+1 \mathrm{~kg} & \rightarrow 2 \mathrm{~kg}
\end{aligned}
$$

Net mass of oxygen required per kg of coal

$$
\begin{aligned}
& =\left\{\left(0.82 \times \frac{8}{3}\right)+(0.05 \times 8)+(0.005 \times 1)-(0.08)\right\} \\
& =2.512 \mathrm{~kg}
\end{aligned}
$$

\qquad
Mass of air required per kg of coal, considering oxygen to be 23% in the air by mass,

$$
\begin{aligned}
& =\frac{100}{23} \times 2.512 \\
& =10.92 \mathrm{~kg} \text { air per } \mathrm{kg} \text { of coal }
\end{aligned}
$$

Volume of constituent per mol. of dry flue gas \% (a)	Molecular wt. (b)	Proportional mass of constituents $c=(a \times b)$	Mass per $k g$ of flue gas $d=\frac{c}{\Sigma(c)}$	Mass of carbon per kg of dry flue gas
$\mathrm{CO}_{2}=10$	44	440	0.147	$\frac{0.147 \times 12}{44}=0.04009$
$\mathrm{CO}=1$	28	28	0.0094	$\frac{0.0094 \times 12}{28}=0.00403$
$\mathrm{~N}_{2}=82$	28	2296	0.768	$\frac{\text { Total carbon per } \mathrm{kg} \text { of }}{\text { dry flue gas }=0.04412}$
$\mathrm{O}_{2}=7$	32	224	0.075	

Carbon is given to be 0.82 kg in per unit mass of coal and the mass of carbon per unit mass of dry flue gas is 0.04412 kg so the mass of dry flue gases per kg of coal shall be

$$
\begin{aligned}
& =\frac{\text { Carbon mass per kg of dry flue gases }}{\text { Carbon mass per } \mathrm{kg} \text { of coal }} \\
& =\frac{0.82}{0.04412} \\
& =18.59 \mathrm{~kg}
\end{aligned}
$$

Therefore, the mass of CO per kg of coal $=18.59 \times 0.0094$

$$
=0.1747 \mathrm{~kg}
$$

The mass of excess O_{2} per kg of coal (i.e. unutilized O_{2}) $=18.59 \times 0.075$

$$
=1.394 \mathrm{~kg}
$$

The CO produced in combustion products per kg of coal shall further require O_{2} for its' complete burning to CO_{2}.

$$
\begin{aligned}
2 \mathrm{CO}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{CO}_{2} \\
56 \mathrm{~kg}+32 \mathrm{~kg} & \rightarrow 88 \mathrm{~kg} \\
1 \mathrm{~kg}+\frac{4}{7} \mathrm{~kg} & \rightarrow \frac{11}{7} \mathrm{~kg}
\end{aligned}
$$

The mass of O_{2} required for complete burning of 0.1747 kg CO per kg of coal shall be $=0.1747$
$\times \frac{4}{7}=0.998 \mathrm{~kg}$.
Out of excess O_{2} coming out with dry flue gases 0.0998 kg of O_{2} shall be utilized for complete burning of CO . Thus, the net excess O_{2} per kg of coal $=1.394-0.0998=1.2942 \mathrm{~kg} \mathrm{O}_{2}$

Hence, excess air required for $1.2942 \mathrm{~kg} \mathrm{O}_{2}=\frac{1.2942 \times 100}{23}=5.627 \mathrm{~kg}$ air

Fuels and Combustion
$\%$ excess air $=\frac{5.627}{10.92} \times 100=51.53 \%$
\% excess air $=51.53 \%$ Ans.
6. $\mathrm{C}_{2} \mathrm{H}_{6}$ burns completely with air when the air-fuel ratio is 18 on mass basis. Determine the percent excess or percent deficiency of air as appropriate and the dew point temperature of combustion products when cooled at 1 atm.

Solution:

Given air-fuel ratio on mass basis is first transformed into the air-fuel ratio on molar basis.

$$
\begin{aligned}
\text { A/F ratio on molar basis } & =\frac{\text { No.of moles of air }}{\text { No. of moles of fuel }}=\frac{\left(\frac{\text { Mass of air }}{\text { Mol.wt. of air }}\right)}{\left(\frac{\text { Mass of fuel }}{\text { Mol.wt. of fuel }}\right)} \\
& =\frac{\text { Mass of air }}{\text { Mass of fuel }} \times \frac{\text { Mol.wt.of fuel }}{\text { Mol.wt.of air }} \\
& =(\text { A/F ratio on mass basis }) \times \frac{\text { Mol.wt.of } \mathrm{C}_{2} \mathrm{H}_{6}}{\text { Mol.wt.of air }} \\
& =18 \times \frac{30}{29}
\end{aligned}
$$

A / F ratio on molar basis $=18.62$
Chemical reaction for complete combustion may be given as,

$$
\mathrm{C}_{2} \mathrm{H}_{6}+n\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow a \mathrm{CO}_{2}+b \mathrm{~N}_{2}+d \mathrm{O}_{2}+e \mathrm{H}_{2} \mathrm{O}
$$

Also, for complete combustion there will be $\left(\frac{18.62}{4.76}\right)$ moles of air for each mole of fuel,
So, $n=3.912$
Equating coefficient

$$
\begin{array}{rlrl}
\mathrm{C}: 2 & =a & \text { Solving we get, } & \\
\mathrm{H}: 6 & =2 e & & =2 \\
\mathrm{O}: 2 n & =2 a+2 d+e & & =14.71 \\
5 \times 2 n) & =2 b & & d=0.412 \\
& & e=3
\end{array}
$$

$\mathrm{N}:(3.76 \times 2 n)=2 b$
Complete combustion reaction may be given as,

$$
\mathrm{C}_{2} \mathrm{H}_{6}+3.912\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 2 \mathrm{CO}_{2}+14.71 \mathrm{~N}_{2}+0.412 \mathrm{O}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

or, $\quad \mathrm{C}_{2} \mathrm{H}_{6}+3.5\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 2 \mathrm{CO}_{2}+13.16 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
Hence air-fuel ratio (theoretical) on mol. basis

$$
(\mathrm{A} / \mathrm{F})=\frac{3.5 \times 4.76}{1}=16.66
$$

Since theoretical air-fuel ratio is less than actual so it means excess air is supplied.

$$
\begin{aligned}
\text { Percentage of excess air } & =\frac{(\mathrm{A} / \mathrm{F})_{\text {actual }}-(\mathrm{A} / \mathrm{F})_{\text {theoretical }}}{(\mathrm{A} / \mathrm{F})_{\text {theoretical }}} \times 100 \\
& =\left(\frac{18.62-16.66}{16.66}\right) \times 100
\end{aligned}
$$

\qquad

$$
=11.76 \%
$$

$$
\begin{aligned}
& \text { Percentage of excess air }=11.76 \% \text { Ans. } \\
& \text { Total amount of mixture }=(a+b+d+e) \\
& =(2+14.71+0.412+3) \\
& =20.122 \mathrm{~kg} / \mathrm{mol} \text {. of fuel }
\end{aligned}
$$

Partial pressure of water vapour $P=\left(\frac{e}{a+b+d+e}\right) \times 1.013$

$$
=0.151 \mathrm{bar}
$$

From steam table saturation temperature corresponding to 0.151 bar is seen to be $54^{\circ} \mathrm{C}$.

$$
\text { Dew point temperature }=54^{\circ} \mathrm{C} \quad \text { Ans. }
$$

7. Obtain the volumetric composition of combustion products obtained after combustion of $\mathrm{C}_{7} \mathrm{H}_{16}$ (heptane) being burnt with 50% excess air. Also obtain the average molecular weight and specific volume of combustion products at S.T.P. Consider the volume per kg mol. at S.T.P. to be $22.4 \mathrm{~m}^{3}$ and air to have $21 \% \mathrm{O}_{2}$ and $79 \% \mathrm{~N}_{2}$ by volume .

Solution:

Here excess air supplied shall result in unutilized O_{2} with combustion products.
*Excess O_{2} supplied $=0.5 \times 73.33=36.665 \mathrm{~m}^{3}$
Total O_{2} supplied $=73.33+36.665=109.995 \mathrm{~m}^{3}$
**Total N_{2} supplied $=(109.995) \times \frac{79}{21}=413.79 \mathrm{~m}^{3}$
Total volume of combustion products $=\{46.67+53.33+36.665+413.79\}$

$$
=550.455 \mathrm{~m}^{3}
$$

Average molecular weight of combustion products can be estimated by summation of mass of constituents per mol. of combustion products.

Constituents of combustion products	Fraction of constituents per unit products $b=\frac{a}{\Sigma(a)}$	Molecular weight (c)	Mass of constituents per mol. of combustion $(d=b \times c)$	Average molecular weight of combustion products $c=\Sigma(d)$
$\mathrm{CO}_{2}(=46.67)$	$\frac{46.67}{550.455}=0.0848$	44	3.7312	
$\mathrm{H}_{2} \mathrm{O}(=53.33)$	$\frac{53.33}{550.455}=0.0969$	18	1.7442	28.65
$\mathrm{O}_{2}(=36.665)$	$\frac{36.665}{550.455}=0.0666$	32	2.1312	
$\mathrm{~N}_{2}(=413.79)$	$\frac{413.79}{550.455}=0.7517$	28	21.0476	

Constituents of $\mathrm{C}_{7} \mathrm{H}_{16}$	Proportional mass	Proportional volume	\% Volume	O_{2} required per m^{3} of fuel	O_{2} required for $100 \mathrm{~m}^{3}$ of fuel	\% Combustion product per $100 \mathrm{~m}^{3}$ of fuel			
	(a)	$(b)=\frac{a}{m o l . w t}$	$(c)=\frac{b \times 100}{\Sigma(b)}$	(d)	(e) $=c \times d$	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$	O_{2}	N_{2}
C	$12 \times 7=84$	7	46.67	1	46.67	46.67			
(mol. wt.				$\left(\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}\right)$					
= 12)				$(1 \mathrm{~mol} 1 \mathrm{~mol} \rightarrow 1 \mathrm{~mol}$.)					
H_{2}	$2 \times 8=16$	8	53.33	0.5	26.66		53.33		
(mol. wt.				$\left(2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\right)$					
=2)				2 mol 1 mol 2 mol					
		$\Sigma(\mathrm{b})=15$			73.33	46.67	53.33	$36.66{ }^{\text {² }}$	413.79

Specific volume $=\frac{22.4}{28.65}=0.7818 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\begin{aligned}
\text { Average mol. wt. } & =28.65 \\
\text { Specific volume } & =0.7818 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

Ans.

Mass of fuel having 0.864 kg of carbon $=\frac{0.864}{\binom{\text { Mass of carbon }}{\text { per kg of fuel }}}=\frac{0.864}{0.847}=1.02 \mathrm{~kg}$
It shows that one mol of dry flue gases shall require burning of 1.02 kg of fuel and 29.89 kg of air.
So the air-fuel ratio $=\frac{29.89}{1.02}=29.3$
$\%$ Excess air $=\frac{(29.3-15) \times 100}{15}=95.33 \%$

$$
\begin{array}{l|l}
\text { Air fuel ratio }=29.3 & \text { Ans. } \\
\% \text { excess air }=95.33 \%
\end{array}
$$

Here the calculations above have been based on balancing the carbon present. These can also be done based on oxygen-hydrogen balance as under;

Alternate approach (Not very accurate)
Mass of oxygen present in one mol of dry flue gas = Mass of oxygen in CO_{2}

$$
+ \text { Mass of } \mathrm{O}_{2} \text { appearing with dry flue gas }
$$

$$
\begin{aligned}
& =\left(\frac{3.168 \times 32}{44}\right)+(0.108 \times 32) \\
& =5.76 \mathrm{~kg}
\end{aligned}
$$

Mass of oxygen present with nitrogen in air $=\left(\frac{22.96 \times 23.2}{76.8}\right)=6.94 \mathrm{~kg}$
Here, the mass of oxygen supplied in air $(6.94 \mathrm{~kg})$ is more than oxygen present in dry flue gases (5.76 kg) which indicates that some oxygen gets consumed in formation of water. Orsat analysis analyzes dry flue gas.

Mass of oxygen forming water $\left(\mathrm{H}_{2} \mathrm{O}\right)=6.94-5.76=1.18 \mathrm{~kg}$

$$
\begin{aligned}
2 \mathrm{H}_{2}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
4 \mathrm{~kg}+32 \mathrm{~kg} & \rightarrow 36 \mathrm{~kg} \\
1 \mathrm{~kg}+8 \mathrm{~kg} & \rightarrow 9 \mathrm{~kg}
\end{aligned}
$$

Mass of hydrogen in fuel $=\left(\frac{1.18}{8}\right)=0.1475 \mathrm{~kg}$

$$
\text { Mass of fuel }=\frac{0.1475}{0.153}=0.964 \mathrm{~kg}
$$

Thus one mol of dry flue gases are generated when 0.964 kg of fuel is burnt with 29.89 kg of air.
8. During Orsat analysis of the combustion products of an engine running on diesel $\left(\mathrm{C}_{12} \mathrm{H}_{26}\right)$ the CO_{2} and O_{2} are found to be 7.2% and 10.8% respectively and rest is N_{2} by volume. Determine the airfuel ratio and percentage excess air considering air to have O_{2} and N_{2} in proportion of 23.2% and 76.8% respectively by mass.

Solution:

There are two approaches for getting the air-fuel ratio and subsequently excess air. One is by carbon-balancing and other by balancing of oxygen-hydrogen.

Minimum air required for complete combustion of 1 kg of fuel can be obtained considering the composition of fuel i.e. $\mathrm{C}_{12} \mathrm{H}_{26}$.

Mass of constituent per kg of fuel, $\mathrm{C}_{12} \mathrm{H}_{26}$ (a)	Oxygen required per kg of constituents (b)	Oxygen required per kg of fuel $\text { (c) }=a \times b$	Minimum air required per kg of fuel for complete combustion
$\begin{aligned} \mathrm{C} & =\frac{12 \times 12}{(12 \times 12+26 \times 1)} \\ & =0.847 \end{aligned}$	$\frac{8}{3}$	$\frac{8}{3} \times 0.847=2.259$	$\frac{100}{23.2} \times 3.483$
$\begin{aligned} \mathrm{H}_{2} & =\frac{26 \times 1}{(12 \times 12+26 \times 1)} \\ & =0.153 \end{aligned}$	8	$8 \times 0.153=1.224$ Total $=3.483$	$=15 \mathrm{~kg}$

Dry flue gases contain 7.2% of $\mathrm{CO}_{2}, 10.8 \% \mathrm{O}_{2}$ and $82 \% \mathrm{~N}_{2}$ by volume. This volumetric composition is to be converted to gravimetric (mass basis) i.e. mol fractions may be estimated as mol is unit of volume.

Mass of constituent in one mol of dry flue gases $=$ Volume fraction \times Mol. wt. of constituent
Mass of CO_{2} in one mol of dry flue gases $=0.072 \times 44=3.168 \mathrm{~kg}$
Mass of N_{2} in one mol of dry flue gases $=0.82 \times 28=22.96 \mathrm{~kg}$
Corresponding to N_{2} the mass of air per mol of dry flue gases can be obtained as,

$$
=\frac{22.96 \times 100}{76.8}=29.89 \mathrm{~kg}
$$

Carbon present in one mol of dry flue gases $=\left(3.168 \times \frac{12}{44}\right)=0.864 \mathrm{~kg}$
Therefore, from the carbon present in one mol of dry flue gases the amount of fuel containing this much of carbon can be calculated.

$$
\begin{aligned}
& \text { So, air fuel ratio }=\frac{29.89}{0.964}=31.0 \\
& \% \text { excess air }=\frac{(31-15)}{15} \times 100=106.67 \%
\end{aligned}
$$

Air-fuel ratio and \% excess air calculated differ from those estimated using balancing of carbon. Generally, carbon balancing is used for getting accurate results.
9. Fuel having 88% C and $12 \% \mathrm{H}_{2}$ is burnt using 98% of air compared to theoretical air requirement for combustion. Determine the following considering that H_{2} is completely burnt and carbon burns to CO and CO_{2} leaving no free carbon.
(a) \% analysis of dry flue gases by volume
(b) \% heat loss due to incomplete combustion. Consider gross calorific values in $\mathrm{kJ} / \mathrm{kg}$ as, C to $\mathrm{CO}_{2}=34694 \mathrm{~kJ} / \mathrm{kg}, C$ to $C O=10324 \mathrm{~kJ} / \mathrm{kg}, \mathrm{H}_{2}=143792 \mathrm{~kJ} / \mathrm{kg}$
\qquad

Solution:

Mass of constituent per kg of fuel	Oxygen required per kg of constituent	Oxygen required per kg of fuel	Minimum air required per kg of fuel for complete combustion
$($ a $)$	(b)	$c=(a \times b)$	$\frac{100}{23.2} \times \Sigma(c)$

Actual air supplied for burning $=0.98 \times 14.27=13.98 \mathrm{~kg}$
Less amount of air supplied $=14.27-13.98=0.29 \mathrm{~kg}$. Due to this amount of air complete carbon could not get burnt into CO_{2} and CO is there.

Let us write burning of carbon to yield CO and CO_{2}

$$
\begin{array}{rl}
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} & 2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO} \\
12 \mathrm{~kg}+32 \mathrm{~kg} \rightarrow 44 \mathrm{~kg} & 24 \mathrm{~kg}+32 \mathrm{~kg} \rightarrow 56 \mathrm{~kg} \\
1 \mathrm{~kg}+2.67 \mathrm{~kg} \rightarrow 3.67 \mathrm{~kg} & 1 \mathrm{~kg}+1.33 \mathrm{~kg} \rightarrow 2.33 \mathrm{~kg}
\end{array}
$$

Thus the amount of air saved by burning C to CO instead of CO_{2}, per kg of carbon

$$
\begin{aligned}
& =(2.67-1.33) \times \frac{100}{23.2} \\
& =5.78 \mathrm{~kg}
\end{aligned}
$$

Thus the amount of carbon burnt to CO per kg of fuel shall be

$$
=\frac{0.29 \times 0.88}{5.78}=0.044 \mathrm{~kg}
$$

Out of 0.88 kg C per kg of fuel only 0.044 kg C gives CO while remaining ($0.88-0.044=0.836$) 0.836 kg C shall yield CO_{2}.

Volumetric analysis of combustion products is present as under.

Constituents of dry flue gas	Mass of constituent per kg of fuel (a)	Proportional Volume in mol $(b)=\left(\frac{a}{\text { Mol.wt }}\right)$	Percentage volume $(c)=\frac{b}{\Sigma(b)} \times 100$
CO_{2}	$0.836 \times \frac{44}{12}=3.06$	$\frac{3.06}{44}=0.069$	15.11%
CO	$0.044 \times \frac{28}{12}=0.103$	$\frac{0.103}{28}=0.0037$	0.81%
$\mathrm{~N}_{2}$	$0.768 \times 13.98=10.74$	$\frac{10.74}{28}=0.384$	84.08%
		$\Sigma(b)=0.4567$	100%

$$
\begin{array}{|l}
\hline \text { Volumetric analysis of dry flue gas } \\
\qquad=15.11 \% \mathrm{CO}_{2}, 0.81 \% \mathrm{CO}, 84.08 \% \mathrm{~N}_{2} \\
\hline
\end{array}
$$

Ans.
Calorific value of fuel in actual case due to incomplete burning of carbon.

$$
\begin{aligned}
& =(0.836 \times 34694)+(0.044 \times 10324) \\
& =29458.44 \mathrm{~kJ}
\end{aligned}
$$

Theoretical calorific value of fuel with complete burning of carbon

$$
=(0.88 \times 34694)=30530.7 \mathrm{~kJ}
$$

Theoretical calorific value of fuel $=\{(0.88 \times 34694)+(0.12 \times 143792)\}$

$$
=47785.76 \mathrm{~kJ}
$$

Percentage heat loss due to incomplete combustion

$$
\begin{aligned}
& =\frac{(30530.72-29458.44)}{47785.76} \times 100 \\
& =2.24 \%
\end{aligned}
$$

$$
\% \text { Heat loss }=2.24 \%
$$

Ans.
10. During production of gas the air and steam are passed through an incandescent coal bed. The coal is seen to have 95% of carbon and remaining as incombustible. The gas produced has hydrogen, nitrogen and carbon monoxide. Determine, the steam required per kg of coal and total air required per kg of coal when the heat of formation for steam is $147972 \mathrm{~kJ} / \mathrm{kg}$ of hydrogen and for carbon monoxide it is $10324 \mathrm{~kJ} / \mathrm{kg}$ of carbon. Also obtain volumetric analysis of gas. Take temperature of water as $20^{\circ} \mathrm{C}$ at 1 atm pressure. Take air to have $23.2 \% \mathrm{O}_{2}$ and $76.8 \% \mathrm{~N}_{2}$ by mass.

Solution:

Combustion equation can be written, separately for reaction with air and with steam as both are passed through.

Reaction with air

$$
\begin{aligned}
2 \mathrm{C}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{CO} \\
24 \mathrm{~kg}+32 \mathrm{~kg} & \rightarrow 56 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{equation*}
1 \mathrm{~kg} \text { of } \mathrm{C}+\frac{4}{3} \mathrm{~kg} \text { of } \mathrm{O}_{2} \rightarrow \frac{7}{3} \mathrm{~kg} \text { of } \mathrm{CO}+10324 \mathrm{~kJ} \tag{i}
\end{equation*}
$$

Reaction with steam

$$
\begin{aligned}
& \mathrm{C}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \\
& 12 \mathrm{~kg}+18 \mathrm{~kg} \rightarrow 28 \mathrm{~kg}+2 \mathrm{~kg} \\
& 1 \mathrm{~kg} \mathrm{C}+\frac{3}{2} \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} \rightarrow \frac{7}{3} \mathrm{~kg} \mathrm{CO}+\frac{1}{6} \mathrm{~kg} \mathrm{H}_{2}+\left\{10324-\frac{1}{6}\right. \\
& \times 147972-\frac{3}{2} \underbrace{((100-20) \times 4.18+2253)\}}_{\text {Sensible heat }+ \text { Latent heat }}
\end{aligned}
$$

$$
\begin{equation*}
1 \mathrm{~kg} \mathrm{C}+\frac{3}{2} \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} \rightarrow \frac{7}{3} \mathrm{~kg} \mathrm{CO}+\frac{1}{6} \mathrm{~kg} \mathrm{H}_{2}-182191 \mathrm{~kJ} \tag{ii}
\end{equation*}
$$

\qquad
Two equations for burning with air and reaction with steam can be balanced in terms of heat released provided equation (ii) is multiplied by $\left(\frac{10324}{182191}\right)$ throughout, so equation (ii) gets modified into, $0.057 \mathrm{~kg} \mathrm{C}+0.085 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$ (steam) $\rightarrow 0.1322 \mathrm{~kg} \mathrm{CO}+0.0094 \mathrm{~kg} \mathrm{H}_{2}-10324 \mathrm{~kJ}$
Thus, total carbon used from reaction (i) and (iii) with no heat release can be given as,

$$
\begin{equation*}
=(1+0.057) \mathrm{kg} \mathrm{C}=1.057 \mathrm{~kg} \text { carbon. } \tag{iii}
\end{equation*}
$$

Steam required per kg of coal $=\frac{0.085 \times 0.95}{1.057}=0.0764 \mathrm{~kg}$
Total air required per kg of coal $=\left(\frac{4}{3} \times \frac{0.95}{1.057}\right) \times \frac{100}{23.2}=5.16 \mathrm{~kg}$

$$
\begin{aligned}
& \text { Steam required per } \mathrm{kg} \text { of coal }=0.0764 \mathrm{~kg} \\
& \text { Air required per } \mathrm{kg} \text { of coal }=5.16 \mathrm{~kg} \\
& \text { Ans. } \\
& \text { Total carbon monoxide }=(2.333+0.132) \\
& =2.465 \mathrm{~kg} \\
& \text { Total hydrogen }=0.0094 \mathrm{~kg} \\
& \text { Total nitrogen }=\frac{4}{3} \times \frac{76.8}{23.2}=4.414 \mathrm{~kg}
\end{aligned}
$$

Volumetric analysis

Constituents	Mol. wt.	Proportional volume in mol. (a)	\% volume of gas
	(b)	$(c)=\frac{a}{b}$	$(d)=\frac{c}{\Sigma(c)} \times 100$
$\mathrm{CO}=2.465 \mathrm{~kg}$	28	0.088	$35.16 \%, \mathrm{CO}$
$\mathrm{H}_{2}=0.0094 \mathrm{~kg}$	2	0.0047	$1.88 \%, \mathrm{H}_{2}$
$\mathrm{~N}_{2}=4.414 \mathrm{~kg}$	28	0.1576	$62.96 \%, \mathrm{~N}_{2}$
		$\Sigma(\mathrm{c})=0.2503$	100%

$$
\% \text { by volume }=35.16 \% \mathrm{CO}, 1.88 \% \mathrm{H}_{2}, 62.96 \% \mathrm{~N}_{2} \quad \text { Ans. }
$$

11. Determine the higher and lower calorific values of coal for which following observations are made in bomb calorimeter.

$$
\begin{aligned}
\text { Mass of coal sample } & =1 \mathrm{gm} \\
\text { Mass of water in bomb calorimeter } & =2.5 \mathrm{~kg} \\
\text { Initial temperature of water } & =20^{\circ} \mathrm{C} \\
\text { Maximum recorded temperature of water } & =22.6^{\circ} \mathrm{C} \\
\text { Water equivalent of apparatus } & =750 \mathrm{gm} \\
\text { Cooling correction } & =+0.018^{\circ} \mathrm{C}
\end{aligned}
$$

Consider coal to have 5\% H_{2} in it.

Solution:

Using the cooling correction the corrected rise in temperature of water can be obtained as,

$$
=(22.6-20)+0.018=2.618^{\circ} \mathrm{C}
$$

Heat supplied to calorimeter and water $=(2500+750) \times 2.618$

$$
=8508.5 \mathrm{Cal} / \mathrm{gm}
$$

Higher calorific value of coal $=8508.5 \mathrm{Cal} / \mathrm{gm}$
In order to get lower calorific value the heat carried by the steam formation is to be excluded from higher calorific value.

$$
\begin{aligned}
2 \mathrm{H}_{2}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
1 \mathrm{~kg} \mathrm{H}_{2}+8 \mathrm{~kg} \mathrm{O}_{2} & \rightarrow 9 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$($ Mass of steam formed per kg of coal) $=0.05 \times 9$

$$
=0.45 \mathrm{gm} \text { steam per } \mathrm{gm} \text { of coal. }
$$

From steam table $h_{f g}$ at $20^{\circ} \mathrm{C}=586 \mathrm{kcal} / \mathrm{kg}$

$$
\begin{aligned}
\text { Lower heating value of coal } & =8508.5-\left(0.45 \times \frac{586 \times 10^{3}}{10^{3}}\right) \\
& =8244.8 \mathrm{cal} / \mathrm{gm}
\end{aligned}
$$

Higher heating value $=8508.5 \mathrm{kcal} / \mathrm{kg}$
Lower heating value $=8244.8 \mathrm{kcal} / \mathrm{kg} \quad$ Ans.
12. Composition of a fuel by volume is as follows:

$$
\begin{array}{r}
\mathrm{H}_{2}-52 \% \\
\mathrm{CH}_{4}-20 \% \\
\mathrm{CO}-16 \% \\
\mathrm{CO}_{2}-3 \% \\
\mathrm{O}_{2}-2 \% \\
\mathrm{~N}_{2}-7 \%
\end{array}
$$

Higher calorific value of fuel constituents $\mathrm{H}_{2}, \mathrm{CO}$ and CH_{4} may be taken as $28424 \mathrm{~kJ} / \mathrm{m}^{3}$, $27463 \mathrm{~kJ} / \mathrm{m}^{3}, 87780 \mathrm{~kJ} / \mathrm{m}^{3}$ at 1 bar and $0^{\circ} \mathrm{C}$ respectively. The latent heat of one kg of water for transformation to steam at 1 bar, $0^{\circ} \mathrm{C}$ may be taken as 2445 kJ . Air may be considered to have 21% O_{2} by volume. Determine
(a) the volume of air required for complete combustion of $1 \mathrm{~m}^{3}$ of fuel.
(b) the volumetric analysis of dry flue gases considering 20% excess air.
(c) the lower calorific value of fuel.

Solution:

Combustion reactions for constituents are,
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$,
1 mol 0.5 mol 1 mol
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$,
1 mol 2 mol 2 mol 1 mol
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$,
1 mol 0.5 mol 1 mol
Minimum air required $=0.72 \times \frac{100}{21}=3.43 \mathrm{~m}^{3}$
Volume of air required for complete combustion $=3.43 \mathrm{~m}^{3}$
Ans.

Volumetric analysis

| $\begin{array}{c}\text { Constituents } \\ \text { per } m^{3} \text { of fuel } \\ (a)\end{array}$ | $\begin{array}{c}\mathrm{O}_{2} \\ m^{3} \\ \text { required per } \\ \text { of constituents } \\ \text { of fuel (b) }\end{array}$ | $\begin{array}{c}\mathrm{O}_{2} \\ \text { per required } \\ (c)=a \times b\end{array}$ | Combustion products per m^{3} of fuel | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |$)$

Total combustion product per m^{3} of fuel $=4.776 \mathrm{~m}^{3}$
Total dry flue gases per m^{3} of fuel $=3.856 \mathrm{~m}^{3}$
Excess air supplied is 20% so total volume of air supplied $=$ Minimum air required + excess air supplied.

Excess air supplied $=0.2 \times 3.43=0.686 \mathrm{~m}^{3}$
Total air supplied $=3.43+0.686=4.116 \mathrm{~m}^{3}$ air per m^{3} of fuel
${ }^{* *}$ Oxygen present in excess air $=0.72 \times 0.2=0.144 \mathrm{~m}^{3}$, This will be with combustion products
Nitrogen present in total air $=\frac{4.116 \times 79}{21}=3.252 \mathrm{~m}^{3}$
${ }^{* *}$ Since $0.07 \mathrm{~m}^{3} \mathrm{~N}_{2}$ per m^{3} of fuel is already present in fuel so total nitrogen available in combustion products $=3.252+0.07=3.322 \mathrm{~m}^{3}$ per m^{3} of fuel.

$$
\begin{gathered}
\% \text { by volume of } \mathrm{CO}_{2}=\frac{(0.20+0.16+0.03) \times 100}{3.856}=10.12 \% \\
\% \text { by volume of } \mathrm{O}_{2}=\frac{0.144 \times 100}{3.856}=3.73 \% \\
\% \text { by volume of } \mathrm{N}_{2}=\frac{3.322 \times 100}{3.856}=86.15 \%
\end{gathered}
$$

Volumetric composition of dry flue gases $=10.12 \% \mathrm{CO}_{2}$,

$$
\text { 3.73\% } \mathrm{O}_{2}, 86.15 \% \mathrm{~N}_{2} \quad \text { Ans. }
$$

Higher calorific value may be obtained from the values given for constituents $\mathrm{H}_{2}, \mathrm{CH}_{4}$ and CO .

$$
\begin{aligned}
& =\{(0.52 \times 28424)+(0.20 \times 27463)+(0.16 \times 87780)\} \\
& =34317.88 \mathrm{~kJ} / \mathrm{m}^{3}
\end{aligned}
$$

Steam produced during combustion of $1 \mathrm{~m}^{3}$ of fuel.

$$
m_{\text {steam }}=\frac{0.92}{22.4}=0.0411 \mathrm{~kg}
$$

Lower calorific value $=$ Higher calorific value $-\left(m_{\text {steam }} \times\right.$ latent heat $)$

$$
\begin{aligned}
& =\{34317.88-(0.0411 \times 2445)\} \\
& =34217.39 \mathrm{~kJ} / \mathrm{m}^{3}
\end{aligned}
$$

Lower calorific value $=34217.39 \mathrm{~kJ} / \mathrm{m}^{3}$
Ans.
13. Determine the volume of air supplied for complete combustion of one m^{3} of fuel gas. If 40% excess air is supplied then find the percentage contraction in volume after the products of combustion have been cooled. The composition of fuel gas by volume is, $\mathrm{H}_{2}=20 \%, \mathrm{CH}_{4}=3 \%, \mathrm{CO}=22 \%, \mathrm{CO}_{2}=8 \%$, $N_{2}=47 \%$. Consider air to have $21 \% O_{2}$ and $79 \% N_{2}$ by volume.

Solution:
Combustion reactions for constituents are

$$
\begin{gathered}
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
1 \mathrm{~mol}_{0} 0.5 \mathrm{~mol} 1 \mathrm{~mol}^{2} \\
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\
1 \mathrm{~mol} 2 \mathrm{~mol} \quad 2 \mathrm{~mol} \quad 1 \mathrm{~mol} \\
2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} \\
1 \mathrm{~mol} 0.5 \mathrm{~mol} \quad 1 \mathrm{~mol}
\end{gathered}
$$

\qquad
Volumetric analysis (without excess air)

Constituents per m^{3}	O_{2} required per m^{3} of fuel constituents (b)	O_{2} required per m^{3} of fuel $\text { (c) }=a \times b$	Combustion products per m^{3} of fuel			
(a)			CO_{2}	$\mathrm{H}_{2} \mathrm{O}$	O_{2}	N_{2}
$\mathrm{H}_{2}=0.20$	0.5	0.1	-	0.2	-	-
$\mathrm{CH}_{4}=0.03$	2	0.06	0.03	0.06	-	-
$\mathrm{CO}=0.22$	0.5	0.11	0.22	-	-	-
$\mathrm{CO}_{2}=0.08$	-	-	0.08	-	-	
$\mathrm{N}_{2}=0.47$	-	- ${ }^{-}$	-	- -	-	0.47
		$\Sigma \mathrm{O}_{2}=0.27$	$\Sigma \mathrm{CO}_{2}=0.33$	$\Sigma \mathrm{H}_{2} \mathrm{O}=0.26$	-	$\Sigma \mathrm{N}_{2}=0.47$

Minimum volume of air required $=\frac{0.27 \times 100}{21}=1.286 \mathrm{~m}^{3}$ air per m^{3} of fuel.

$$
\text { Minimum air required }=1.286 \mathrm{~m}^{3} / \mathrm{m}^{3} \text { of fuel } \text { Ans. }
$$

With excess air there shall be additional amount of O_{2} and N_{2} present in combustion products.
With 40% excess air the dry flue gas shall comprise of following:
(i) $\mathrm{CO}_{2}=0.33 \mathrm{~m}^{3}$ per m^{3} of fuel.
(ii) $\mathrm{N}_{2}=0.47+$ nitrogen from total air (minimum air + excess air)

$$
\begin{aligned}
& =0.47+\left(1.286 \times 1.4 \times \frac{79}{100}\right) \\
& =1.89 \mathrm{~m}^{3} \text { per } \mathrm{m}^{3} \text { of fuel }
\end{aligned}
$$

(iii) $\mathrm{O}_{2}=$ oxygen from excess air

$$
\begin{aligned}
& =\left(\frac{1.286 \times 0.4 \times 21}{100}\right) \\
& =0.108 \mathrm{~m}^{3} \text { per } \mathrm{m}^{3} \text { of fuel }
\end{aligned}
$$

Total volume of dry flue gas formed $=(0.33+1.89+0.108) m^{3}$ per m^{3} of fuel

$$
=2.328 \mathrm{~m}^{3} \text { per } \mathrm{m}^{3} \text { of fuel. }
$$

Volume before combustion $=$ Volume of fuel gas + Volume of air supplied

$$
=\left(1+1.286^{\prime} 1.5\right) m^{3}=2.929 m^{3}
$$

$\%$ Contraction in volume $=\left(\frac{2.929-2.328}{2.929}\right) \times 100=20.52 \%$
$\%$ contraction in volume $=20.52 \%$ Ans.
14. A hydrocarbon fuel when burned with air gave the following Orsat analysis, $\mathrm{CO}_{2}: 11.94 \%$, $\mathrm{O}_{2}: 2.26 \%, \mathrm{CO}: 0.41 \%, \mathrm{~N}_{2}: 83.39 \%$

Determine,
(i) the air-fuel ratio on mass basis
(ii) the percent of carbon and hydrogen in the fuel on mass basis, and
(iii) percentage of theoretical air supplied.

Assume air to have 21% oxygen.

Solution:

Orsat analysis gives, $\mathrm{CO}_{2}=11.94 \%, \mathrm{O}_{2}=2.26 \%, \mathrm{CO}=0.41 \%, \mathrm{~N}_{2}=83.39 \%$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}=100-(11.94+2.26+0.41+83.39) \\
& \mathrm{H}_{2} \mathrm{O}=2 \%
\end{aligned}
$$

Let hydrogen fuel be ' $\mathrm{C}_{a} \mathrm{H}_{b}$ '.
$\mathrm{C}_{a} \mathrm{H}_{b}+d \cdot \mathrm{O}_{2}+\left(\frac{79}{21} \cdot d\right) \mathrm{N}_{2} \rightarrow \mathrm{e} \cdot \mathrm{CO}+f \mathrm{CO}_{2}+\frac{b}{2} \mathrm{H}_{2} \mathrm{O}+g \cdot \mathrm{O}_{2}+h \cdot \mathrm{~N}_{2}$
On mass basis,

$$
\rightarrow 28 e+44 f+9 b+32 g+28 h
$$

Mass of constituents of exhaust gas, $\mathrm{CO}_{2}=44 f, \mathrm{CO}=28 e, \mathrm{H}_{2} \mathrm{O}=9 b, \mathrm{O}_{2}=32 g, \mathrm{~N}_{2}=28 h$

$$
\text { Exhaust gas mass }=(28 e+44 f+9 b+32 g+28 h)
$$

As per analysis,

$$
\begin{aligned}
44 f & =0.1194(28 e+44 f+9 b+32 g+28 h) \\
28 e & =0.0041(28 e+44 f+9 b+32 g+28 h) \\
9 b & =0.02(28 e+44 f+9 b+32 g+28 h) \\
32 g & =0.0226(28 e+44 f+9 b+32 g+28 h) \\
28 b & =0.8339(28 e+44 f+9 b+32 g+28 h)
\end{aligned}
$$

Also,

$$
12 \cdot a=12 e+12 f, \text { or, } a=e+f
$$

$$
\begin{aligned}
\frac{79}{21} \cdot d \cdot 28 & =28 h \\
h & =3.76 d
\end{aligned}
$$

Solving above we get

$$
\begin{aligned}
a & =19.53 e \\
b & =15.18 e \\
d & =54.09 e \\
f & =18.53 e \\
g & =4.82 e \\
h & =203.37 e
\end{aligned}
$$

$$
\text { Air-fuel ratio }=\frac{\left(32 \times d+\frac{79}{21} \times d \times 28\right)}{(12 \times a+b)}=29.77
$$

$$
\text { Air-fuel ratio = 29.77 }{ }^{\text {Ans. }}
$$

$$
\text { Carbon fraction }=\frac{12 a}{(12 a+b)}=0.9392
$$

$$
\text { Hydrogen fraction }=\frac{b}{(12 a+b)}=0.0608
$$

$$
\text { \% Carbon }=93.92 \% \text { Ans. }
$$

\qquad

$$
\% \text { Hydrogen }=6.08 \%
$$

Percentage theoretical air supplied $=\frac{\left(32 d+\frac{79}{21} \times d \times 28\right) \times 100}{\left(32 d+\frac{79}{21} d \times 28+12 a+b\right)}$

$$
=96.75
$$

\% Theoretical air supplied = 96.75\%
Ans.
15. Obtain the stoichiometric reaction equation for CH_{4} being burnt with
(i) 100% theoretical air
(ii) 200% excess air
(iii) 20% less than theoretical air requirement

Consider air to have 21% oxygen and 79% nitrogen by mass.

Solution:

Let number of air molecules required for one molecule of CH_{4} be ' n '. Combustion equation for CH_{4},

$$
\mathrm{CH}_{4}+n\left(\mathrm{O}_{2}+\frac{79}{21} \cdot \mathrm{~N}_{2}\right) \rightarrow a \cdot \mathrm{CO}_{2}+b \cdot \mathrm{~N}_{2}+d \cdot \mathrm{H}_{2} \mathrm{O}
$$

From above equation the $\mathrm{C}, \mathrm{H}_{2}$ and O_{2} can be equated as under;

$$
\begin{aligned}
\mathrm{C}, 1 & =a, \text { or } a=1 \\
\mathrm{O}_{2}, n & =a+\frac{d}{2}, \text { or } 2 n=2 a+d \\
\mathrm{H}_{2}, 2 & =d, \text { or } d=2 \\
\mathrm{~N}_{2}, n \times \frac{79}{21} & =b, \text { or } b=3.76 n
\end{aligned}
$$

It gives

$$
\begin{aligned}
& n=2, a=1 \\
& b=7.52, d=2
\end{aligned}
$$

Stoichiometric combustion equation shall be,

$$
\begin{aligned}
& \text { For } 100 \% \text { theoretical air } \\
& \mathrm{CH}_{4}+2\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow \mathrm{CO}_{2}+7.52 \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

When 200% of excess air is added then total air supplied will be 300% i.e. $(200 \%$ excess $+100 \%$ theoretical). Due to this excess O_{2} shall be there in combustion products.

Thus modified form of combustion equation shall be,
$\mathrm{CH}_{4}+3 \times 2\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow a \cdot \mathrm{CO}_{2}+b \cdot \mathrm{~N}_{2}+d \cdot \mathrm{H}_{2} \mathrm{O}+e \cdot \mathrm{O}_{2}$
Equating $\mathrm{C}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and N_{2} we get

$$
\mathrm{C} ; a=1
$$

$\mathrm{O}_{2} ; a+\frac{d}{2}+e=6$
$\mathrm{H}_{2} ; d=2$
$\mathrm{N}_{2} ; b=6 \times 3.76$

It yields,

$$
\begin{aligned}
a & =1 \\
b & =22.56 \\
d & =2 \\
e & =4
\end{aligned}
$$

Now the combustion equation with 200% excess air shall be;

$$
\begin{array}{|c|}
\hline \text { With } 200 \% \text { excess air; } \\
\mathrm{CH}_{4}+6\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow \mathrm{CO}_{2}+22.56 \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{O}_{2} \\
\hline
\end{array}
$$

Ans.

When there is 20% less air then actual air supplied will be 20% less than 100% theoretical air. Due to less than theoretical air supplied there will be incomplete combustion and CO will be present with combustion products.

$$
\mathrm{CH}_{4}+0.8 \times 2\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow a \mathrm{CO}_{2}+b \mathrm{CO}+d \mathrm{~N}_{2}+e \mathrm{H}_{2} \mathrm{O}
$$

Equating $\mathrm{C}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and N_{2} we get

$$
\begin{gathered}
\mathrm{C} ; a+b=1 \\
\mathrm{O}_{2} ; a+\frac{b}{2}+\frac{e}{2}=1.6 \\
\mathrm{H}_{2} ; e=2 \\
\mathrm{~N}_{2} ; d=1.2 \times 3.76=4.512
\end{gathered}
$$

It yields,

$$
\begin{aligned}
a & =0.2 \\
b & =0.8 \\
d & =4.512 \\
e & =2
\end{aligned}
$$

Hence for 20% less air the combustion equation shall be as under

$$
\begin{gathered}
\text { For 20\% less air. } \\
\mathrm{CH}_{4}+1.6\left(\mathrm{O}_{2}+3.76 \mathrm{~N}_{2}\right) \rightarrow 0.2 \mathrm{CO}_{2}+0.8 \mathrm{CO}+4.512 \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Ans.
16. Determine the adiabatic flame temperature for the combustion of carbon monoxide (CO) with 150 percent theoretical amount of oxygen to form CO_{2}. The reactants enter the steady flow reactor at $25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$ and the products are CO_{2} and excess O_{2}. Enthalpy of $\mathrm{O}_{2}, \mathrm{CO}$ and CO_{2} are $0 \mathrm{~kJ} / \mathrm{kg}$ mole, $-110418 \mathrm{~kJ} / \mathrm{kg}$ and $-393,137 \mathrm{~kJ} / \mathrm{kg}$ mole respectively. The constant pressure specific heats of CO_{2} and O_{2} at 1 atm , may be assumed to be 56.43 and $36.5 \mathrm{~kJ} / \mathrm{kg}$ mole K, respectively.[U.P.S.C. 1993]

Solution:

Combustion equation of carbon monoxide yields,

$$
2 \mathrm{CO}+\frac{3}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\frac{1}{2} \mathrm{O}_{2}
$$

Since the process is adiabatic so the total enthalpy of reactants and products shall remain same,

$$
\begin{aligned}
\text { Enthalpy of reactants } & =2(-110,418)+\frac{1}{2}(0) \\
& =-220,836 \mathrm{~kJ} / \mathrm{kg} \cdot \text { mole }
\end{aligned}
$$

STEAM AND ITS PROPERTIES

- Steam is the gaseous phase of water. It utilizes heat during the process and carries large quantities of heat later. Hence, it could be used as a working substance for heat engines.
- Steam is generated in boilers at constant pressure. Generally, steam may be obtained starting from ice or straight away from the water by adding heat to it.

FORMATION OF STEAM

- temperature-Enthalpy Diagram t-h diagram)
- The graphical representation of transformation of 1 kg of ice into 1 kg of superheated steam at constant pressure (temperature vs. enthalpy) is known as t-h diagram. shows the various stages of formation of steam starting from ice shows the corresponding t-h diagram.

FORMATION OF STEAM

- Consider 1 kg of ice in a pistion -cylinder arrangement as shown. it is under an Absolute Pressure say P bar and at temperature -t 0 C (below the freezing point). Keeping the pressure constant, the gradual heating of the ice leads to note the following changes in it , These are represented on a t-h diagram on heating, the temperature of the ice will gradually rises from p to Q i.e. from t C till reaches the freezing temperature 0 .

FORMATIQN OF STEAM

- Adding more heat, the ice starts melting without changing in the temperature till the entire ice is converted into water from Q to R . The amount of heat during this period from Q to R is called Latent heat of fusion of ice or simply Latent heat of ice.
- Continuous heating raises the temperature to its boiling point t C known as Saturation Temperature. The corresponding pressure is called saturation pressure. it is the stage of vaporization at 1.01325 bar atmospheric pressure $(760 \mathrm{~mm}$. As pressure increases, the value of saturation temperature also increases. The amount of heat added during R to S is called Sensible Heat or Enthalpy of Saturated Water or Total Heat of Water (h, or h "').
- During the process, a slight increase in volume of water (saturated water) may be noted. The resulting volume is known as Specific volume of Saturated Water (Vf or vW).
- (d) On further heating beyond S, the water will gradually starts evaporate and starts convert it to steam, but the temperature remains constant. As long as the steam is in contact with water, it is called Wet Steam or saturated steam

FQRMATION OF STEAM

- On further heating the temperature remains constant, but the entire water converts to steam. But still it will be wet steam. The total heat supplied from OOC is called Enthalpy of Wet Steam (h wet). The resulting volume is known as Specific Volume of Wet Steam (v wet)
- On further heating the wet steam, the water particles, which are in suspension, will start evaporating gradually and at a particular moment the final particles just evaporates. The steam at that moment corresponding to point T is called Dry Steam or Dry Saturated Steam. The resulting volume is known as Specific Volume of Dry Steam (vg). This steam not obeys the gas laws. The amount of heat added during S to T is called Latent Heat of Vaporization of Steam or Latent Heat of Steam (hfg). During the process, the saturation temperature remains constant. The total heat supplied from O'C is called Enthalpy of Dry Steam (hg).

FORMATION OF STEAM

- On further heating beyond point T to U the temperature starts from ts to tu, the point of interest. This
- process is called Super heating. The steam so obtained is called Super Heated Steam. It obeys gas laws.

TYPES STEAM

The steam during the steam generation process can exist in three types:

1. Wet steam (saturated steam)
2. Dry steam (dry saturated steam)
3. Superheated steam

1. XET STEAM:

- Both the water molecules and steam coexist to form a two phase mixture, called wet steam.
- Which will be in thermal equilibrium because both of them will be at the same saturation temperature.

2. DRY SATURATED STEAM:

- A steam at the saturation temperature corresponding to a given pressure and having no water molecules in it is known as dry saturated steam or dry steam.
- Since the dry saturated steam does not contain any water molecules in it, its dryness fraction will be unity.

3: SUPERHEATED STEAM;

- When a dry saturated steam is heated further at the given constant pressure, its temperature rise beyond its saturation temperature. The steam in this state is said to be superheated.

ENTHALPY OF STEAM

- Enthalpy Of liquid:

$$
\mathrm{hf}=\mathrm{Cpw}(\mathrm{tf}-0)
$$

- Enthalpy of Dry saturated steam:

$$
h g=h f+h f g
$$

- Enthalpy of Wet steam:

$$
h=h f+x h f g
$$

- Enthalpy of Superheted steam:

$$
\text { hsup }=\text { hg }+\operatorname{Cps}(\text { Tsup }- \text { Tsat })
$$

SPECTFIC YOLUME OF STEAM

Specific volume of saturated water: vf

- Specific volume of dry saturated steam: vg

Specific volume of wet steam:

$$
v=x v g+(1-x) v f
$$

- Specific volume of superheated steam:

$$
\mathrm{Vg} / \mathrm{Ts}=\mathrm{Vsup} / \mathrm{Tsup}
$$

INTERNAL ENERGY QF STEAM

- It is defined as the difference between the enthalpy of steam and external work of evaporation.
Internal energy of dry steam : $\mathrm{ug}=\mathrm{hg}-\mathrm{pvg} \mathrm{kJ} / \mathrm{kg}$
Internal energy of wet steam : $u=h f+x h f g-p x v g \mathrm{~kJ} / \mathrm{kg}$
Internal energy of superheated steam : usup $=\mathrm{hsup}-\mathrm{pvsup} \mathrm{kJ} / \mathrm{kg}$
- Internal Latent heat:

It is algebraic difference between the enthalpy of evaporation at given pressure and work of evaporation.
Internal Latent heat : hfg - pv

THROTTHNY PBOCESS

- The temperature change of a gas or liquid when it is forced through a valve or porous plug while kept insulated so that no heat is exchanged with the environment. This procedure is called a Throttling process.

MEASUREMENT OF DRYNESS FRACTION

- The dryness fraction of steam can be measured experimentally.
- Calorimeters are used for measurement of dryness fraction of steam.
- There are for methods of determining the dryness fraction of steam.

1. Bucket or barrel calorimeter
2. Throttling calorimeter
3. Separating calorimeter
4. Combined separating \& throttling calorimeter

BUCKET OR BARREL CALORHMETER

Bucket or Barrel Calorimeter

- In this calorimeter a known mass of water and then heat loss by steam is equated to heat gained by water. The steam is passed through a sample tube into bucket calorimeter contains known weight of water.
- The weight of calorimeter with water before mixing steam \& after mixing the steam is measured by thermometer.

SEPARATING CALORIMETER

- This calorimeter is used to measure dryness fraction of very wet steam. The steam is passed through sampling tube. The moisture is separated mechanically from steam passing through the separator .
- The water partials are separated due to inertia of water partials as steam is passed through the perforated trays.
- The out going steams is then condensed in the bucket calorimeter.

THROTTHNYG CAHORHMETER

Throttling Calorimeter

- This types of calorimeter is used to measure dryness fraction of steam whose dryness fraction is considerably high.
- The steam sample is passed through a throttle valve \& is allowed to throttle down to pressure unit until it comes out in dry saturated or super heated condition.
- The pressure \& temperature of steam coming out of throttling calorimeter is measured with water manometer \& thermometer respectively.

CQMBINED THROTTHNG SEPARATING \& CALQRHMETER

- The combined separating \& throttling calorimeter gives the dryness fraction of wide quality steam very accurately.
- In this calorimeter, the stream from sampling tube is first passed through the separating calorimeter where most of the moisture is removed \& steam partly dried.
- This steam is further passed to throttling calorimeter where it comes out as dry saturated or in superheated form.
- The steam coming out from throttling calorimeter is condensed in condenser coming out of condenser is recorded.
- The weight of water separated In separating calorimeter \& the pressure \& temperature of steam coming out from throttling valve are also recorded.

Properties of Pure Substances
$-5^{\circ} \mathrm{C}$ ICe $\longrightarrow 250^{\circ} \mathrm{C}$ vapour
(i) $-5^{\circ} \mathrm{C} I \mathrm{CC} \longrightarrow 0^{\circ} \mathrm{C}$ ICe

$$
d S=c \ln \left(\frac{T_{F}}{T_{\text {in }}}\right)=2.093 \ln \left(\frac{273}{268}\right)=0.038 \mathrm{~kJ} / \mathrm{kg} \mathrm{k}
$$

(ii) $0^{\circ} \mathrm{C} \mathrm{ICR} \longrightarrow 0^{\circ} \mathrm{C}$ water

$$
S_{3}-S_{2}=\frac{d a}{T}=\frac{L}{T}=\frac{334.9 \mathrm{l}}{273}=1.23 \mathrm{~kJ} / \mathrm{kg} \mathrm{k}
$$

(iii) $0^{\circ} \mathrm{C}$ water $\longrightarrow 100^{\circ} \mathrm{C}$ water

$$
S_{4}-S_{3}=c \ln \left(\frac{T_{4}}{T_{4}}\right)=4.18 \ln \left(\frac{373}{273}\right)=1.305 \mathrm{~kJ} 1 \mathrm{kgk}
$$

(iv) $100^{\circ} \mathrm{C}$ water $\longrightarrow 100^{\circ} \mathrm{C}$ vapour

$$
S_{5}-S_{4}=\frac{d Q}{T}=\frac{2257}{373}=6.05 \mathrm{kJ1kg} \mathrm{k}
$$

(v) $\quad 100^{\circ} \mathrm{C}$ vapour $\longrightarrow 250^{\circ} \mathrm{C}$ vapour

$$
S_{6}-S_{5}=1.21 \cdot \ln \left(\frac{2 \operatorname{sen} 2 h_{1}}{100+\frac{123}{}}\right)=0.635 \mathrm{~kJ} 1 \mathrm{~kg} \mathrm{k}
$$

IF Critical Point \rightarrow If is the Point of which saturated liquid line and saturated vapour curve meat.

The f.emp of water at critical point is $371.6^{\circ} \mathrm{C}$. \# subicooled or Undercooled Region \Rightarrow

Il is a region in which the actual temp is less than saturation Teat temp corresponding to that Pressure.

Degree of undencooling/subcooling

$$
\text { DOS }=T_{\text {sat }}-T_{\text {actual }}
$$

\# Super heated Region: \rightarrow
It is a region in which the actual temp is more than the saturation temp corresponding. to that Pressure.

Degree of super seated $=T_{\text {act }}-T_{\text {sat }}$

Wet Region \rightarrow It is the region in which both liquid \& vapour exist together.

Notes) No ideaialegas apply in wet region.

Scanned by CamScanner
\# Latent heat \Rightarrow The heat transfer during phase change is called latent Heat.

$$
\begin{aligned}
d Q=d H & =h_{2}-h_{1} \\
d Q & =L H \\
d Q & =h_{g}-h_{F} \\
\therefore L H & =h_{g}-h_{F}
\end{aligned}
$$

Since s Phase change is a rev. Process

$$
\therefore d S=\frac{\delta Q}{T}=\frac{L H}{T}=\frac{h_{g}-h_{F}}{T}
$$

** with Rise in Pressure latent heat of Vapourization decreases \& at critical Point latent heat is z enos, directly liquid is converted into stream. De to increase of Bessune Collision b/w particles increases \& at critical pf this collision became so high that if converts flashes into steam.
\# Dryness fraction: It is the ratio of mass of water vapour to the total mass of liquid including wooten vapour. Its value is not defined at the critical Point.

$$
x=\frac{m v}{m v+m v}
$$

construct
All ${ }^{9}$ dryness fraction line converge at critical Point. Its value lies b/w o to 1 .
\# Specific volume of mixture \rightarrow Since volume is the extensive Property therefore it can be written in the form of summation.
VHSU

Thege Eq_{q} ars vald onsy fon wed rogions. \# Enthafby calculations of various foint \Rightarrow,

Cais-I : When the point is on Saturatsd vapoun curve.

$$
\begin{aligned}
& h_{1}=h_{2}+L H \\
& h_{\gamma}=h_{f}+L H \\
& \therefore L H=h_{g}-h_{f}
\end{aligned}
$$

$$
\begin{align*}
& V=V_{k}+V_{v} \\
& v=\frac{v}{m} \Rightarrow v=v m \\
& m_{n}=m_{v}+m_{L} \\
& \therefore \quad . v=m_{v} v_{v}+m_{x} v_{x} \\
& \therefore \quad m v=m_{i} v_{l}+m_{v} v_{v} \\
& \text { on } v=\frac{m_{l} v_{l}+m_{v} v_{0}}{m} \\
& =\frac{m_{t} v_{t}}{v}+\frac{m_{v} v_{v}}{m} \\
& V=\frac{m_{i} v_{l}}{n_{i}+m_{v}}+\frac{m_{v} v_{v}}{m_{l}+m_{v}} \\
& v=x v_{v}+(1-x) v_{l} \\
& V=x V_{8}+(1-x) V_{F} \\
& v=v_{f}+x\left(v_{g}-v_{f}\right) \\
& h=h_{f}+x\left(h_{g}-h_{c}\right) \tag{2}\\
& s=x_{c}+x_{c}\left(s_{g}-x_{c}\right) \tag{0}\\
& u=u_{6}+x\left(u_{g}-u_{6}\right)
\end{align*}
$$

Cak- II \rightarrow when the pront is in the wif Algimb
$h_{1}=h_{5}+1(t h i)$

Case-III \rightarrow when the Point is in suferbeated rigion.

$$
\begin{gather*}
h_{1}=h_{g}+\Delta h \\
\begin{array}{c}
h_{1}=h g+C_{P_{\text {vapon }}}\left(T_{\text {sur }}-1_{\text {sat }}\right) \\
V \\
1.8 \text { ks/kgl }
\end{array}
\end{gather*}
$$

Noftey In suberbeded bogion valomen. in lic poacte as ideleal zo3 if ma infarom, fios is bicke.
\# Entroby at various Points's
Cage-I: \Rightarrow When the poind is on the vaforuefed valum, rwone

$$
\begin{aligned}
d S & =\frac{d Q}{T_{\text {eal }}}=\frac{L H}{T_{3+1}} \\
S_{g}-S_{F} & =\frac{h_{g}-h_{c}}{T_{2, t i}}
\end{aligned}
$$

Cone \rightarrow When the Ant is in the wet Nigita.

$$
S_{1}=S_{C}+x \frac{(1 \nu)}{T_{\text {sex }}}
$$

call-III \Rightarrow When the Point is in the sultureated ruses.

$$
\begin{aligned}
& S_{3}=S_{2}+O S \\
& \Delta S=C_{P_{\text {vim }}} \ln \left(\frac{T_{\text {sap }}}{T_{2 d}}\right)-R \int\left(\frac{P_{\text {sup }}}{S_{S \mathrm{~d}}}\right) \\
& \Delta S=C_{p} \ln \left(\frac{T_{\text {sui }}}{T_{s, t}}\right) \\
& S_{3}=S_{2}+C_{p} \operatorname{lin}\left(\frac{T_{\text {sup }}}{T_{3, t}}\right)
\end{aligned}
$$

\# Moldier Diagram $\rightarrow(h-8$ da diagram $)$

$$
\begin{gathered}
T d S=d h-V d P \\
P=\text { constant } \\
d P=0 \\
\left(\frac{d h}{d S}\right)_{P=c o m}=T
\end{gathered}
$$

* The slope of Isobaric curve on Mollies diagram is equal to $t:$

In wet region as the temp is constant, the slope is also constant. In superheated region as the tamp increases the slope also increases \& hence constant Pressure line diverges in the superheated region.

* For the same increasement in the pressure ($P_{2}-P_{1}$) there is more change in the vapours \& less chang in the volume for liquid Because liquids are almost incompressible \& vapours are compressible.

Notes

$$
\frac{3}{S a l, d} \rightarrow \text { liquid (Meting) }
$$

Liquid \rightarrow vapow (vaporization)
Sol. $\mathrm{S} \rightarrow$ vapour (SUblimation)
Liquid \rightarrow Solid (Freezing)
Noun \rightarrow inuit $($ (condensation)
vapour \rightarrow Solid (Abfimation)
Q - Steam of qualify 0.98 is present in two sepate condiners, $A \& B$ at $300 \mathrm{KPa} \& 20$ k Pa respectively. Specific volume of steam in container $A \& B$ are initially $V_{A_{1}} \& V_{B_{1}}$, respectively. steam condensing at constant pressure in such a way that final quality of stan in both the container is $0.01 \&$. Spocifici volume of seam. in containers $A \& B$ are $V_{A_{1}}$ \& V . Whet of following statement is true.
(a) $\quad V_{A_{1}}>V_{S_{1}} \quad \& \quad V_{A_{2}}>V_{B_{2}}$
(b) $\quad V_{A_{1}}<V_{S_{1}} \quad \& \quad V_{A_{2}}<V_{B_{2}}$
(c) $\quad V_{A_{1}}>V_{B_{1}}$ \& $V_{A_{2}}<V_{B_{2}}$
(i) $V_{A_{1}}<V_{G_{1}} \& V_{A_{2}}>V_{B_{2}}$

O- A Pressure cooker contoins seturetet woter vapous rixfure of $100^{\circ} \mathrm{C}$ with volums of vapolen biry 8 fimes the vofium of figu, . The spscific, Vofume of sofurafid liquid t sat. Vaperen at $100{ }^{\circ} \mathrm{C}$ ars $v_{f}=0.001044 \mathrm{~m}^{3} / \mathrm{kg}$
\& $\mathrm{Vg}=1 .(72)$ vilag respicetiving. Calculate the quatify of -irturs.

$$
\begin{aligned}
& \text { Vof. of valour }=8 \times \text { V.l. Vof liquid } \\
& v_{s}=v_{g}=0.001044 \mathrm{~m}^{2} / \mathrm{kg} \\
& v_{3}=-v_{0}=1.6729 \mathrm{~m}^{3} / \mathrm{kg} \\
& d x=\frac{m v}{x}=\frac{m v}{m_{l}+m_{v}} \\
& =\frac{1}{\left[\frac{m_{s}}{m_{v}}+1\right]} \\
& =\frac{1}{\left[\left(\frac{v}{v}\right)_{t}+1\right]}
\end{aligned}
$$

Scanned by CamScanner

$$
\begin{aligned}
& =\frac{1}{\left[\frac{V_{l}}{V_{l}} \times \frac{V_{v}}{V_{V}}+1\right]} \\
& \pm \frac{1}{8 \times \frac{0.001044}{1.6729}+1}=\frac{1}{\frac{1}{8} \times \frac{1.6729}{0.001044}+1} \\
& =0.00496=0.005(V)
\end{aligned}
$$

Saturated water-Temperature table

$\begin{aligned} & \text { Temp., } \\ & T^{\circ} \mathrm{C} \end{aligned}$	Sat. press., $P_{\text {sat }} \mathrm{kPa}$	Specific volume,$\mathrm{m}^{3 / \mathrm{kg}}$		$\begin{gathered} \text { Internal energy, } \\ \mathrm{kJ} / \mathrm{kg} \end{gathered}$			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$			Entropy, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$		
		Sat. liquid, v_{f}	Sat. vapor, V_{g}	Sat. licuid, u_{f}	Evap., $u_{f g}$	Sat. vapor, u_{g}	Sat. liquid, h_{f}	Evap., $h_{f g}$	Sat. vapor, h_{g}	Sat. liquic s_{f}	Evap., $s_{i f}$	Sat. vapor, S_{8}
0.01	0.6117	0.001000	206.00	0.000	2374.9	2374.9	0.001	2500.9	2500.9	0.0000	9.1556	9.1556
5	0.8725	0.001000	147.03	21.019	2360.8	2381.8	21.020	2489.1	2510.1	0.0763	8.9487	9.0249
10	1.2281	0.001000	106.32	42.020	2346.6	2388.7	42.022	2477.2	2519.2	0.1511	8.7488	8.8999
15	1.7057	0.001001	77.885	62.980	2332.5	2395.5	62.982	2465.4	2528.3	0.224	8.555	8.7803
20	2.3392	0.001002	57.762	83.913	2318.4	2402.3	83.915	2453.5	2537.4	0.2965	8.3696	8.6661
25	3.1698	0.001003	43.340	104.83	2304.3	240	104.83	2441.7	2546.5	0.3672	8.1895	8.5567
30	4.2469	0.001004	32.879	125.73	2290.2	2415.9	125.74	2429.8	2555.6	0.4368	8.0152	8.4520
35	5.6291	0.001006	25.205	146.63	2276.0	2422.7	146.64	2417.9	2564.5	0.5051	7.846	8.3517
40	7.3851	0.001008	19.515	167.53	2261.9	2429.4	167.53	2406.0	2573.5	0.5724	7.683	8. 2556
45	9.5953	0.001010	15.251	188.43	2247.7	2436.1	188.44	-2354.0	2582.4	0.6386	7.5247	8.1533
50	12.352	0.001012	12.026	209.33	2233.4	2442.7	209.34	2382.0	2591.3	0.7038	7.3710	8.0748
55	15.763	0.001015	9.5639	230.24	2219.1	2449.3	230.26	2369.8	2600.1	0.7680	7.2218	7.9898
60	19.947	0.001017	7.6670	251.16	2204.7	2455.9	251.18	2357.7	2608.8	0.8313	7.076	7.9982
65	25.043	0.001020	6.1935	272.09	2190.3	2462.4	272.17	2345.4	2617.5	0.8937	6.9360	7.8296
70	31.202	0.001023	. 0396	293.04	2175.8	2468.9	293.07	2333.0	2626.1	0.9551	6.7989	7.7540
75	38.597	0.001026	4.1291	313.99	2161.3	2475.3	314.03	2320.6	2634.6	1.015	6.665	7.6812
80	47.416	0.001029	3.4053	334.97	2146.6	2481.6	335.02	$23 C 8.0$	2643.0	1.0756	. 6.5355	7.6111
85	57.868	0.001032	2.8261	355.96	2131.9	2487.8	356.02	2295.3	2651.4	1.1346	6.4089	7.5435
90	70.183	0.001036	2.3593	376.97	2117.0	2494.0	377.04	2282.5	2659.6	1.1929	6.2853	7.4782
95	84.609	0.001040	1.9808	398.00	2102.0	2500.1	398.09	2269.6	2667.6	1.2504	6.1647	7.4151
100	101.42	0.001043	1.6720	419.06	2087.0	2506.0	419.17	2256.4	2675.6	1.3072	6.0470	7.3542
105	120.90	0.001047	1.4186	440.15	2071.8	2511.9	440.28	2243.1	2683.4	1:3634	5.9319	7.2952
110	143.38	0.001052	1.2094	461.27	2056.4	2517.7	461.42	2229.7	2691.1	1.4188	5.8193	7.2382
115	169.18	0.001056	1.0360	482.42	2040.9	2523.3	482.59	2216.0	2698.6	1.4737	5.7092	7.1829
120	198.67	0.001050	0.89133	503.60	2025.3	2528.9	503.81	2202.1	2706.0	1.5279	5.601	7.1292
125	232.23	0.001055	0.77012	524.83	2009.5	2534.3	525.07	2188.1	2713.1	1.5816	5.4956	7.0771
130	270.28	0.001070	0.66808	546.10	1993.4	2539.5	546.38	2173.7	$2720.1{ }^{\circ}$	1.6346	5.3919	7.0265
135	313.22	0.001075	0.58179	567.41	1977.3	2544.7	567.75	2159,1	2726.9	1.6872	5.2901	6.9773
140	361.53	0.001030	0.50850	588.77	1960.9	2549.6	589.16	2144.3	2733.5	1.7392	5.1901	6.9294
145	415.68	0.001085	0.44600	610.19	1944.2	2554.	610.64	2129.2	2739.8	1.790	5.0919	.8827
150	476.16	0.001091	0.39248	631.66	1927.4	2569.1	632.18	2113.8	2745.9	1.8418	4.9953	6.8371
155	543.49	0.001096	0.34648	653.19	1910.3	2563.5	653.79	2098.0	2751.8	1.8924	4.9002	6.7927
160	618.23	0.001102	0.30680	674.79	1893.0	2567.8	675.47	2082.0	2757.5	1.9426	4.8066	6.7492
165	700.93	0.001108	0.27244	696.46	1875.4	2571.9	697.24	2065.6	2762.8	1.9923	4.7143	6.7067
170	792.18	0.001114	0.24260	718.20	1857.5	2575.7	719.08	2048.8	2767.9	2.041	4.6233	6.665
175	892.60	0.001121	0.21659	740.02	1839.4	2579.4	741.02	2031.7	2772.7	2.0906	4.5335	6.6242
180	1002.8	0.001127	0.19384	761.92	1820.9	2582.8	763.05	2014.2	2777.2	2.1392	4.4448	6.5841
185	1123.5	0.001134	0.17390	783.91	1802.1	2586.0	785.19	1996.2	2781.4	2.1875	4.3572	6.5447
190	1255.2	0.001141	0.15636	806.00	1783.0	2589.0	807.43	1977.9	2785.3	2.2355	4.2705	6.5059
195	1398.8	0.001149	0.14089	828.18	1763.6	2591.7	829.78	1959.0	2788.8	2.2831	4.1847	6.4678
200	1554.9	0.001157	0.12721	850.46	1743.7	2594.2	852.26	1939.8				6.4302

TABLE A-4
Saturated water-Temperature table (Continued)

$\begin{aligned} & \text { Temp., } \\ & T^{\circ} \mathrm{C} \end{aligned}$	Sat. press., $P_{\text {sat }} \mathrm{kPa}$	Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, $\mathrm{kJ} / \mathrm{kg}$			Enthatpy, $\mathrm{kJ} / \mathrm{kg}$			Entropy, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$		
		Sat. liquid, v_{f}	Sat. yapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{\text {fg }}$	Sat. vapor. u_{g}	Sat. liquid, h_{f}	$\begin{aligned} & \text { Evap., } \\ & h_{\text {fy }} \\ & \hline \end{aligned}$	Sat. vapor, h_{g}	Sat. liquid, s_{f}	$\begin{aligned} & \text { Evap., } \\ & s_{\text {frg }} \\ & \hline \end{aligned}$	Sat. vapor, $s_{\underline{g}}$
205	1724.3	0.001164	0.11508	872.86	1723.5	2596.4	874.87	1920.0	2794.8	2.3776	4.0154	6.3930
210	1907.7	0.001173	0.10429	895.38	1702.9	2598.3	897.61	1899.7	2797.3	2.4245	3.9318	6.3563
215	2105.9	0.00118 I	0.094680	918.02	1681.9	2599.9	920.5	1878.8	2799.3	2.4712	3.8489	. 3200
220	2319.6	0.001190	0.086094	940.79	1660.5	2601.3	943.5	185	2801.0	2.5176	3.7664	6.2840
225	2549.7	0.001199	0.078405	963.70	1638.6	2602.3	966.76	5	2802	2.5	3.6844	6.2483
230	2797.1	0.001209	0.071505	986.76	1616.1	2602.9	990.14	1812.8	2802	2.6100	3.6028	6.2128
235	3062.6	0.001219	0.065300	1010.0	1593.2	2603.2	1013.7	178	2803	2.6560	3.5215	. 1775
240	3347.0	C. 001229	0.059707	1033.4	1569.8	2603.1	1037.5	1765.5	2803.	2.7018	3.4405	6.1424
245	3651.2	0.001240	0.054656	1056.9	1545.7	2602.7	1061.5	1740.8	2802.2	2.7476	3.3596.	6.1072
250	3976.2	0.001252	0.050085	1080.7	1521.1	2601.8	1085.7	1715.3	2801.0	2.79	3.2	6.0721
255	4322.9	0.001263	0.045941	1104.7	1495.8	2600.5	1110.1	1689.0	2799.1	2.8390	3.1979	6.0369
260	4692.3	0.001276	0.042175	1128.8	1469.9	2598.7	1134.8	1661.8	2796.6	2.8847	3.1169	6.0017
265	5085.3	0.001289	0.038748	1153.3	1443.2	2596.5	1159.8	1633.7	2793.5	2.9304	3.0358	5.9662
270	$55 ¢ 3.0$	0.001303	0.035622	1177.9	1415.7	2593.7	1185.1	1604.6	2789.7	2.9762	2.954	5.9305
275	5946.4	0.001317	0.032767	1202.9	1387.4	2590.3	1210.7	1574.5	2785.2	3.0221	2.872	5.8944
280	6416.6	0.001333	0.030153	1228.2	1358.2	2586.4	1236.7	1543.2	2779.9	3.0681	2.1898	5.8579
285	6914.6	0.001349	0.027756	1253.7	1328.1	2581.8	1263.1	1510.7	2773.7	3.1144	2.7066	5.8210
290	7441.8	0.001366	0.025554	1279.7	1296.9	2576.5	1289.8	1476.9	2766.7	3.1608	2.6225	5.7834
295	7999.0	0.001384	0.023528	1306.0	1264.5	2570.5	1317.1	1441.6	2758.7	3.2076	2.5374	5.7450
300	8587.9	0.001404	0.021659	1332.7	1230.9	2563.6	1344.8	1404.8	2749.6	3.2548	2.4511	5.7059
305	9209.4	0.001425	0.019932	1360.0	1195.9	2555.8	1373.1	1366.3	2739.4	3.3024	2.3633	5.6657
310	9865.0	0.001447	0.018333	1387.7	1159.3	2547.1	1402.0	1325.9	2727.9	3.3506	2.2737	5.6243
3-5	10,556	0.001472	$0 . C 16849$	1416.1	1121.1	2537.2	1431.6	1283.4	2715.0	3.3994	2.1821	${ }_{5}^{5.5816}$
320	11,284	0.001499	0.015470	-445.1	108c. 9	2526.0	1462.0	1238.5	2700.6	3.4491	2.0881	5.5372 5.4908
325	12,051	0.001528	0.014183	:475.0	1038.5	2513.4	1493.4	1191.0	2684.3		1.9911	5.490
330	12,858	0.001560	0.012979	1505./	993.5	2499.2	1525.8	1140.3	2666.0	3.5516	1.8906	5.4422
335	13,707	0.001597	0.011848	1537.5	945.5	2483.0	1559.4	1086.0	2645.4	3.6050	1.7857	5.3907
340	14,601	0.001638	0.010783	1570.7	893.8	2464.5	1594.6	1027.4	2622.0	3.6602	1.6756	5.3358
345	15,541	0.001685	0.009772	1605.5	837.7	2443.2	1631.7	963.4	2595.1	3.7179	1.5585	5.2765
350	16,529	0.001741	0.008806	1642.4	775.9	2418.3	1671.2	892.7	2563.9	3.778	1.4326	5.2114
355	17,570	0.001808	0.007872	1682.2	706.4	2388.6	1714.0	812.9	2526.9	3.8442	1.2942	5.13
360	18,666	0.001895	0.006950	177.6. 2	625.7	2351.9	1761.5	720.1	2481.6	3.9165	1.1373	5.053
365	19,822	0.002015	0.006009	1777.2	526.4	2303.6	1817.2	605.5	2422.7	4.0004	0.9489	4.9493
370	21,044	0.002217	0.004953	1844.5	85.6	2230.1	1891.2	443.1	2334.3	4.1119	0.689	4.800
373.95	252,064	0.003	0.003106	2015.7	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070

Source: Tables A-4: Ahrough A-8 are generated using the Engineering Ecuation Solver (EES) software developed by S. A. Klein and \mathcal{F}. L. Alvarado. The

TABLE A-5

		Specific volume,\qquad		Internai energy,\qquad			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$			Entropy $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$		
Press., PkPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sas. liquid, u^{\prime}	Evap., u_{f}	Sat. vapor, u_{g} \qquad	Sat. liquid, h_{f}	Evep., $h_{f g}$	Sat. vapor, \qquad hg_{g}	Sat. liquid, S_{f}	$\begin{aligned} & \text { Evap., } \\ & s_{f g} \\ & \hline \end{aligned}$	Sat. vapor, S_{g}
1.0	6.97	0.001000	129	29.302	2355.2	2384.5	29.3	2484.4	2513.7	0.1059	8.8690	749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.5421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.673	8.2501
10	45.81	0.001010	-4.670	191.79	2245.4	2437.2	191.81	2392:	2583.9	0.6492	7:4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.5	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2452.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001943	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001357	1.0037	486.82	2037.7	2524.5	487.01	2213	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.5	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2*	27.16 .5	:1.5072	5.4453	7.0525
275	13	.	0.65732	548.57		25		2172.0	27209	1.642	5.3800	7.0207
300	133.52	0.001973	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724:9	1. 1.6717	5.3200	6.9917
325	136.27	0.001576	0.56199	572.84	1973.1	2545.9	573.19	2155:4	2728:6	1,7005	5.2645	6,9650
350	138.86	0.001079	0.52422	583.89	1964.5	2548.5	58<.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001381	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001584	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738:1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	622.65	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001993	0.37483	639.54	1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001:199/	0.34261	655.16	1908.8	2553.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560	669.72	1897.1	2556.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260	683.37	1886.1	2569.4	684.08	2075	2759.6	1.9623	. 7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

TABLE A-5

Saturated water-Pressure table (Continued)												
		Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$		Internal energy, $\mathrm{kJ} / \mathrm{kg}$			Enthalpy, $\mathrm{kJ} / \mathrm{kg}$			Entropy, $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$		
Press., PkPa	Sat. temp., $T_{\text {sat }}{ }^{\circ} \mathrm{C}$	Sat. liquid, v_{f}	Sat. vapor, v_{g}	Sat. liquid, u_{f}	Evap., $u_{t g}$	Sat. vapor. U_{g} \qquad	Sat. liquid, h_{t} \qquad	Evap., $h_{\varepsilon_{5}}$	Sat. vaprr, h_{8}	Sat. liquid, s_{i} \qquad	$\begin{aligned} & \text { Evap., } \\ & s_{\text {fig }} \end{aligned}$	Sat. vapcr, s_{g}
800	170.41	$0.0011: 5$	0.24035	719.97	1856.1	2576.0	720.87	2047.5	2768.3	2.0457	4.6160	6.6616
850	172.94	0.001118	0.22690	731.00	1846.9	2577.9	731.95	2038.8	2770.8	2.0705	4.5705	6.6409
900	175.35	0.001121	0.21489	741.55	1838.1	2579.6	742.56	2030.5	2773.0	2.0941	4.5273	6.6213
950	177.66	0.001124	0.20411	751.67	1829.6	2581.3	755.74	2022.4	2775.2	2.1156	4.4862	6.6027
1000	179.88	0.001127	0.19436	761.39	1821.4	2582.8	762.51	2014.6	2777.1	2.1381	4.4470	50
1100	184.06	0.001133	0.17745	779.78	1805.7	2585.5	781.03	1999.6	2780.7	2.1785	4.3735	. 5520
1200	187.96	0.001138	0.16326	796.96	1790.9	2587.8	798.33	1985.4	2783.8	2.2159	4.3058	217
1300	191.60	0.001144	0.15119	813.10	1776.8	2589.9	814.5	197	27	2.2508	1.2428	936
1400	195.04	0.001149	0.14078	828.35	1763.4	2591.8	829.96	1958.9	2788	2.2835	4.1840	6.4675
1500	198.29	0.001154	0.13171	842.82	1750.6	2593.4	844.55	1946.4	2791.0	2.3143	4.1287	6.4430
1750	205.72	0.001166	0.11344	876.12	1720.6	2596.7	878.16	1917.1	2795.2	2.3844	4.0033	6.3877
2000	212.38.	0.001177	0.099587	906.12	1693.0	2599.1	908.47	1889.8	2798.3	2.4467	3.8923	53390
2250	$218.41{ }^{\text { }}$	0.001187	0.088717	933.54	1667.3	2600.9	936.21	1864.3	2800.5	2.5029	26	2954
2500	223.95	0.001197	0.079952	958.87	1643.2	2602.1	961.87	1840.1	2801.9	2.5542	7016	6.1856
3000	233.85	0.001217	0.066667	1004.6	1598.5	2603.2	008.3	1794.9	2803.2			
3500	242.56	0.001235	0.057061	1045.4	1557.6	2603.0	1049.7	1753.0	2802.7	2.7253	3.3991	6.1244
4000	250.35	0.001252	0.049779	1082.4	1519.3	2601.7	1087.4	1713.5	2800.8	2.7966	3.2731	6.0696
5000	263.94	0.001286	0.039448	1148.1	1448.9	2597.0	1154.5	1639.7	2794.2	2.9207	3.0530	5.9/3\%
6000	275.59	0.001319	0.032449	1205.8	1384.1	2589.9	1213.8	1570.9	2784.6	3.0275	2.8627	5.8902
7000	285.83	0.001352	0.027378	1258.0	-323.0	2581.0	1267.5	1505.2	2772.6	3.1220	927	48
8000	295.01	0.001384	0.023525	1306.0	:264.5	2570.5	1317.1	1441.6	2758.7	3.2077	2.5373	5.7450
9000	303.35	0.001418	0.020489	1350.9	1207.6	2558.5	1363.7	1379.3	2742.9	3.2866	2.3925	5.6791
10,000	311.00	0.001452	0.018028	1393.3	1151.8	2545.2	1407.8	1317.6	$725 . \bar{\circ}$	3.3603	2.2556	5.6159
11,000	318.08	0.001488	0.015988	1433.9	1096.6	2530.4	14	1256.1	2706.3	3.4299	2.1245	5.5544
12,000	324.68	0.001526	0.014264	1473.0	1041.3	25	1491.3	1194.1	268	3.4964	1.9975	5.4939
13,003	330.85	0.001566	0.012781	1511.0	985.5	2496.6	1531.4	1:31.3	2662.7	3.5606	1.8730	5.4336
14,000	335.67	0.001610	0.011487	1548.4	928.7	2477.1	1571.0	1067.0	2637.9	3.6232	1.7497	5.3728
15,000	342.16	0.001657	0.010341	1585.5	870.3	2455.7	1610.3	1000.5	2610.8	3.6848	1.6261	5.3108
16,000	347.36	0.001710	0.009312	1622.6	809.4	2432.0	1649.9	931.1	25	3.7461	1.5005	
17,000	352.2	0.001770	0.008374	1660.2	745.1	2405.4	1690.3		2547.7	3.8082		5.1791
18,000	356.99	0.001840	c. 007504	1699.1	675.9	2375.0	1732.2	777.8	2510.0	3.8720	1.2343	5.1064
19,000	361.47	$0 . C 01926$	C.006677	1740.3	598.9	2339.2	1776.8	689.2	2466.0	3.9396	1.0860	5.0256
20,000	365.75	0.002038	c. 005862	1785.8	509.0	2294.8	1826.6	585.5	2412.1	4.0146	0.9164	4.9310
21,000	369.83	0.002207	0.064994	1841.6	391.9	2233.5	1888.0	450.4	2338.4	4.1071	0.7005	4.8075
22,0c0	373.71	0.002703	0.003644	1951.7	140.8	2092.4	2011.1	161.5	2172.6	4.2942	0.2496	4.4070
22,064	373.95	0.003106	0.0031	201	0	2015.7	2084.3	0	2084.3	4.4070	0	4.4070

TABLEA-6

Superheated water

$\begin{aligned} & T \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	h $\mathrm{kJ} / \mathrm{kg}$	$\begin{aligned} & \mathrm{s} . \mathrm{kg} \cdot \mathrm{k} \end{aligned}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\begin{aligned} & \mathrm{U} / \mathrm{kg} \end{aligned}$	h $\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{~m}^{3} \mathrm{~kg} \end{aligned}$	$\mathrm{kJ} / \mathrm{kg}$	h $\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}$
	$P=0.01 \mathrm{MPa}\left(45.81{ }^{\circ} \mathrm{C}\right)^{*}$				$P=0.05 \mathrm{MPa}\left(81.32^{\circ} \mathrm{C}\right)$				$\mathrm{P}=0.10 \mathrm{MPa}\left(99.61^{\circ} \mathrm{C}\right)$			
Sat.	14.670	2437.2	2583.9	8.1488	2403	2483	2645.2	7.593	6941	2505	2675	3589
50	14.867	2443.3	2592.0	8.1741								
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675	7.3611
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	7.6148
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.8356
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.5	3075.8	8.5387	2.6389	2810.7	3074.5	8.2172
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	ミ279.3	8.8659	3.1027	2968	3278	8.5452
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132	3488.	8.8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.	3705.	9.0999
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929	9.3424
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.5682
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8	4398.2	10.1000	-5.4137	3856.7	4398.0	9.7800
1000	58.738	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10.3000	5.8755	4055.0	4642.6	9.9800
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.1698
1200	67.989	4470.9	5150.8	11,4132	13.5977	4470.8	5150.7	10.6704	6.7988	4470.7	5150.6	10.3504
1300	72.604	4687.4	5413.4	11.585	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
$0.20 \mathrm{MPa}\left(120.21^{\circ} \mathrm{C}\right)$					$P=0.30 \mathrm{MPa}\left(133.52^{\circ} \mathrm{C}\right)$				143			

Sat.	0.88578	2529.1	27063	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	25531

Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.	7.0

$462422553.1 \quad 2738.1 \quad 6.8955$ $\begin{array}{llll}0.47088 & 2564.4 & 2752.8 & 6.9306\end{array}$ | 0.53434 | 2647.2 | 2860.9 |
| :--- | :--- | :--- |
| 7.1723 | | |
| 0.59520 | 2726.4 | 2964.5 |
| 7.3804 | | |
| .54 | 7.567 | | $\begin{array}{llll}0.59520 & 2726.4 & 2964.5 & 7.3804 \\ 0.65489 & 2805.1 & 3067.1 & 7.5677\end{array}$ $\begin{array}{llll}0.65489 & 2805.1 & 3067.1 & 7.5671 \\ 0.77265 & 2564.9 & 3273.9 & 7.9003\end{array}$ $\begin{array}{llll}0.77265 & 2564.9 & 3273.9 & 7.9003 \\ 0.88936 & 3129.8 & 3485.5 & 8.1933\end{array}$ | 0.88936 | 3129.8 | 3485.5 |
| :--- | :--- | :--- |
| | 8.1933 | |
| 1.00558 | 3301.0 | 3703.3 |
| 8.4580 | | | $\begin{array}{llll}1.00558 \\ 1.2153 & 3479.0 & 3927.6 & 87012\end{array}$ $\begin{array}{llll}1.12152 & 3479.0 & 3927.6 & 8.7012 \\ 1.23730 & 3663.9 & 4158.9 & 8.9274\end{array}$ $\begin{array}{llll}1,35298,3855.7 & 4396.9 & 9.139\end{array}$ $\begin{array}{llll}1.46859 & 4054.3 & 4641.7 & 9.3396\end{array}$ $\begin{array}{llll}1.58414 & 4259.2 & 4892.9 & 9.5295\end{array}$ $\begin{array}{llll}1.69966 & 4470.2 & 5150.0 & 9.7102\end{array}$ | 1.81516 | 4686.7 | 5412.8 |
| :--- | :--- | :--- | $P=0.50 \mathrm{MPa}\left(151.83^{\circ} \mathrm{C}\right)$ \qquad $P=0.60 \mathrm{MPa}\left(158.83^{\circ} \mathrm{C}\right)$ $=0.80 \mathrm{MPa}\left(170.41^{\circ} \mathrm{C}\right)$. | 0.24035 | 2576.0 | 2768.3 |
| :--- | :--- | :--- |
| 6.6616 | | |
| 0.26088 | 2631.1 | 2839.8 |
| 68177 | | | | 0.29321 | 2715.9 | 2950.4 |
| :--- | :--- | :--- |
| 7.0402 | | | $\begin{array}{llll}0.32416 & 2797.5 & 3056.9 & 7.2345\end{array}$ $\begin{array}{llll}0.35442 & 2878.6 & 3162.2 & 7.4107\end{array}$ $\begin{array}{llll}0.38429 & 2960.2 & 3267.7 & 7.5735\end{array}$ $\begin{array}{lll}0.443323126 .6 & 3481.3 & 7.8692 \\ 0.40186 & 32987 & 370.1\end{array}$ $\begin{array}{llll}0.501863298 .7 & 3700.1 & 8.1354 \\ 0.56011 & 3477.2 & 3925.3 & 8.3794\end{array}$ $\begin{array}{llll}0.56011 & 3477.2 & 3925.3 & 8.379 \\ 0.61820 & 3662.5 & 4157.0 & 8.6061\end{array}$ $\begin{array}{llll}0.61820 & 3662.5 & 4159.0 & 8.60185 \\ 0.67519 & 3854.5 & 4395.5 & 8.8185\end{array}$ $\begin{array}{llll}0.73411 & 4053.3 & 4640.5 & 9.0189\end{array}$ $\begin{array}{llll}0.79197 & 4258.3 & 4891.9 & 9.2090\end{array}$ $\begin{array}{llll}0.84980 & 4469.4 & 5149.3 & 9.389 \\ 0.90761 & 4686.1 & 5 A 12 & 9.5625\end{array}$ $\begin{array}{llll}0.90761 & 4686.1 & 5412.2 & 9.5625\end{array}$

TABLE A-

	$P=1.00 \mathrm{MPa}\left(179.88^{\circ} \mathrm{C}\right)$				$P=1.20 \mathrm{MPa}\left(187.96^{\circ} \mathrm{C}\right)$				$P=1.40 \mathrm{MPa}\left(195.04^{\circ} \mathrm{C}\right)$			
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	7.8	2783.86	5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934	2612.9	2816.16.	. 5909	0.14303	2602.7	2803.0	6.4975
250	0.23275	2710.4	2943.1	6.9265	0.19241	2704.7	2935.65.	. 8313	0.16356	2698.9	2927.9	88
0	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	. 0335	0.18233	2785.7	3040.9	6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464	3123.4	3477:0	6779	0.25216	3121.8	3474	7.6047
00	0.40111	3297.5	3698.6	8.0311	0.33395	3296.3	3697.0	. 9456	0.28597	3295.1		
700	0.44783	3476.3	3924.1	8.2755	0.37297	3475.3	3922.9	1904	0.31951	3474.4	3921.7	8.1183
800	0.49438	3661.7	4156.1	8.5024	0.41184	3661.0	4155.2	. 4176	0.35288	3660.3	4154.3	8.3458
900	0.54083	3853.9	4394.8	8.7150	0.45059	3853.3	4394.0	6303	0.38614	3852.7	4393.3	8.5587
1000	0.58721	4052.7	4640.0	8.9155	0.48928	4052.2	4639.4	8310	0.41933	51.	8.8	7595
1.100	0.63354	4257.9	4891.4	9.1057	0.52792	4257.5	4891.0	. 0212	0.4524	257.	4890.5	8.9497
,	0.67983	4469.0	5148.9	9.2866	0.56652	4468.7	$51<8.5$	2022	0.48558	4468.3	5148.1	
1300	0.72610	. 8	541	9.45	. 60509	68.	5411.6 ¢	3750	0.5	4685.	5411.3	9.3
	$P=1.60 \mathrm{MPa}\left(201.37^{\circ} \mathrm{C}\right)$				$P=1.80 \mathrm{MPa}\left(207.11^{\circ} \mathrm{C}\right)$				$P=2.00 \mathrm{MPa}\left(212.38^{\circ} \mathrm{C}\right)$			
Sat.	0.12374	2594	27	6.4	0.11037	25	5.9	6.3775	0.09959	2599.1	2798.3	6.3
225	0.13293	2545.1	2857.8	6.5537	0.11678	2637.0	2847.2	6.4825	0.10381	2628.5	28361	
250	0.14190	2692.9	2919.9	6.6753	0.12502	2685.7	2911.7	6.6088	0.11150	2680.3	2903.3	5
300	3.15866	27	3035.4	6.8854	0.14025	2777.4	3029.9	6.82	C. 12551	2773.2	3024.2	4
350	0.1745	2866.6	3146.0	7.0713	0.15460	2863.6	3141.9	7.0120	0.13860	2860.5	3137.1	9583
40	0.19007	2950.8	3254.9	7.2394	0.16845	2948.3	3251.6	7.1814	0.15122	2945.9	3248.4	7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5	3470.4	7.4845	0.17568	3116.	3468.3	7.4337
600	0.24959	3293.9	3693.9	7.8101	0.22200	3292.7	3692.3	7.754	0.19962	3291.5	3690.7	7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6	3919.4	8.000	0.22326	7		.9509
80	0.30865	3659.5	4153	8.2834	0.27426	3658.8	4152.4	8.22		3658.0		8.1791
900	0.33780	3852.	392	8.4965	0.30020	3851.	. 9	8.4417		3850.9	4391.1	5
1000	35687	4051.2	4638.2	8.6974	0.32606	4050.7	4637.6		0.	50	4637.1	8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2	4889.6	8.8331	0.31667	4255.7	4889	8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4461.6	5147.3	9.0143	0.33989	4467.2	5147.0	
1300		4684.	5410.	9.24	0.40341	4684	5410.6					
	$\mathrm{P}=2.50 \mathrm{MPa}\left(223.95^{\circ} \mathrm{C}\right)$				$P=3.00 \mathrm{MPa}\left(233.85^{\circ} \mathrm{C}\right)$				$P=3.50 \mathrm{MPa}\left(242.56^{\circ} \mathrm{C}\right.$			
Sat.	0.07995	2602	2801.9	6.2558	c. 06667	2603.2	2803.2	6.1856	0.05706	603	2802.7	6.1244
225	0.08026	2604.	2805.5	. 262								
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7	2856.5	6.2893	0.05876	2624.0	2829.7	6.1764
300	0.09894	2762.2	3009.6	6.6459	0.08118	2750.8	2994.3	6.5412	0.06845	2738.8	2978.4	6.4484
350	0.10979	2852.5	3127.0	6.8424	0.09056	2844.4	3116.1	6.7450	0.07680	.	. 9	21
400	0.12012	2939.8	3240.1	7.0170	0.09938	2933.6	3231.7	6.923	0.08456	2927.2	3223.2	28
	0.13015	3026.2	3351.6	7.1768	0.10789	3021.2	3344.9	7.0856	0.09198	6.1	3338.1	7.0074
500	0.13999	31.2 .8	3462.8	7.3254	0.11620	3108.6	3457.2	7.235	0.09919	31.04 .5	3451.7	7.1593
600	0.15931	3288.5	3686.8	7.5979	0.13245	3285.5	3682.8	7.510	0.11325	3282.5	3678.9	7.4357
700	0.17835	3469.3	3915.2	7.8455	0.14841	3467.0	3912.2	7.7590	0.12702	3464.7	3909.3	7.6855
	0.19722	3656.2	4149.2	8.0744	0.16420	3654.3	4146.9	7.9885	0.14061	3652.5	41.44.6	7.9156
00	0.21597	3849.4	4389.3	8.2882	0.17988	3847.9	4387.5	8.2028	0.1	3846.4	4385	8.1304
1000	0.23466	4049.0	4635.6	8.4897	0.19549	4047.7	4634.2	8.4045	0.16751	4046.	4632.7	8.3324
1100	0.25330	4254.7	4887.9	8.6804	0.21105	4253.6	4886.7	8.595	0.18087	4252.5	4885.6	8.5236
	0.27190	4466.3	5146.0	8.8618	0.22658	4465.3	5145.1	8.7771	0.19420	4464.4	5144.1	8.7053
00	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.8	8.95	0.20750	4681.8	5408.0	8.8785

T
${ }^{\circ} \mathrm{C}$

sat.
275
300
350
400
450
500
600
700
800
900
1000
1100
1200
1300
\square

Superheased water (Concluded)

4978	2601.7	2800.8	6.0	
0.05461	2668.9	2887.3	6.2312	
0.05887	2726.2	2961.7	6.36	
0.06647	2827.4	3093.	6.5843	
0.07343	2920.8	3214.5	6.7714	
0.08004	3011.0	3331.	6.9386	
0.08644	3100.3	3446.0	7.0922	
0.09886	3279.4	3674.9	7.3706	
0.11098	3462.4	3906.3	7.6214	
0.12292	3650.6	4142.3	7.8523	
0.13476	3844.8	4383.9	8.0575	
0.14653	4045.1	4631.2	3.2698	
0.15824	4251.4	4884.4	8.4612	
0.16992	4463.5	5143.2	8.6430	
0.18157	4680.9	5407.2	3.81	

\qquad

\qquad $P=5.0 \mathrm{MPa}\left(263.94^{\circ} \mathrm{C}\right)$ | 2800.8 | 6.0696 | 0.04406 | 2599.7 | 2798.0 | 6.0198 | 0.03945 | 2597.0 | 2794.2 | 5.9737 |
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0.07343	20208	309145	6.5714	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516	
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0.08004	3011.0	3331.2	6.9386	0.07076	3914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.6483	
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0.08644 | 3100.3 | 3446.0 | 7.0922 | 0.07652 | 3096.0 | 3440.4 | 7.0323 | 0.06858 | 3091.8 | 33174.2 | 6.8210 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.09886 | 22794.7 | 6.9781 | | | | | | | | | | | 0.09886 | 3279.4 | 3674.9 | 7.3706 | 0.08766 | 3276.4 | 3670.9 | 7.3127 | 0.07870 | 3273.3 | 3666.9 | 7.2605 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0.12292 | 3650.5 | 4142.3 | 7.8523 | 0.09850 | 3460.0 | 3903.3 | 7.5647 | 0.08852 | 3457.7 | 3900.3 | 7.5136 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0.13476 | 3844.8 | 4383.9 | 8.0575 | 0.10916 | 3648.8 | 4140.0 | 7.7962 | 0.09816 | 3646.9 | 4137.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7.7458 | | | | | | | | | | |
| 0.11972 | 3843.3 | 4382.1 | 8.0118 | 0.10769 | 3841.8 | 4380.2 | 7.9619 | | | | | 0.14653 | 4045.1 | 4631.2 | 8.2698 | 0.13020 | 4043.9 | 4629.8 | 8.2144 | 0.11715 | 4042.6 | 4628.3 | 8.1648 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0.16992 | 4463.5 | 5143.2 | 8.6430 | 0.15103 | 4462.6 | 5142.2 | 8.5880 | 0.13592 | 4461.6 | 5141.3 | 8.5388 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0.18157 | 4680.9 | 5407.2 | 5.8164 | 0.16140 | 4680.1 | 5406.5 | 8.7616 | 0.14527 | 4679.3 | 5405.7 | 8.7124 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\qquad
\qquad $P=8.0 \mathrm{MPa}\left(295.01^{\circ} \mathrm{C}\right)$.
Sat.
300
350
400
450
500
550
600
700
800
900
1000
1100
1200
1300

245	2589.9	2784.6	5.8902	0.0273782581 .0	2772.6		
0.03619	2668.4	2885.6	5.0703	0.0294922633 .5	2839.9	5.9337	
0.04225	2790.4	3043.9	5.3357	0.0352622770 .1	3016	6.2305	
0.04	2893.7	3178.3	5.5432	0.0399582879 .5	3159	6.4502	
0.05217	2989.9	3302.9	5.7219	0.0441872979.	3288	6.6353	
0.05667	3083.1	3423.1	5.8826	0.0481573074 .3	3411.	6.8000	
0.06102	3175.2	3541.3	7.0308	0.0519663167 .9	3531.	6.9507	
0.06527	3267.2	3658.8	7.1693	0.0556653261 .0	3650.6	7.0910	
0.07355	, 3453.0	-3894.3	7.4247	0.0628503448 .3	3888.3	7.3487	
0.08165	3643.2	4133.1	7.6582	0.0698563639 .5	4128.5	7.5836	
. 08	3838.8	4376.6	7.8751	0767503835.7	4373	7.801	
0.09756	4С40.1	4625.4	8.0786	0.0835714037 .5	4622	8.005	
0.10543	4247.1	4879.7	8.2709	0.090341 -4245.0	4877.	8.1982	
0.11326	4459.8	5139.4	8.4534	0.0970754457 .9	5137.4	8.3810	
0.1	4677			0.1037814676.	5402	8.55	

$\begin{array}{llll}0.023525 & 2570.5 & 2758.7 & 5.7450 \\ 0.024279 & 2592 & 2786.5 & 5.7937\end{array}$ $\begin{array}{lllll}0.024279 & 2592.3 & 2786.5 & 5.7937 \\ 0.029975 & 2748.3 & 2988.1 & 6.1321\end{array}$ $\begin{array}{llll}0.034344 & 2864.6 & 3139.4 & 6.3658\end{array}$ $\begin{array}{llll}0.038194 & 2967.8 & 3273.3 & 6.5579 \\ 0.041767 & 3065.4 & 3399 & 6726\end{array}$ $\begin{array}{lllll}0.041767 & 3065.4 & 3399.5 & 6.7266\end{array}$ $\begin{array}{llll}0.045172 & 3160.5 & 3521.8 & 6.8800\end{array}$ $\begin{array}{llll}0.048463 & 3254.7 & 3642.4 & 7.0221 \\ 0.054829 & 34436 & 3882 & 7.2822\end{array}$ $\begin{array}{llll}0.054829 & 3443.6 & 3882.2 & 7.2822 \\ 0.061011 & 3635.7 & 4123.8 & 7.5185\end{array}$ $\begin{array}{llll}0.061012 & 3835.7 & 4123.8 & 7.5185 \\ 0.067082 & 3832.7 & 4369.3 & 7.7372\end{array}$ $0.073079: 4035.0 \quad 4619.67 .9419$ $\begin{array}{llll}0.079025 & 4242.8 & 4875.0 & 8.1350\end{array}$ $0.0849344456 .1 \quad 5135.58 .3181$ $\begin{array}{llll}0.090817 & 4674.5 & 5401.0 & 8.4925\end{array}$
Sat.
325
350
400
450
500
550
600
650
700
800
900
1000
1100
1200
1300

| $P=9.0 \mathrm{MPa}(303.35 \circ$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

T	v	u	h	s	v	u	h	s	v	u	h
${ }^{\circ} \mathrm{C}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{kJ} / \mathrm{kg}$

Sat.

Sat.
350
400
450
500
550
600
650
700
800
900
1000
1100
1200
1300

$\begin{array}{llll}0.010341 & 2455.7 & 2610.8 & 5.3108 \\ 0.011481 & 2520.9 & 2693.1 & 5.4438\end{array}$ $\begin{array}{lllll}400 & 0.015671 & 2740.6 & 2975.7 & 5.8819\end{array}$ $\begin{array}{lllll}450 & 0.018477 & 2880.8 & 3157.9 & 6.1434 \\ 500 & 0.020828 & 2998.4 & 3108 & 63480\end{array}$ | 550 | 0.020828 | 2998.4 | 3310.8 | 6.3480 |
| :--- | :--- | :--- | :--- | :--- |
	0.022945	3106.2	3450.4	65230		0.022945	3106.2	3450.4	6.5230			
0.024921	3209.3	3583.1	6.5796		0.024921	3209.3	3583.1	6.5796				
:---	:---	:---	:---									
0.026804	3310.1	3712.1	6.8233									
0.028621	3	30.3			0.026804	3310.1	3712.1	6.8233				
:---	:---	:---	:---	:---								
0.028621	3409.8	3839.1	6.9573			0.032121	3609.3	4091.1	6.2573			
:---	:---	:---	:---	:---	$\begin{array}{	lllll	}900 & 0.035503 & 3811.2 & 4343.7 & 7.4288 \\ 1000 & 0.038808 & 4017.1 & 4599.2 & 7.6378\end{array}$	1100	0.042062	4227.7	4858.6	7.8339
:---	:---	:---	:---	:---								
1200	0.045279	4443	5123									

1200
1300

0.045279	4443.1	5122.3	8.0192
0.048469	4663.3	5390.3	8.1952

| 0.012463 | 2684.3 | 2902.4 | 5.7211 |
| :--- | :--- | :--- | :--- | $\begin{array}{llll}0.015204 & 2845.4 & 3111.4 & 6.0212\end{array}$ $\begin{array}{llll}0.017385 & 2972.4 & 3276.7 & 6.2424\end{array}$ $\begin{array}{llll}0.019305 & 3085.8 & 3423.6 & 6.4266 \\ 0.021073 & 3192.5 & 3564.3 & 6.5890\end{array}$ $\begin{array}{llll}0.021073 & 3192.5 & 3561.3 & 6.5890\end{array}$ $\begin{array}{llll}0.022742 & 3295.8 & 3693.8 & 6.7366 \\ 0.024342 & 3397.5 & 3823.5 & 6.8735\end{array}$ $\begin{array}{llll}0.027405 & 3599.7 & 4079.3 & 7.1237\end{array}$ $\begin{array}{llll}0.030348 & 3803.5 & 4334.6 & 7.3511\end{array}$ 0.0332154010 .74592 .07 .5616 $\begin{array}{llll}0.036029 & 4222.3 & 4852.8 & 7.7588\end{array}$ $\begin{array}{lllll}0.0388 C 6 & 4438.5 & 5117.6 & 7.9449\end{array}$

0.01272	2807	306	5.9043
0.014793	2945.3	3241	6.
0.0	3064	339	6.3390
0.0:8	3175.	3539	6.5075
0.019695	3281.	36	
1134	3385.1	380	6.7991
0.023870	3590.1	4067	7.0531
0.02	3795.7	4325	7.2829
0.0	4004.3	4584	
	4216.9	4847	
	4433.8	51	
0.036371			

	$P=25.0 \mathrm{MPa}$				$P=30.0 \mathrm{MPa}$				$P=35.0 \mathrm{MPa}$			
375	0.001978	1799.9	1849.4	4.0345	0.001792	1738.1	1791.9	3.9313	0.001701	1702.8	1762.4	3.8724
400	0.006005	2428.5	2578.7	5.1450	0.002798	2068.9	2152.8	4.4758	0.002105	1914.9	1988.6	4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299	2452.9	2611.8	5.1473	0.003434	2253.3	2373.5	4.7751
450	0.009176	2721.2	2950.6	5.5759	0.006737	2618.9	2821.0	5.4422	0.004957	2497.5	2671.0	5.1946
500	Qell143	2887.3	3165.9	5.9643	0.08691	2824.0	3084.	5.7956	0.006933	2755.3	2997.9	5.6331
550	©. 012736	3020.8	3339.2	6.1816	0.010175	2974.5	3279.7	6.0403	0.008348	2925.8	3218.0	5.9093
600	0.014140	3140.0	3493.5	6.3637	0.011445	3103.4	3446.8	6.2373	0.009523	3065.6	3399.0	6.1229
650	0.01 .5430	3251.9	3637.7	6.5243	0.012590	3221.7	3599.4	6.4074	0.0:0565	3190.9	3560.7	6.3030
700	0.016643	3359.9	3776.0	$6.57 C 2$	0.013654	3334.3	3743.9	6.5599	0.0-1523	3308.3	3711.6	6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628	3551.2	4020.0	6.8301	0.013278	3531.6	3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668	0.017473	3764.6	4288.8	7.0695	0.0:4904	3749.0	4270.6	6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240	3978.6	4555.8	7.2880	0.0:6450	3965.8	4541.5	7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954	4195.2	4823.9	7.4906	0.017942	4184.4	4812.4	7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630	4415.3	5094.2	7.6807	0.019398	4406.1	5085.0	7.6034
1300	$\underline{0.029115}$	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
	$P=40.0 \mathrm{MPa}$				$\mathrm{P}=50.0 \mathrm{MPa}$				$P=60.0 \mathrm{MPa}$			
375	0.00164	167	1742.6	3.8290	001560	1638.6	1716.6	3.7642	0.001503	1609.7	1699.9	3.7149
400	0.001911	1855.0	1931.4	4.1145	0.001731	1787.8	1874.4	4.0029	0.001633	1745.2	1843.2	3.9317
425	0.002538	2097.5	2199.0	4.5044	0.002009	1960.3	2060.7	4.2746	0.001816	1892.9	2001.8	4.1630
450	0.003692	2364.2	2511.8	4.9449	0.002487	21.603	2284.7	4.5896	0.002086	2055.1	2180.2	4.4140
500	0.005623	2681.6	2906.5	5.4744	0.003890	2528.1	2722.6	5.1762	0.002952	2393.2	2570.3	4.9356
550	0.006985	2875.1	3154.4	5.7857	0.005118	2769.5	3025.4	5.5563	0.003955	2664.5	2901.9	5.3517
600	0.008089	3026.8	3350.4	6.0170	0.005108	2947.1	3252.6	5.8245	0.004833	2866.8	3156.8	5.6527
650	0.009053	3159.5	3521.6	6.2078	0.005957	3095.6	3443.5	6.0373	0.005591	3031.3	3366.8	5.8867
700	0.009930	3282.0	3679.2	6.3740	0.007717	3228.7	3614.6	6.2179	0.006255	3175.4	3551.3	6.0814
800	0.011521	3511.8	3972.6	6.6613	0.009073	3472.2	3925.8	6.5225	0.007456	3432.6	3880.0	6.4033
900	0.012980	3733.3	4252.5	6.9107	0.010296	3702.0	4216.8	6.7819	0.008519	3670.9	4182.1	6.6725
1000	0.011360	3952.9	4527.3	7.1355	0.011441	3927.4	4499.4	7.0131	0.009504	3902.0	4472.2	6.9099
1100	0.015686	4173.7	4801.1	7.3425	0.012534	4152.2	4778.9	7.2244	0.010439	4130.9	4757.3	7.1255
1200	0.016976	4396.9	5075.9	7.5357	0.013590	4378.6	5058.1	7.4207	0.011339	4360.5	5040.8	7.3248
1300	0.018239	4623.3	5352.8	7.7175	0.014620	4607.5	5338.5	7.6048	0.012213	4591.8	5324.5	7.5111

\qquad
s
\square
u

h	s	v	u	h	s

Sat.
0

	$P=5 \mathrm{MPa}\left(263.94{ }^{\circ} \mathrm{C}\right)$				$P=1 \mathrm{C} \mathrm{MPa}\left(311.00^{\circ} \mathrm{C}\right)$				$P=15 \mathrm{MPz}\left(342.16^{\circ} \mathrm{C}\right)$			
Sat.	2	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572	1585.5	1610.3	3.5848
0	0.0009977	0.04	5.83	0.0001	0.0009952	0.12	10.07	0.0003	0.0069928	0.18	15.07	0.0004
20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.9	0.2932
40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666
60	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	0.8234
80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	1.0659
100	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	1.2958
120	0.0010576	501.91	507.19	1.5236	0.0010549	500:18	510.73	1.5191	0.0010522	498.50	514.28	1.5148
140	0.0010769	586.80	592.18	1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	1.7243
160	0.0010988	672.55	678.C4	1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.31	1.9259
180	0.0011240	759.47	765.09	2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	2.1206
200	0.0011531	847.92	853.68	2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	2.3100
220	0.0011868	938.39	944.32	2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	¢47.43	2.4951
240	0.0012268	1031.6	1037.7	2.6983	0.0012192	1026.2	1038.3	2.6876	0.0012121	1021.0	1639.2	2.6774
260	0.0012755	1128.5	1134.9	2.8841	0.0012653	1121.6	1134.3	2.8710	0.0012560	1115.1	1134.0	2.8586
280					0.0013226	1221.8	1235.0	3.0565	0.0013096	1213.4	1233.0	3.0410
300					0.0013980	1329.4	1343.3	3.2488	0.0013783	1317.6	1338.3	3.2779
320									0.0014733	1431.9	1454.0	3.4263
40									0.0016311	1567.9	1592.4	5
		20 MPa	365. 75°			$P=30$	MPa			$P=$	MPa	
Sat.	0.0020378	1785.8	1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	. 13	0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	0.2845
40	0.0009992	165.17	185.16	0.5646	0.0039951	164.05	193.9C	0.5607	0.0009872	161.90	211.25	0.5528
60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055
80	0.0010199	330.50	350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	1.0442
100	0.0010337	413.50	434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	1.2705
120	0.0010496	496.85	517.84	1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	1.4859
140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0016517	569.77	622.36	1.6916
160	0.0010886	665.28	687.05	1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	1.8889
180	0.0011122	750.78	773.02	2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	2.0790
200	0.0011390	837.49	860.27	2.3027	0.0011304	831.11	865.02	2.2888	0.0011149	819.45	875.19	2.2628
220	0.0011697	925.77	949.16	2.4867	0.0011595	918.15	952.93	2.4707	0.0011412	904.39	961.45	2.4414
240	0.0012053	1016.1	1040.2	2.6676	0.0011927	1006.9	1042.7	2.6491	0.0011708	990.55	1049.1	2.6156
260	0.0012472	1109.0	1134.0	2.8469	0.0012314	1097.8	1134.7	2.8250	0.0012044	1078.2	1138.4	2.7864
280	0.0012978	1205.6	1231.5	3.0265	0.0012770	1191.5	1229.8	3.0001	0.0012430	1167.7	1229.9	2.9547
300	0.0013611	1307.2	1334.4	3.2091	0.0013322	1288.9	1328.9	3.1761	0.0012879	1259.6	1324.0	3.1218
320	0.0014450	1416.6	1445.5	3.3996	0.0014014	1391.7	1433.7	3.3558	0.0013409	1354.3	1421.4	3.2888
340	0.0015693	1540.2	1571.6	3.6086	0.0014932	1502.4	1547.1	3.5438	0.0014049	1452.9	1523.1	3.4575
360	0.0018248	1703.6	1740.1	3.8787	0.0016276	1626.8	1675.6	3.7499	0.0014848	1556.5	1630.7	3.6301
380					0.0018729	1782.0	1838.2	4.0026	0.0015884	1667.1	1746.5	3.8102

TABLE A-8
Saturated ice-water vapor
Spacific volume

$$
\begin{gathered}
\text { internal energ } \\
\mathrm{kJ} / \mathrm{kg}
\end{gathered}
$$

Enthatpy
\qquad
Entropy,
Entropy,
$\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$
\qquad

| | Sat. | Sat. | Sat. | Sat. | | Sat. | Sat. | | Sat. | Sat. | | Sat. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Temp., | press., | ice, | vapor, | ice, | Subl.; | vapor, | ice, | Subl., vapor, | ice, | Subl., | vapor, | |
| $T^{\circ} \mathrm{C}$ | $P_{\text {sat }} \mathrm{kPa}$ | v_{i} | v_{g} | u_{j} | $u_{\text {ig }}$ | u_{g} | h_{i} | $h_{i g}$ | h_{g} | s_{i} | $s_{i g}$ | s_{g} |

| 0.01 | 0.61169 | 0.001091 | 205.99 | -333.40 | 2707.9 | 2374.5 | -333.40 | 2833.9 | 2500.5 | -1.2202 | 10.374 | 9.154 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{rllllllllllll}0 & 0.61115 & 0.001091 & 206.17 & -333.43 & 2707.9 & 2374.5 & -333.43 & 2833.9 & 2500.5 & -1.2204 & 10.375 & 9.154 \\ -2 & 0.51772 & 0.001091 & 241.62 & -337.63 & 2709.4 & 2371.8 & -337.63 & 2834.5 & 2496.8 & -1.2358 & 10.453 & 9.218\end{array}$ $\begin{array}{llllllllllll}-2 & 0.51772 & 0.001091 & 241.62 & -337.63 & 2709.4 & 2371.8 & -337.63 & 2834.5 & 2496.8 & -1.2358 & 10.453 \\ -4 & 0.43748 & 0.001090 & 283.84 & -341.80 & 2710.8 & 2369.0 & -341.80 & 2835.0 & 2493.2 & -1.2513 & 10.33\end{array}$ $\begin{array}{lllllllllllll}-4 & 0.43748 & 0.001090 & 283.84 & -341.80 & 2710.8 & 2369.0 & -341.80 & 2835.0 & 2493.2 & -1.2513 & 10.533 & 9.282 \\ -6 & 0.36873 & 0.001090 & 334.27 & -345.94 & 2712.2 & 2366.2 & -345.93 & 2835.4 & 2489.5 & -1.2667 & 10.613 & 9.347\end{array}$ $\begin{array}{lllllllllllll}-6 & 0.36873 & 0.001090 & 334.27 & -345.94 & 2712.2 & 2366.2 & -345.93 & 2835.4 & 2489.5 & -1.2667 & 10.613 & 9.347 \\ -8 & 0.30998 & 0.001090 & 394.65 & -350.04 & 2713.5 & 2363.5 & -350.04 & 2835.8 & 2485.8 & -1.2821 & 10.695 & 9.413\end{array}$ $\begin{array}{lllllllllllll}-8 & 0.30998 & 0.001090 & 394.66 & -350.04 & 2713.5 & 2363.5 & -350.04 & 2835.8 & 2485.8 & -1.2821 & 10.695 & 9.413 \\ -10 & 0.25990 & 0.001089 & 467.17 & -354.12 & 2714.8 & 2360.7 & \cdots 354.12 & 2836.2 & 2482.1 & -1.2976 & 10.778 & 9.480\end{array}$ $\begin{array}{lllllllllllll}-10 & 0.25990 & 0.001089 & 467.17 & -354.12 & 2714.8 & 2360.7 & -354.12 & 2836.2 & 2482.1 & -1.2976 & 10.778 & 9.480 \\ -12 & 0.21732 & 0.001089 & 554.47 & -358.17 & 2716.1 & 2357.9 & -358.17 & 2836.6 & 2478.4 & -1.3130 & 10.862 & 9.549\end{array}$ $\begin{array}{lllllllllllll}-12 & 0.21732 & 0.001089 & 554.47 & -358.17 & 2716.1 & 2357.9 & -358.17 & 2836.6 & 2478.4 & -1.3130 & 10.862 & 9.549 \\ -14 & 0.18121 & 0.001088 & 659.88 & -362.18 & 2717.3 & 2355.2 & -362.18 & 2836.9 & 2474.7 & -1.3284 & 10.947 & 9.618\end{array}$ $\begin{array}{lllllllllllll}-14 & 0.181 .21 & 0.001088 & 679.88 & -362.18 & 2717.3 & 2355.2 & -362.18 & 2836.9 & 2474.7 & -1.3284 & 10.947 & 9.618 \\ -16 & 0.15068 & 0.001088 & 787.51 & -366.17 & 2718.6 & 2352.4 & -366.17 & 2837.2 & 2471.0 & -1.3439 & 11.033 & 9.689\end{array}$ $\begin{array}{llllllllllll}18 & 0.12492 & 0.001088 & 942.51 & -370.13 & 2719.7 & 2349.6 & -370.13 & 2837.5 & 2467.3 & -1.3593 & 11.121\end{array} 9.761$ $\begin{array}{lllllllllllll} & 0.10326 & 0.001087 & 1131.3 & -374.06 & 2720.9 & 2346.8 & -374.06 & 2837.7 & 2463.6 & -1.3748 & 11.209 & 9.835\end{array}$ $\begin{array}{llllllllllllll} & 0.08510 & 0.001087 & 1362.0 & -377.95 & 2722.0 & 2344.1 & -377.95 & 2837.9 & 2459.9 & -1.3903 & 11.300 & 9.909\end{array}$
 $\begin{array}{llllllllllll}0.05725 & 0.001087 & 1992.2 & -385.66 & 2724.2 & 2338.5 & -385.66 & 2838.2 & 2452.5 & -1.4212 & 11.484 & 10.063 \\ 0.04673 & 0.001086 & 2421.0 & -389.47 & 2725.2 & 2335.7 & -389.47 & 2838.3 & 2448.8 & -1.4367 & 11.578 & 10.141\end{array}$ $\begin{array}{llllllllllll}0.04673 & 0.001086 & 2421.0 & -389.47 & 2725.2 & 2335.7 & -389.47 & 2838.3 & 2448.8 & -1.4367 & 11.578 & 10.141 \\ 0.03802 & 0.001086 & 2951.7 & -393.25 & 2726.2 & 2332.9 & -393.25 & 2838.4 & 2445.1 & -1.4521 & 11.673 & 10.221\end{array}$ $\begin{array}{llllllllllll}0.03802 & 0.001086 & 2951.7 & -393.25 & 2726.2 & 2332.9 & -393.25 & 2838.4 & 2445.1 & -1.4521 & 11.673 & 10.221 \\ 0.03082 & 0.001086 & 3610.9 & -397.00 & 2727.2 & 2330.2 & -397.00 & 2838.4 & 2441.4 & -1.4676 & 11.770 & 10.303\end{array}$ $4 \begin{array}{llllllllllll}0.02490 & 0.001085 & 4432.4 & -40 c .72 & 2728.1 & 2327.4 & -400.72 & 2838.5 & 2437.7 & -1.4831 & 11.869 & 10.386\end{array}$ $\begin{array}{llllllllllll}-36 & 0.02004 & 0.001085 & 5460.1 & -404.40 & 2729.0 & 2324.6 . & -404.40 & 2838.4 & 2434.0 & -1.4986 & 11.969 \\ -30.40 .470\end{array}$ $\begin{array}{llllllllllllll}-38 & 0.01608 & 0.001085 & 6750.5 & -408.07 & 2729.9 & 2321.8 & -408.07 & 2838.4 & 2430.3 & -1.5141 & 12.071 & 10.557\end{array}$

| -40 | 0.01285 | 0.001084 | 8376.7 | -411.70 | 2730.7 | 2319.0 | -411.70 | 2838.3 | 2426.6 | -1.5296 | 12.174 | 10.644 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Rankine Cycle: The Ideal Cycle for Vapor Power Cycles

- Operating principles
- Vapor power plants
- The ideal Rankine vapor power cycle
- Efficiency
- Improved efficiency - superheat

The simple ideal Rankine cycle.

A hypothetical vapor power cycle

- Assume a Carnot cycle operating between
- two fixed temperatures as shown.

The ideal Rankine cycle

All processes are internally reversible.

The ideal Rankine cycle

The ideal Rankine cycle (h-s diagram)

Rankine cycle efficiency

$W_{\text {OUT }}=h_{3}-h_{4}$
$W_{I N}=h_{2}-h_{1}$
$Q_{H}=h_{3}-h_{4}$

$$
\begin{equation*}
\eta=\frac{W_{N E T}}{Q_{H}} \tag{3}
\end{equation*}
$$

FIGURE 10-6

The effect of lowering the condenser pressure on the ideal Rankine cycle.

FIGURE 10-7

The effect of superheating the steam to higher temperatures on the ideal Rankine cycle.

FIGURE 10-8

The effect of increasing the boiler pressure on the ideal Rankine cycle.

FIGURE 10-10

T-s diagrams of the three cycles discussed in Example 9-3.

A hypothetical vapor power cycle with superheat

Superheating the working fluid raises the average temperature of heat addition.

A hypothetical vapor power cycle: A Rankine cycle with superheat

Superheating the working fluid raises the average temperature with a reservoir at a higher temperature.

The Rankine cycle with reheat

The extra expansion via reheating to state "d" allows a greater enthalpy to be released between states " c " to "e".

FIGURE 10-1 1
 The ideal reheat Rankine cycle.

The Rankine cycle with regeneration

The first part of the heat-addition process in the boiler takes place at relatively low temperatures.

The ideal regenerative Rankine cycle with an open feedwater heater.

FIGURE 10-16

The ideal regenerative Rankine cycle with a closed feedwater heater.

FIGURE 10-17

A steam power plant with one open and three closed feedwater heaters.

Commercial steam-power plants

- Reheat (multiple stages)
- Regeneration (multiple extractions)
- Nearly ideal heat addition
- Constant temperature boiling for water

Commercial steam-power plants

- Heat transfer characteristics of steam and water permit external combustion systems
- Compression of condensed liquid produces a favorable work ratio.

Commercial steam-power plants

- The Rankine cycle with reheat and regeneration is advantageous for large plants.
- Small plants do not have economies of scale
- Internal combustion for heat addition.
- A different thermodynamic cycle

Cogeneration

A simple process-heating plant.

An ideal cogeneration plant.

FIGURE 10-22

A cogeneration plant with adjustable loads.

10-9 Combined /gas-Vapor Power Cycles

Combined gas-steam power plant.

Mercury-water binary vapor cycle.

UNIT - 4 VAPOUR POWER CYCLES

Carnot vapour power cycle, drawbacks as a reference cycle, simple Rankine cycle; description, T-s diagram, analysis for performance. Comparison of Carnot and Rankine cycles. Effects of pressure and temperature on Rankine cycle performance. Actual vapour power cycles. Ideal and practical regenerative Rankine cycles, open and closed feed water heaters. Reheat Rankine cycle.

Vapour power cycles are used in steam power plants. In a power cycle heat energy (released by the burning of fuel) is converted into work (shaft work), in which a working fluid repeatedly performs a succession of processes. In a vapour power cycle, the working fluid is water, which undergoes a change of phase.

High pressure, high
temperature steam

Simple steam power plant

Figure shows a simple steam power plant working on the vapour power cycle. Heat is transferred to the water in the boiler $\left(\mathrm{Q}_{\mathrm{H}}\right)$ from an external source. (Furnace, where fuel is continuously burnt) to raise steam, the high pressure high temperature steam leaving the boiler expands in the turbine to produce shaft work $\left(\mathrm{W}_{\mathrm{T}}\right)$, the steam leaving the turbine condenses into water in the condenser (where cooling water circulates), rejecting heat $\left(\mathrm{Q}_{\mathrm{L}}\right)$, and then the water is pumped back $\left(W_{P}\right)$ to the boiler.

Since the fluid is undergoing a cyclic process, the net energy transferred as heat during the cycle must equal the net energy transfer as work from the fluid.

By the $1^{\text {st }}$ law of Thermodynamics,

$$
\sum_{\text {cycle }} Q_{\text {net }}=\sum_{\text {cycle }} W_{\text {net }}
$$

Or

$$
\mathrm{Q}_{\mathrm{H}}-\mathrm{Q}_{\mathrm{L}}=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}
$$

Where $\mathrm{Q}_{\mathrm{H}}=$ heat transferred to the working fluid $(\mathrm{kJ} / \mathrm{kg})$
$\mathrm{Q}_{\mathrm{L}}=$ heat rejected from the working fluid ($\mathrm{kJ} / \mathrm{kg}$)
$\mathrm{W}_{\mathrm{T}}=$ work transferred from the working fluid (kJ/kg)
$\mathrm{W}_{\mathrm{P}}=$ work transferred into the working fluid ($\mathrm{kJ} / \mathrm{kg}$)
$\therefore \quad \eta_{\text {cycle }}=\frac{W_{\text {net }}}{Q_{H}}=\frac{W_{T}-W_{P}}{Q_{H}}=\frac{Q_{H}-Q_{L}}{Q_{H}}=1-\frac{Q_{L}}{Q_{H}}$

Idealized steam power cycles:

We know that the efficiency of a Carnot engine is maximum and it does not depend on the working fluid. It is, therefore, natural to examine of a steam power plant can be operated on the Carnot cycle.

Figure shows the Carnot cycle on the T-S diagram. Heat addition at constant pressure P_{2}, can be achieved isothermally in the process 1-2 in a boiler. The decrease in pressure from P_{2} to P_{3} in the process 2-3 can also be attained through the performance of work in a steam turbine. But in order to bring back the saturated liquid water to the boiler at the state 1 , the condensation process 3-4 in the condenser must be terminated at the state 4 , where the working fluid is a mixture of liquid water and vapour. But it is practically impossible to attain a condensation of this kind. Difficulty is also experienced in compressing isentropically the binary mixture from state 4 to the initial state 1 , where the working fluid is entirely in the liquid state. Due to these inherent practical difficulties, Carnot cycle remains an ideal one.

Rankine Cycle: The simplest way of overcoming the inherent practical difficulties of the Carnot cycle without deviating too much from it is to keep the processes 1-2 and 2-3 of the latter unchanged and to continue the process $3-4$ in the condenser until all the vapour has been converted into liquid water. Water is then pumped into the boiler upto the pressure corresponding to the state 1 and the cycle is completed. Such a cycle is known as the Rankine cycle. This theoretical cycle is free of all the practical limitations of the Carnot cycle.

Figure (a) shows the schematic diagram for a simple steam power cycle which works on the principle of a Rankine cycle. Figure (b) represents the T-S diagram of the cycle.

The Rankine cycle comprises the following processes.
Process 1-2: Constant pressure heat transfer process in the boiler
Process 2-3: Reversible adiabatic expansion process in the steam turbine
Process 3-4: Constant pressure heat transfer process in the condenser and
Process 4-1: Reversible adiabatic compression process in the pump.

The numbers on the plots correspond to the numbers on the schematic diagram. For any given pressure, the steam approaching the turbine may be dry saturated (state 2), wet (state 2^{1}) or superheated (state 2^{11}), but the fluid approaching the pump is, in each case, saturated liquid (state 4). Steam expands reversibly and adiabatically in the turbine from state 2 to state 3 (or 2^{1} to 3^{1} or 2^{11} to 3^{11}), the steam leaving the turbine condenses to water in the condenser reversibly at constant pressure from state 3 (or 3^{1}, or 3^{11}) to state 4 . Also, the water is heated in the boiler to form steam reversibly at constant pressure from state 1 to state 2 (or 2^{1} or 2^{11})

Applying SFEE to each of the processes on the basis of unit mass of fluid and neglecting changes in KE \& PE, the work and heat quantities can be evaluated.

For 1 kg of fluid, the SFEE for the boiler as the CV , gives,
$\mathrm{h}_{1}+\mathrm{Q}_{\mathrm{H}}=\mathrm{h}_{2} \quad$ i.e., $\mathrm{Q}_{\mathrm{H}}=\mathrm{h}_{2}-\mathrm{h}_{1} \quad--$ (1)
SFEE to turbine, $h_{2}=W_{T}+h_{3}$ i.e., $W_{T}=h_{2}-h_{3} \quad$--- (2)
SFEE to condenser, $h_{3} Q_{L}+h_{4}$ i.e., $Q_{L}=h_{3}-h_{4} \quad---(3)$
SFEE to pump, $\mathrm{h}_{4}+\mathrm{W}_{\mathrm{P}}=\mathrm{h}_{1}$ i.e., $\mathrm{W}_{\mathrm{P}}=\mathrm{h}_{1}-\mathrm{h}_{4}$
The efficiency of Rankine cycle is $\eta=\frac{W_{n e t}}{Q_{H}}=\frac{W_{T}-W_{P}}{Q_{H}}$
i.e., $\eta=\frac{\left(h_{2}-h_{3}\right)-\left(h_{1}-h_{4}\right)}{\left(h_{2}-h_{1}\right)}$ or $\eta=\frac{\left(h_{2}-h_{1}\right)-\left(h_{3}-h_{4}\right)}{\left(h_{2}-h_{1}\right)}$

The pump handles liquid water which is incompressible i.e., its density or specific volume undergoes little change with an increase in pressure.

For reversible adiabatic compression, we have $\mathrm{Tds}=\mathrm{dh}-\mathrm{vdp}$; since $\mathrm{ds}=0$
We have, dh = vdp
Since change in specific volume is negligible, $\Delta \mathrm{h}=\mathrm{v} \Delta \mathrm{P}$
Or $\left(\mathrm{h}_{1}-\mathrm{h}_{4}\right)=\mathrm{v}_{4}\left(\mathrm{P}_{2}-\mathrm{P}_{3}\right)$
Usually the pump work is quite small compared to the turbine work and is sometimes neglected. In that case, $\mathrm{h}_{1}=\mathrm{h}_{4}$

$$
\eta_{\text {rankine }} \cong \frac{\left(h_{2}-h_{3}\right)}{\left(h_{2}-h_{1}\right)} \cong \frac{\left(h_{2}-h_{3}\right)}{\left(h_{2}-h_{4}\right)}
$$

The efficiency of the Rankine cycle is presented graphically in the T-S diagram

Fig. $Q^{2}, W_{\text {net }}$ and Q_{L} are proportional to areas
$\mathrm{Q}_{\mathrm{H}} \alpha$ area 2-5-6-1,
$\mathrm{Q}_{\mathrm{L}} \alpha$ area 3-5-6-4
$\mathrm{W}_{\text {net }}=\left(\mathrm{Q}_{\mathrm{H}}-\mathrm{Q}_{\mathrm{L}}\right)=$ area 1-2-3-4 enclosed by the cycle.
The capacity of the steam plant is expressed in terms of steam rate defined as the rate of steam flow (kg / h) required to produce unit shaft output (1 kW)

$$
\begin{aligned}
\therefore \quad \text { Steam rate } & =\frac{1}{W_{T}-W_{P}} \quad \frac{k g}{k J} \quad \frac{1 \mathrm{~kJ} / \mathrm{s}}{1 \mathrm{~kW}}=\text { Specific Steam Consumption }(\text { SSC }) \\
& =\frac{1}{W_{T}-W_{P}} \quad \frac{k g}{k W s}=\frac{3600}{W_{T}-W_{P}} \frac{\mathrm{~kg}}{\mathrm{kWh}}
\end{aligned}
$$

The cycle efficiency also expressed alternatively as heat rate which is the rate of heat input $\left(\mathrm{Q}_{\mathrm{H}}\right)$ required to produce unit work output ($1 \mathrm{~kW} \mathrm{)}$

$$
\text { Heat rate }=\frac{3600 Q_{H}}{W_{T}-W_{P}}=\frac{3600}{\eta_{\text {cycle }}} \frac{k J}{k W h}
$$

Lastly, work ratio $\mathrm{r}_{\mathrm{w}}=\frac{\oint \delta W}{\text { positive work }}=\frac{\left(h_{2}-h_{3}\right)-\left(h_{1}-h_{4}\right)}{\left(h_{2}-h_{3}\right)}$

Carnot cycle has the maximum possible efficiency for the given limits of temperature. But it is not suitable in steam power plants. Figure shows the Rankine and Carnot cycles on the T-S diagram.
The reversible adiabatic expansion in the turbine, the constant temperature heat rejection in the condenser, and the Reversible adiabatic compression in the pump, are similar characteristic features of both the Rankine and Carnot cycles. But whereas the heat addition process in the Rankine cycle is reversible and at constant pressure, in the carnot cycle it is reversible and isothermal.

In Figures (a) and (c), Q_{L} is the same in both the cycles, but since Q_{H} is more, $\eta_{\mathrm{C}}>\eta_{\mathrm{R}}$. The two carnot cycles in Figure (a) and (b) have the same thermal efficiency. \therefore in Figure (b) also $\eta_{C}>$ η_{R}.

But the Carnot cycle cannot be realized in practice because the pump work is very large. Whereas in (a) and (c) it is impossible to add heat at infinite pressures and at constant temperature from state 1 C to state 2 , in (b), it is difficult to control the quality at 4 C , so that isentropic compression leads to a saturated liquid state.

Mean temperature of Heat addition

In the Rankine cycle, heat is added reversibly at a constant pressure, but at infinite temperatures. Let $\mathrm{T}_{\mathrm{m} 1}$, is the mean temperature of heat addition, so that area under 1 s and 2 is equal to the area under 5-6.

Heat added, $\mathrm{Q}_{\mathrm{H}}=\mathrm{h}_{2}-\mathrm{h}_{1 \mathrm{~S}}=\mathrm{T}_{\mathrm{m} 1}\left(\mathrm{~S}_{2}-\mathrm{S}_{1 \mathrm{~S}}\right)$
$\therefore \mathrm{T}_{\mathrm{m} 1}=$ Mean temperature of heat addition $=\frac{h_{2}-h_{1 S}}{S_{2}-S_{1 S}}$
$\mathrm{Q}_{\mathrm{L}}=$ heat rejected $\quad=\mathrm{h}_{3 \mathrm{~S}}-\mathrm{h}_{4}$ $=\mathrm{T}_{3}\left(\mathrm{~S}_{2}-\mathrm{S}_{1 S}\right)$
$\therefore \quad \eta_{R}=1-\frac{Q_{L}}{Q_{H}}=1-\frac{T_{3}\left(S_{2}-S_{1 S}\right)}{T_{m 1}\left(S_{2}-S_{1 S}\right)}$
$\eta_{R}=1-\frac{T_{3}}{T_{m 1}} \quad$ where $\mathrm{T}_{3}=$ temperature of heat rejection.

As T_{3} is lowered for a given $\mathrm{T}_{\mathrm{m} 1}$, the $\eta_{R} \uparrow$. But the lowest practical temperature of heat rejection is the ambient temperature T_{0}
i.e., $\eta_{R}=f\left(T_{m 1}\right)$ only.

Or higher the mean temperature of heat addition, the higher will be the cycle efficiency.

Fig. Effect of superheat on mean temperature of heat addition
The effect of increasing the initial temperature at constant pressure on cycle efficiency is shown in Figure. When the initial state changes from 2 to $2^{1}, T_{m 1}$, between 2 and 2^{1} is higher than $T_{m 1}$ between 1 s and 2 . So an increase in the superheat at constant pressure increases the mean temperature of heat addition and hence the cycle η.

But the maximum temperature of steam that can be used is fixed from metallurgical considerations (i.e., materials used for the manufacture of the components which are subjected to high pressure, high temperature steam such as super heaters, valves, pipelines, inlet stages of turbines etc).

Fig. Effect of increase of pressure on Rankine cycle

When the maximum temperature is fixed, as the operating steam pressure at which heat is added in the boiler increases from P_{1} to P_{2}, the mean temperature of heat addition increases (since $\mathrm{T}_{\mathrm{m} 1}$ between 5_{S} and 6 higher than between 1_{S} and 2). But when the turbine inlet pressure increases from P_{1} to P_{2}, the ideal expansion line shifts to the left and the moisture content at the exhaust increases $\left(\because x_{7 S}<x_{3 S}\right)$

If the moisture content of steam in the turbine is higher the entrained water particles along with the vapour coming out from the nozzles with high velocity strike the blades and erode their surfaces, as a result of which the longevity of the blades decreases. From this consideration, moisture content at the turbine exhaust is not allowed to exceed 15% or $\mathrm{x}<0.85$.

Fig. Fixing of exhaust quality, maximum temperature and maximum pressure in Rankine cocle
\therefore With the maximum steam temperature at the turbine inlet, the minimum temperature of heat rejection and the minimum quality of steam at the turbine exhaust fixed, the maximum steam pressure at the turbine inlet also gets fixed. The vertical line drawn from $3 S$, fixed by T_{3} and $x_{3 S}$, intersects the $\mathrm{T}_{\max }$ line, fixed by material, at 2 , which gives maximum steam pressure at the turbine inlet.

Fig. 13.5 Effect of boiler pressure
We have,
$\eta_{t h}=\frac{\left(h_{2}-h_{3}\right)-\left(h_{1}-h_{4}\right)}{h_{2}-h_{1}}$ but $\mathrm{W}_{\mathrm{P}} \ll \mathrm{W}_{\mathrm{T}}$
$\therefore \eta_{t h}=\frac{h_{2}-h_{3}}{h_{2}-h_{1}}=\frac{(\Delta h)_{S}}{\left(h_{2}-h_{1}\right)}$
i.e., Rankine cycle η depends on h_{2}, h_{1} and Δh_{s}. From figure as $\mathrm{P}_{1}{ }^{\prime \prime \prime}>\mathrm{P}_{1}{ }^{\prime \prime}>\mathrm{P}_{1}{ }^{\prime}$ for the fixed maximum temperature of the steam t_{1} and condenser pressure P_{2}, Isentropic heat drops increases with boiler pressure i.e., from the figure therefore it is evident that as boiler pressure increases, the isentropic heat drop $(\Delta \mathrm{h})_{\mathrm{S}}$ increases, but the enthalpy of the steam entering the turbine decreases, with the result that the Rankine η increases. But quality of the steam at the exit of the turbine suffers i.e., $\mathrm{x}_{3}{ }^{\prime \prime \prime}<\mathrm{x}_{3}{ }^{\prime \prime}<\mathrm{x}_{3}{ }^{\prime}$, which leads to serious wear of the turbine blades.

Effect of Super Heating (Using Molliar Diagram i.e., h-s diagram)

Fig. Effect ot superheating
The moisture in the steam at the end of the expansion may be reduced by increasing the super heated temperature of steam t_{2}. This can be seen in figure where $t_{2}{ }^{\prime \prime}>t_{2}{ }^{\prime \prime}>t_{2}{ }^{\prime}$, but $x_{3}{ }^{\prime}<x_{3}{ }^{\prime \prime}<$ $\mathrm{x}_{3}{ }^{\prime \prime \prime}$. It is, therefore, natural that to avoid erosion of the turbine blades, an increase in the boiler pressure must be accompanied by super heating at a higher temperature and since this raises the mean average temperature at which heat is transferred to the steam, the Rankine η increases.

Deviation of Actual Vapour Power cycles from Ideal cycle

The actual Vapour power cycle differs from the ideal Rankine cycle, as shown in figure, as a result of irreversibilities in various components mainly because of fluid friction and heat loss to the surroundings.

Fluid friction causes pressure drops in the boiler, the condenser, and the piping between various components. As a result, steam leaves the boiler at a lower pressure. Also the pressure at the turbine inlet is lower than that at the boiler exit due to pressure drop in the connecting pipes. The pressure drop in the condenser is usually very small. To compensate these pressure drops, the water must be pumped to sufficiently higher pressure which requires the larger pump and larger work input to the pump.

The other major source of irreversibility is the heat loss from the steam to the surroundings as the steam flows through various components. To maintain the same level of net work output, more heat needs to be transferred to the steam in the boiler to compensate for these undesired heat losses. As a result, cycle efficiency decreases.

As a result of irreversibilities, a pump requires a greater work input, and a turbine produces a smaller work output. Under the ideal conditions, the flow through these devices are isentropic. The deviation of actual pumps and turbines from the isentropic ones can be accounted for by utilizing isentropic efficiencies, defined as

$$
\begin{aligned}
& \eta_{P}=\frac{W_{S}}{W_{a}}=\frac{h_{1 S}-h_{4}}{h_{1}-h_{4}} \\
& \text { And } \eta_{t}=\frac{W_{a}}{W_{S}}=\frac{h_{2}-h_{3}}{h_{2}-h_{3 S}}
\end{aligned}
$$

Problems:

1. Dry saturated steam at 17.5 bar enters the turbine of a steam power plant and expands to the condenser pressure of 0.75 bar. Determine the Carnot and Rankine cycle efficiencies. Also find the work ratio of the Rankine cycle.

Solution: $\mathrm{P}_{1}=17.5$ bar $\quad \mathrm{P}_{2}=0.75$ bar $\eta_{\text {Carnot }}=$? $\eta_{\text {Rankine }}=$?
a) Carnot cycle: At pressure 17.5 bar from steam tables,

P	t_{S}	h_{f}	h_{fg}	h_{g}	S_{f}	S_{fg}	S_{g}
17	204.3	871.8	1921.6	2793.4	2.3712	4.0246	6.3958
18	207.11	884.5	1910.3	2794.8	2.3976	3.9776	6.3751

For $\mathrm{P}=17.5$ bar, using linear interpolation

For $\mathrm{t}_{\mathrm{s}}, 204.3+\frac{207.11-204.3}{1} x 0.5=205.71^{\circ} \mathrm{C}$

$$
=478.71 \mathrm{~K}
$$

Similarly, $\mathrm{h}_{\mathrm{f}}=878.15 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{h}_{\mathrm{fg}}=1915.95 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{h}_{\mathrm{g}}=2794.1 \mathrm{~kJ} / \mathrm{kg}$

$$
\mathrm{S}_{\mathrm{f}}=2.3844 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K} \quad \mathrm{~S}_{\mathrm{fg}}=4.0011 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K} \quad \mathrm{~S}_{\mathrm{g}}=6.3855 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

Also at pressure 0.75 bar from steam tables

P	t_{S}	h_{f}	h_{fg}	h_{g}	S_{f}	S_{fg}	S_{g}
0.8	93.51	391.7	2274.0	2665.8	1.233	6.2022	7.4352
0.7	89.96	376.8	2283.3	2660.1	1.1921	6.2883	7.4804

\therefore For 0.75 bar, using linear interpolation,

$$
\begin{array}{llll}
\mathrm{t}_{\mathrm{S}}=91.74^{0} \mathrm{C} & \mathrm{~h}_{\mathrm{f}}=384.25 & \mathrm{~h}_{\mathrm{fg}}=2278.65 & \mathrm{~h}_{\mathrm{g}}=2662.95 \\
& \mathrm{~S}_{\mathrm{f}}=1.2126 & \mathrm{~S}_{\mathrm{fg}}=6.2453 & \mathrm{~S}_{\mathrm{g}}=7.4578
\end{array}
$$

The Carnot cycle $\eta, \eta_{\mathrm{C}}=\frac{T_{1}-T_{2}}{T_{1}}=\frac{478.71-364.74}{478.71}=0.2381$
Steam rate or $\mathrm{SSC}=\frac{1}{\oint \delta W}=\frac{1}{W_{T}-W_{P}}$
Since the expansion work is isentropic, $\mathrm{S}_{2}=\mathrm{S}_{3}$
But $\mathrm{S}_{2}=\mathrm{S}_{\mathrm{g}}=6.3855$ and $\mathrm{S}_{3}=\mathrm{S}_{\mathrm{f} 3}+\mathrm{x}_{3} \mathrm{~S}_{\mathrm{fg} 3}$
i.e., $6.3855=1.2126+\mathrm{x}_{3}(6.2453) \quad \therefore \mathrm{x}_{3}=0.828$

$$
\therefore \text { Enthalpy at state 3, } \quad \begin{aligned}
\mathrm{h}_{3} & =\mathrm{h}_{\mathrm{fj}}+\mathrm{x}_{3} \mathrm{~h}_{\mathrm{fg} 3} \\
& =384.25+0.828(2278.65)=2271.63 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

\therefore Turbine work or expansion work or positive work $=\mathrm{h}_{2}-\mathrm{h}_{3}$

$$
=2794.1-2271.63=522.47 \mathrm{~kJ} / \mathrm{kg}
$$

Again since the compression process is isentropic
i.e., $\mathrm{S}_{4}=\mathrm{S}_{1}=\mathrm{S}_{\mathrm{f} 1}=2.3844$

Hence $2.3844=\mathrm{S}_{\mathrm{f} 4}+\mathrm{x}_{4} \mathrm{~S}_{\mathrm{fg} 4}$

$$
=1.2126+\mathrm{x}_{4}(6.2453) \therefore \mathrm{x}_{4}=0.188
$$

\therefore Enthalpy at state 4 is $\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f} 4}+\mathrm{x}_{4} \mathrm{~h}_{\mathrm{fg} 4}$
$=384.25+0.188(2278.65)$
$=811.79 \mathrm{~kJ} / \mathrm{kg}$
\therefore Compression work, $=\mathrm{h}_{1}-\mathrm{h}_{4}=878.15-811.79$

$$
\mathrm{W}_{\mathrm{P}}=66.36 \mathrm{~kJ} / \mathrm{kg}
$$

$\therefore S S C=\frac{1}{522.47-66.36}=2.192 \times 10^{-3} \mathrm{~kg} / \mathrm{kJ}$
work ratio $=r_{w}=\frac{\oint \delta w}{+ \text { ve work }}=\frac{W_{T}-W_{P}}{W_{T}}=\frac{456.11}{522.47}=0.873$

b) Rankine cycle:

Since the change in volume of the saturated liquid water during compression from state 4 to state 1 is very small, v_{4} may be taken as constant. In a steady flow process, work $\mathrm{W}=-\mathrm{v} \int \mathrm{dp}$

$$
\begin{aligned}
& \therefore \mathrm{W}_{\mathrm{P}}=\mathrm{h}_{1 \mathrm{~S}}-\mathrm{h}_{4}=\mathrm{v}_{\mathrm{fP} 2}\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \\
& \\
& =0.001037(17.5-0.75) \times 10^{5} \times(1 / 1000) \\
& \\
& =1.737 \mathrm{~kJ} / \mathrm{kg} \\
& \begin{aligned}
\therefore \mathrm{h}_{1 \mathrm{~S}}=1.737 & +384.25=385.99 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\end{aligned}
$$

Hence, turbine work $=\mathrm{W}_{\mathrm{T}}=\mathrm{h}_{2}-\mathrm{h}_{3}=522.47 \mathrm{~kJ} / \mathrm{kg}$
Heat supplied $=\mathrm{Q}_{\mathrm{H}}=\mathrm{h}_{2}-\mathrm{h}_{1 \mathrm{~S}}=2.794 .1-385.99=2408.11 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
& \therefore \eta_{R}=\frac{522.47-1.737}{2408.11}=0.2162 \\
& \therefore S S C=\frac{1}{522.47-1.737}=19204 \times 10^{-3} \mathrm{~kg} / \mathrm{kJ}
\end{aligned}
$$

Work ratio, $r_{w}=\frac{522.47-1737}{522.47}=0.9967$
2. If in problem (1), the turbine and the pump have each 85% efficiency, find the $\%$ reduction in the net work and cycle efficiency for Rankine cycle.
Solution: If $\eta_{\mathrm{P}}=0.85, \eta_{\mathrm{T}}=0.85$

$$
\begin{aligned}
& W_{P}=\frac{W_{P}}{0.85}=\frac{1.737}{0.85}=2.0435 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~W}_{\mathrm{T}}=\eta_{\mathrm{T}} \mathrm{~W}_{\mathrm{T}}=0.85(522.47)=444.09 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \mathrm{~W}_{\text {net }}=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}=442.06 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \% \text { reduction in work output }=\frac{520.73-442.06}{520.73}=15.11 \% \\
& \mathrm{~W}_{\mathrm{P}}=\mathrm{h}_{1 \mathrm{~S}}-\mathrm{h}_{4} \therefore \mathrm{~h}_{1 \mathrm{~S}}=2.0435+384.25=386.29 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \mathrm{Q}_{\mathrm{H}}-\mathrm{h}_{2}-\mathrm{h}_{1 \mathrm{~S}}=2794.1-386.29=2407.81 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \eta_{\text {cycle }}=\frac{442.06}{2407.81}=0.1836 \\
& \therefore \% \text { reduction in cycle efficiency }=\frac{0.2162-0.1836}{0.2162}=15.08 \%
\end{aligned}
$$

Note: Alternative method for problem 1 using h-s diagram (Mollier diagram) though the result may not be as accurate as the analytical solution. The method is as follows

Since steam is dry saturated at state 2 , locate this state at the pressure $\mathrm{P}_{2}=17.5$ bar on the saturation line and read the enthalpy at this state. This will give the value of h_{2}.

As the expansion process 2-3 is isentropic, draw a vertical line through the state 2 to meet the pressure line, $\mathrm{P}=0.75 \mathrm{bar}$. The intersection of the vertical line with the pressure line will fix state 3 . From the chart, find the value of h_{3}.

The value of h_{4} can be found from the steam tables at pressure, $\mathrm{P}=0.75$ bar, as $\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f} 4}$. After finding the values of h_{2}, h_{3} and h_{4}, apply the equation used in the analytical solution for determining the Rankine cycle η and SSC.

Fig. 13.5 Effect of boiler pressure
We have,
$\eta_{t h}=\frac{\left(h_{2}-h_{3}\right)-\left(h_{1}-h_{4}\right)}{h_{2}-h_{1}}$ but $\mathrm{W}_{\mathrm{P}} \ll \mathrm{W}_{\mathrm{T}}$
$\therefore \eta_{t h}=\frac{h_{2}-h_{3}}{h_{2}-h_{1}}=\frac{(\Delta h)_{S}}{\left(h_{2}-h_{1}\right)}$
i.e., Rankine cycle η depends on h_{2}, h_{1} and Δh_{s}. From figure as $P_{1}{ }^{\prime \prime \prime}>P_{1}{ }^{\prime \prime}>\mathrm{P}_{1}^{\prime}$ for the fixed maximum temperature of the steam t_{1} and condenser pressure P_{2}, Isentropic heat drops increases with boiler pressure i.e., from the figure therefore it is evident that as boiler pressure increases, the isentropic heat drop $(\Delta \mathrm{h})_{S}$ increases, but the enthalpy of the steam entering the turbine decreases, with the result that the Rankine η increases. But quality of the steam at the exit of the turbine suffers i.e., $x_{3}{ }^{\prime \prime \prime}<x_{3}{ }^{\prime \prime}<\mathrm{x}_{3}{ }^{\prime}$, which leads to serious wear of the turbine blades.

Effect of Super Heating (Using Molliar Diagram i.e., h-s diagram)

Fig. Effect ot superheating
The moisture in the steam at the end of the expansion may be reduced by increasing the super heated temperature of steam t_{1}. This can be seen in figure where $t_{1}{ }^{\prime \prime}>t_{1}{ }^{\prime \prime}>t_{1}{ }^{\prime}$, but $x_{3}{ }^{\prime}<x_{3}{ }^{\prime \prime}<$ $x_{3}{ }^{\prime \prime \prime}$. It is, therefore, natural that to avoid erosion of the turbine blades, an increase in the boiler pressure must be accompanied by super heating at a higher temperature and since this raises the mean average temperature at which heat is transferred to the steam, the Rankine η increases.

Deviation of Actual Vapour Power cycles from Ideal cycle

The actual Vapour power cycle differs from the ideal Rankine cycle, as shown in figure, as a result of irreversibilities in various components mainly because of fluid friction and heat loss to the surroundings.

Fluid friction causes pressure drops in the boiler, the condenser, and the piping between various components. As a result, steam leaves the boiler at a lower pressure. Also the pressure at the turbine inlet is lower than that at the boiler exit due to pressure drop in the connecting pipes. The pressure drop in the condenser is usually very small. To compensate these pressure drops, the water must be pumped to sufficiently higher pressure which requires the larger pump and larger work input to the pump.

The other major source of irreversibility is the heat loss from the steam to the surroundings as the steam flows through various components. To maintain the same level of net work output, more heat needs to be transferred to the steam in the boiler to compensate for these undesired heat losses. As a result, cycle efficiency decreases.

As a result of irreversibilities, a pump requires a greater work input, and a turbine produces a smaller work output. Under the ideal conditions, the flow through these devices are isentropic. The deviation of actual pumps and turbines from the isentropic ones can be accounted for by utilizing isentropic efficiencies, defined as

$$
\begin{aligned}
& \eta_{P}=\frac{W_{S}}{W_{a}}=\frac{h_{1 S}-h_{4}}{h_{1}-h_{4}} \\
& \text { And } \eta_{t}=\frac{W_{a}}{W_{S}}=\frac{h_{2}-h_{3}}{h_{2}-h_{3 S}}
\end{aligned}
$$

Numerical Problems:

1. Dry saturated steam at 17.5 bar enters the turbine of a steam power plant and expands to the condenser pressure of 0.75 bar. Determine the Carnot and Rankine cycle efficiencies. Also find the work ratio of the Rankine cycle.

Solution: $\mathrm{P}_{1}=17.5$ bar $\quad \mathrm{P}_{2}=0.75$ bar $\eta_{\text {Carnot }}=$? $\eta_{\text {Rankine }}=$?
a) Carnot cycle: At pressure 17.5 bar from steam tables,

$\mathrm{S} \longrightarrow \mathrm{h}_{\mathrm{S}}$	h_{f}	h_{fg}	h_{g}	S_{f}	S_{fg}	S_{g}	
17	204.3	871.8	1921.6	2793.4	2.3712	4.0246	6.3958
18	207.11	884.5	1910.3	2794.8	2.3976	3.9776	6.3751

For $\mathrm{P}=17.5$ bar, using linear interpolation

For $\mathrm{t}_{\mathrm{s}}, 204.3+\frac{207.11-204.3}{1} x 0.5=205.71^{\circ} \mathrm{C}$

$$
=478.71 \mathrm{~K}
$$

Similarly, $\mathrm{h}_{\mathrm{f}}=878.15 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{h}_{\mathrm{fg}}=1915.95 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{h}_{\mathrm{g}}=2794.1 \mathrm{~kJ} / \mathrm{kg}$

$$
\mathrm{S}_{\mathrm{f}}=2.3844 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K} \quad \mathrm{~S}_{\mathrm{fg}}=4.0011 \mathrm{~kJ} / \mathrm{kg}^{0} \mathrm{~K} \quad \mathrm{~S}_{\mathrm{g}}=6.3855 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

Also at pressure 0.75 bar from steam tables

P	t_{S}	h_{f}	h_{fg}	h_{g}	S_{f}	S_{fg}	S_{g}
0.8	93.51	391.7	2274.0	2665.8	1.233	6.2022	7.4352
0.7	89.96	376.8	2283.3	2660.1	1.1921	6.2883	7.4804

\therefore For 0.75 bar, using linear interpolation,

$$
\begin{array}{llll}
\mathrm{t}_{\mathrm{S}}=91.74^{0} \mathrm{C} & \mathrm{~h}_{\mathrm{f}}=384.25 & \mathrm{~h}_{\mathrm{fg}}=2278.65 & \mathrm{~h}_{\mathrm{g}}=2662.95 \\
& \mathrm{~S}_{\mathrm{f}}=1.2126 & \mathrm{~S}_{\mathrm{fg}}=6.2453 & \mathrm{~S}_{\mathrm{g}}=7.4578
\end{array}
$$

The Carnot cycle $\eta, \eta_{\mathrm{C}}=\frac{T_{1}-T_{2}}{T_{1}}=\frac{478.71-364.74}{478.71}=0.2381$
Steam rate or $\mathrm{SSC}=\frac{1}{\oint \delta W}=\frac{1}{W_{T}-W_{P}}$
Since the expansion work is isentropic, $\mathrm{S}_{2}=\mathrm{S}_{3}$
But $\mathrm{S}_{2}=\mathrm{S}_{\mathrm{g}}=6.3855$ and $\mathrm{S}_{3}=\mathrm{S}_{\mathrm{f} 3}+\mathrm{x}_{3} \mathrm{~S}_{\mathrm{fg} 3}$
i.e., $6.3855=1.2126+\mathrm{x}_{3}(6.2453) \quad \therefore \mathrm{x}_{3}=0.828$

$$
\therefore \text { Enthalpy at state 3, } \quad \begin{aligned}
\mathrm{h}_{3} & =\mathrm{h}_{\mathrm{fj}}+\mathrm{x}_{3} \mathrm{~h}_{\mathrm{fg} 3} \\
& =384.25+0.828(2278.65)=2271.63 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

\therefore Turbine work or expansion work or positive work $=\mathrm{h}_{2}-\mathrm{h}_{3}$

$$
=2794.1-2271.63=522.47 \mathrm{~kJ} / \mathrm{kg}
$$

Again since the compression process is isentropic
i.e., $\mathrm{S}_{4}=\mathrm{S}_{1}=\mathrm{S}_{\mathrm{f} 1}=2.3844$

Hence $2.3844=\mathrm{S}_{\mathrm{f} 4}+\mathrm{x}_{4} \mathrm{~S}_{\mathrm{fg} 4}$

$$
=1.2126+\mathrm{x}_{4}(6.2453) \therefore \mathrm{x}_{4}=0.188
$$

\therefore Enthalpy at state 4 is $\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f} 4}+\mathrm{x}_{4} \mathrm{~h}_{\mathrm{fg} 4}$
$=384.25+0.188(2278.65)$
$=811.79 \mathrm{~kJ} / \mathrm{kg}$
\therefore Compression work, $=\mathrm{h}_{1}-\mathrm{h}_{4}=878.15-811.79$

$$
\mathrm{W}_{\mathrm{P}}=66.36 \mathrm{~kJ} / \mathrm{kg}
$$

$\therefore S S C=\frac{1}{522.47-66.36}=2.192 \times 10^{-3} \mathrm{~kg} / \mathrm{kJ}$
work ratio $=r_{w}=\frac{\oint \delta w}{+ \text { ve work }}=\frac{W_{T}-W_{P}}{W_{T}}=\frac{456.11}{522.47}=0.873$

b) Rankine cycle:

$\eta_{R}=\frac{W_{T}-W_{P}}{Q_{H}}=\frac{\left(h_{2}-h_{3}\right)-\left(h_{1}-h_{4}\right)}{\left(h_{2}-h_{1}\right)}$
Since the change in volume of the saturated liquid water during compression from state 4 to state 1 is very small, v_{4} may be taken as constant. In a steady flow process, work $\mathrm{W}=-\mathrm{v} \int \mathrm{dp}$

$$
\begin{aligned}
& \therefore \mathrm{W}_{\mathrm{P}}=\mathrm{h}_{1 \mathrm{~S}}-\mathrm{h}_{4}=\mathrm{v}_{\mathrm{fP} 2}\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \\
& \\
& \quad=0.001037(17.5-0.75) \times 10^{5} \times(1 / 1000) \\
& \quad=1.737 \mathrm{~kJ} / \mathrm{kg} \\
& \begin{aligned}
\therefore \mathrm{h}_{1 \mathrm{~S}}=1.737 & +384.25=385.99 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
\end{aligned}
$$

Hence, turbine work $=\mathrm{W}_{\mathrm{T}}=\mathrm{h}_{2}-\mathrm{h}_{3}=522.47 \mathrm{~kJ} / \mathrm{kg}$
Heat supplied $=\mathrm{Q}_{\mathrm{H}}=\mathrm{h}_{2}-\mathrm{h}_{1 \mathrm{~S}}=2.794 .1-385.99=2408.11 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
& \therefore \eta_{R}=\frac{522.47-1.737}{2408.11}=0.2162 \\
& \therefore S S C=\frac{1}{522.47-1.737}=19204 \times 10^{-3} \mathrm{~kg} / \mathrm{kJ}
\end{aligned}
$$

Work ratio, $r_{w}=\frac{522.47-1737}{522.47}=0.9967$
2. If in problem (1), the turbine and the pump have each 85% efficiency, find the $\%$ reduction in the net work and cycle efficiency for Rankine cycle.
Solution: If $\eta_{\mathrm{P}}=0.85, \eta_{\mathrm{T}}=0.85$

$$
\begin{aligned}
& W_{P}=\frac{W_{P}}{0.85}=\frac{1.737}{0.85}=2.0435 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~W}_{\mathrm{T}}=\eta_{\mathrm{T}} \mathrm{~W}_{\mathrm{T}}=0.85(522.47)=444.09 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \mathrm{~W}_{\text {net }}=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}=442.06 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \% \text { reduction in work output }=\frac{520.73-442.06}{520.73}=15.11 \% \\
& \mathrm{~W}_{\mathrm{P}}=\mathrm{h}_{1 \mathrm{~S}}-\mathrm{h}_{4} \therefore \mathrm{~h}_{1 \mathrm{~S}}=2.0435+384.25=386.29 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \mathrm{Q}_{\mathrm{H}}-\mathrm{h}_{2}-\mathrm{h}_{1 \mathrm{~S}}=2794.1-386.29=2407.81 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \eta_{\text {cycle }}=\frac{442.06}{2407.81}=0.1836 \\
& \therefore \% \text { reduction in cycle efficiency }=\frac{0.2162-0.1836}{0.2162}=15.08 \%
\end{aligned}
$$

Note: Alternative method for problem 1 using h-s diagram (Mollier diagram) though the result may not be as accurate as the analytical solution. The method is as follows

Since steam is dry saturated at state 2 , locate this state at the pressure $\mathrm{P}_{2}=17.5$ bar on the saturation line and read the enthalpy at this state. This will give the value of h_{2}.

As the expansion process 2-3 is isentropic, draw a vertical line through the state 2 to meet the pressure line, $\mathrm{P}=0.75 \mathrm{bar}$. The intersection of the vertical line with the pressure line will fix state 3 . From the chart, find the value of h_{3}.

The value of h_{4} can be found from the steam tables at pressure, $\mathrm{P}=0.75$ bar, as $\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f} 4}$. After finding the values of h_{2}, h_{3} and h_{4}, apply the equation used in the analytical solution for determining the Rankine cycle η and SSC.
3. Steam enters the turbine of a steam power plant, operating on Rankine cycle, at 10 bar, $300^{\circ} \mathrm{C}$. The condenser pressure is 0.1 bar. Steam leaving the turbine is 90% dry. Calculate the adiabatic efficiency of the turbine and also the cycle η, neglecting pump work.
Solution:

$\mathrm{P}_{1}=10 \mathrm{bar}^{\mathrm{t}} \mathrm{t}_{2}=300^{\circ} \mathrm{C} \quad \mathrm{P}_{3}=0.1 \mathrm{bar}$

$$
\mathrm{x}_{3}=0.9 \quad \eta_{\mathrm{t}}=? \quad \eta_{\text {cycle }}=? \quad \text { Neglect } \mathrm{W}_{\mathrm{P}}
$$

From superheated steam tables,
For $\mathrm{P}_{2}=10$ bar and $\mathrm{t}_{2}=300^{\circ} \mathrm{C}, \mathrm{h}_{2}=3052.1 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}_{2}=7.1251 \mathrm{~kJ} / \mathrm{kg}$
From table A - 1, For $\mathrm{P}_{3}=0.1$ bar

$$
\begin{array}{lll}
\mathrm{t}_{\mathrm{S}}=45.83^{\circ} \mathrm{C} & \mathrm{~h}_{\mathrm{f}}=191.8 & \mathrm{~h}_{\mathrm{fg}}=2392.9 \\
& \mathrm{~S}_{\mathrm{f}}=0.6493 & \mathrm{~S}_{\mathrm{fg}}=7.5018
\end{array}
$$

Since $\mathrm{x}_{3}=0.9, \quad \mathrm{~h}_{3}=\mathrm{h}_{\mathrm{f} 4}+\mathrm{x}_{3} \mathrm{~h}_{\mathrm{fg} 3}$

$$
\begin{aligned}
& =191.8+0.9(2392.9) \\
& =2345.4 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Also, since process 2-3s is isentropic, $\mathrm{S}_{2}=\mathrm{S}_{3 \mathrm{~S}}$

$$
\text { i.e., } \begin{aligned}
7.1251 & =\mathrm{S}_{\mathrm{fg} 4}+\mathrm{x}_{3 \mathrm{~S}} \mathrm{~S}_{\mathrm{fg} 3} \\
& =0.6493+\mathrm{x}_{3 \mathrm{~S}}(7.5018) \\
\therefore \mathrm{x}_{3 \mathrm{~S}} & =0.863
\end{aligned}
$$

$$
\therefore \mathrm{h}_{3 \mathrm{~S}}=191.8+0.863(2392.9)=2257.43 \mathrm{~kJ} / \mathrm{kg}
$$

\therefore Turbine efficiency, $\eta_{t}=\frac{h_{2}-h_{3}}{h_{2}-h_{3 S}}=\frac{3052.1-2345.4}{3052.1-2257.43}=0.89$

$$
\begin{aligned}
\eta_{\text {cycle }}= & \frac{W_{T}}{Q_{H}}=\frac{h_{2}-h_{3}}{h_{2}-h_{1}} \text { but } \quad h_{1}=191.8 \mathrm{~kJ} / \mathrm{kg} \\
& =\frac{3052.1-2345.4}{3052.1-191.8}=0.25 \quad \text { i.e., } 25 \%
\end{aligned}
$$

4. A 40 mW steam plant working on Rankine cycle operates between boiler pressure of $\mathbf{4}$ MPa and condenser pressure of 10 KPa . The steam leaves the boiler and enters the steam turbine at $400^{\circ} \mathrm{C}$. The isentropic η of the steam turbine is 85%. Determine (i) the cycle η (ii) the quality of steam from the turbine and (iii) the steam flow rate in kg per hour. Consider pump work.
Solution:

$\mathrm{P}_{2}=4 \mathrm{MPa}=40$ bar $\mathrm{P}_{3}=10 \mathrm{KPa}=0.1 \mathrm{bar}$

$$
\begin{aligned}
& \quad \mathrm{P}=40000 \mathrm{~kW} \quad \mathrm{t}_{2}=400^{\circ} \mathrm{C} \quad \eta_{\mathrm{t}}=0.85 \quad \eta_{\text {cycle }}=? \quad \mathrm{x}_{3}=? \\
& \quad \dot{m}=? \\
& h_{2}=\left.h\right|_{40 \mathrm{bar}, 400^{\circ} \mathrm{C}}=3215.7 \mathrm{~kJ} / \mathrm{kg} \text { and } \mathrm{s}_{2}=6.7733 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
& h_{4}=\left.h_{f}\right|_{0.1 \mathrm{bar}}=191.8 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Process 2-3s is isentropic i.e., $S_{2}=S_{3 S}$

$$
\begin{aligned}
& 6.7733=0.6493+\mathrm{x}_{3 \mathrm{~S}}(7.5018) \\
& \therefore \mathrm{x}_{3 S}=0.816
\end{aligned}
$$

$\therefore \mathrm{h}_{3 \mathrm{~S}}=\mathrm{h}_{\mathrm{f} 3}+\mathrm{x}_{3 \mathrm{~S}} \mathrm{~h}_{\mathrm{fg} 3}=191.8+0.816$ (2392.9)

$$
=2145.2 \mathrm{~kJ} / \mathrm{kg}
$$

But $\quad \eta_{t}=\frac{h_{2}-h_{3}}{h_{2}-h_{3 S}} \quad$ i.e., $\quad 0.85=\frac{3215.7-h_{3}}{3215.7-2145.2}$

$$
\therefore \mathrm{h}_{3}=2305.8 \mathrm{~kJ} / \mathrm{kg}
$$

$\therefore \mathrm{W}_{\mathrm{T}}=\mathrm{h}_{2}-\mathrm{h}_{3}=3215.7-2305.8=909.9 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{W}_{\mathrm{P}}=\mathrm{v} \int \mathrm{dP} \quad=0.0010102(40-0.1) 10^{5} / 10^{2}$
$=4.031 \mathrm{~kJ} / \mathrm{kg}$
$=\mathrm{h}_{1}-\mathrm{h}_{4} \quad \therefore \mathrm{~h}_{1}=195.8 \mathrm{~kJ} / \mathrm{kg}$
(i) $\eta_{\text {cycle }}=\frac{W_{\text {net }}}{Q_{1}}=\frac{909.9-4.031}{(3215.7-195.8)}=29.9 \%$
(ii) $\mathrm{x}_{3}=$? we have $2305.8=191.8+\mathrm{x}_{3}(2392.9) \quad \therefore \mathrm{x}_{3}=0.88$
(iii) $P=\dot{m} W_{\text {net }} \quad$ i.e., $40000=\dot{m}(905.87)$

$$
\begin{aligned}
\therefore \dot{m} & =44.2 \mathrm{~kg} / \mathrm{s} \\
& =159120 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
$$

Ideal Reheat cycle: We know that, the efficiency of the Rankine cycle could be increased by increasing steam pressure in the boiler and superheating the steam. But this increases the moisture content of the steam in the lower pressure stages in the turbine, which may lead to erosion of the turbine blade. \therefore The reheat cycle has been developed to take advantage of the increased pressure of the boiler, avoiding the excessive moisture of the steam in the low pressure stages. In the reheat cycle, steam after partial expansion in the turbine is brought back to the boiler, reheated by combustion gases and then fed back to the turbine for further expansion.

In the reheat cycle the expansion of steam from the initial state (2) to the condenser pressure is carried out in two or more steps, depending upon the number of reheats used.

In the first step, steam expands in HP turbine from state 2 to approximate the saturated vapour line (process 2-3s). The steam is then reheated (or resuperheated) at constant pressure in the boiler (or in a reheater) process $3 \mathrm{~s}-4$ and the remaining expansion process $4 \mathrm{~s}-5$ is carried out in the LP turbine.

Note: 1) To protect the reheater tubes, steam is not allowed to expand deep into the two-phase region before it is taken for reheating, because in that case the moisture particles in steam while evaporating would leave behind solid deposits in the form of scale which is difficult to remove. Also a low reheat pressure may bring down $T_{m 1}$ and hence cycle η. Again a high reheat pressure
increases the moisture content at turbine exhaust. Thus reheat pressure is optimized. Optimum reheat pressure is about 0.2 to 0.25 of initial pressure.

We have for 1 kg of steam
$\mathrm{Q}_{\mathrm{H}}=\left(\mathrm{h}_{2}-\mathrm{h}_{1 \mathrm{~S}}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{3 \mathrm{~S}}\right) ; \quad \mathrm{Q}_{\mathrm{L}}=\mathrm{h}_{5 \mathrm{~S}}-\mathrm{h}_{6}$
$\mathrm{W}_{\mathrm{T}}=\left(\mathrm{h}_{2}-\mathrm{h}_{3 \mathrm{~S}}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{5 \mathrm{~S}}\right) ; \quad \mathrm{W}_{\mathrm{P}}=\mathrm{h}_{1 \mathrm{~S}}-\mathrm{h}_{6}$
$\therefore \quad \eta_{R}=\frac{W_{T}-W_{P}}{Q_{H}}$;
Steam rate $=\frac{3600}{\left(W_{T}-W_{P}\right)} \mathrm{kg} / \mathrm{kWh}$
Since higher reheat pressure is used, W_{P} work is appreciable.
2) In practice, the use of reheat gives a marginal increase in cycle η, but it increases the net work output by making possible the use of higher pressures, keeping the quality of steam at turbine exhaust within a permissible limit. The quality improves from $x_{5^{\prime} S}$ to $x_{5 S}$ by the use of reheat.

Ideal Regenerative cycle: The mean temperature of heat addition can also be increased by decreasing the amount of heat added at low temperatures. In a simple Rankine cycle (saturated steam entering the turbine), a considerable part of the total heat supplied is in the liquid phase when heating up water from 1 to 1^{1}, at a temperature lower than T_{2}, the maximum temperature of the cycle. For maximum η, all heat should be supplied at T_{2}, and feed water should enter the boiler at 1^{1}. This may be accomplished in what is known as an ideal regenerative cycle as shown in figures (a) and (b).

Fig. Ideal regenerative cycle

Fig. Ideal regenerative cycle on T-s plot
$\Delta T($ water $)=-\Delta T($ steam $)$

The unique feature of the ideal regenerative cycle is that the condensate, after leaving the pump circulates around the turbine casing, counter-flow to the direction of vapour flow in the turbine. Thus it is possible to transfer heat from the vapour as it flows through the turbine to the liquid flowing around the turbine.

Let us assume that this is a reversible heat transfer i.e., at each point, the temperature of the vapour is only infinitesimally higher than the temperature of the liquid. \therefore The process $2-3^{1}$ represents reversible expansion of steam in the turbine with reversible heat rejection. i.e., for any small step in the process of heating the water $\Delta \mathrm{T}_{(\text {water })}=-\Delta \mathrm{T}_{\text {(steam) }}$ and $(\Delta \mathrm{S})_{\text {water }}=(\Delta S)_{\text {steam }}$. Then the slopes of lines $2-3^{1}$ and $1^{1}-4$ will be identical at every temperature and the lines will be identical in contour. Areas $1-1^{1}-\mathrm{b}-\mathrm{a}-1$ and $3^{1}-2-\mathrm{d}-\mathrm{c}-3^{1}$ are not only equal but congruous. \therefore, all heat added from external source $\left(\mathrm{Q}_{\mathrm{H}}\right)$ is at constant temperature T_{2} and all heat rejected $\left(\mathrm{Q}_{\mathrm{L}}\right)$ is at constant temperature T_{3}, both being reversible.

Then $\mathrm{Q}_{\mathrm{H}}=\mathrm{h}_{2}-\mathrm{h}_{1}{ }^{1}=\mathrm{T}_{2}\left(\mathrm{~S}_{2}-\mathrm{S}_{1}{ }^{1}\right)$

$$
\mathrm{Q}_{\mathrm{L}}=\mathrm{h}_{3}{ }^{1}-\mathrm{h}_{4}=\mathrm{T}_{3}\left(\mathrm{~S}_{3}{ }^{1}-\mathrm{S}_{4}\right)
$$

Since $\mathrm{S}_{1}{ }^{1}-\mathrm{S}_{4}=\mathrm{S}_{2}-\mathrm{S}_{3}{ }^{1} \quad$ or $\quad \mathrm{S}_{2}-\mathrm{S}_{1}{ }^{1}=\mathrm{S}_{3}{ }^{1}-\mathrm{S}_{4}$
$\therefore \quad \eta_{\mathrm{Re} g}=1-\frac{Q_{L}}{Q_{H}}=1-\frac{T_{3}}{T_{2}} \quad$ i.e., the η of ideal regenerative cycle is thus equal to the Carnot cycle η.

Writing SFEE to turbine,

$$
\begin{aligned}
& \mathrm{h}_{2}+\mathrm{h}_{1}=\mathrm{W}_{\mathrm{T}}+\mathrm{h}_{1}{ }^{1}+\mathrm{h}_{3}{ }^{1} \\
& \text { i.e., } \mathrm{W}_{\mathrm{T}}=\left(\mathrm{h}_{2}-\mathrm{h}_{3}{ }^{1}\right)-\left(\mathrm{h}_{1}{ }^{1}-\mathrm{h}_{1}\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { or } \mathrm{W}_{\mathrm{T}}=\left(\mathrm{h}_{2}-\mathrm{h}_{3}{ }^{1}\right)-\left(\mathrm{h}_{1}{ }^{1}-\mathrm{h}_{1}\right) \tag{1}
\end{equation*}
$$

and the W_{P} is same as simple rankine cycle i.e., $W_{P}=\left(h_{1}-h_{4}\right)$
\therefore The net work output of the ideal regenerative cycle is less and hence its steam rate will be more. Although it is more efficient when compared to rankine cycle, this cycle is not practicable for the following reasons.

1) Reversible heat transfer cannot be obtained in finite time.
2) Heat exchanger in the turbine is mechanically impracticable.
3) The moisture content of the steam in the turbine is high.

Regenerative cycle:

Fig. Regenerative gcle flow diagram with too feedwater heaters

(a) Regeneratioe cycle on T-s plot with decreasing mass of fluid

Dr. T.N. Shridhar, Professor, NIE, Mysore

In a practical regenerative cycle, the feed water enters the boiler at a temperature between 1 and 1^{1} (previous article figure), and it is heated by steam extracted from intermediate stages of the turbine. The flow diagram of the regenerative cycle with saturated steam at the inlet to the turbine and the corresponding T-S diagram are shown in figure.

For every kg of steam entering the turbine, let $\mathrm{m}_{1} \mathrm{~kg}$ steam be extracted from an intermediate stage of the turbine where the pressure is P_{2}, and it is used to heat up feed water [$1-\mathrm{m}_{1}$) kg at state 9] by mixing in heater (1). The remaining $\left(1-\mathrm{m}_{1}\right) \mathrm{kg}$ of steam then expands in the turbine from pressure P_{2} (state 3) to pressure P_{3} (state 4) when $m_{2} \mathrm{~kg}$ of steam is extracted for heating feed water in heater (2). So $\left(1-m_{1}-m_{2}\right) \mathrm{kg}$ of steam then expands in the remaining stages of the turbine to pressure P_{4}, gets condensed into water in the condenser, and then pumped to heater (2), where it mixes with $m_{2} \mathrm{~kg}$ of steam extracted at pressure P_{3}. Then ($1-\mathrm{m}_{1}$) kg of water is pumped to heater (1) where it mixes with $m_{1} \mathrm{~kg}$ of steam extracted at pressure P_{2}. The resulting 1 kg of steam is then pumped to the boiler where heat from an external source is supplied. Heaters 1 and 2 thus operate at pressure P_{2} and P_{3} respectively. The amounts of steam m_{1} and m_{2} extracted from the turbine are such that at the exit from each of the heaters, the state is saturated liquid at the respective pressures.
\therefore Turbine work, $\mathrm{W}_{\mathrm{T}}=1\left(\mathrm{~h}_{2}-\mathrm{h}_{3}\right)+\left(1-\mathrm{m}_{1}\right)\left(\mathrm{h}_{3}-\mathrm{h}_{4}\right)+\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}\right)\left(\mathrm{h}_{4}-\mathrm{h}_{5}\right)$
Pump work, $\mathrm{W}_{\mathrm{P}}=\mathrm{W}_{\mathrm{P} 1}+\mathrm{W}_{\mathrm{P} 2}+\mathrm{W}_{\mathrm{P} 3}$

$$
=\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}\right)\left(\mathrm{h}_{7}-\mathrm{h}_{6}\right)+\left(1-\mathrm{m}_{1}\right)\left(\mathrm{h}_{9}-\mathrm{h}_{8}\right)+1\left(\mathrm{~h}_{11}-\mathrm{h}_{10}\right)
$$

$\mathrm{Q}_{\mathrm{H}}=\left(\mathrm{h}_{2}-\mathrm{h}_{11}\right) ; \quad \mathrm{Q}_{\mathrm{L}}=\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}\right)\left(\mathrm{h}_{5}-\mathrm{h}_{6}\right)$
\therefore Cycle efficiency, $\eta=\frac{Q_{H}-Q_{L}}{Q_{H}}=\frac{W_{T}-W_{P}}{Q_{H}}$
$S S C=\frac{3600}{W_{T}-W_{P}} \mathrm{~kg} / \mathrm{kWh}$
In the Rankine cycle operating at the given pressure P_{1} and P_{4}, the heat addition would have been from state 7 to state 2. By using two stages of regenerative feed water heating., feed water enters the boiler at state 11 , instead of state 7 , and heat addition is, therefore from state 11 to state 2 .
Therefore $\left(T_{m 1}\right)_{\text {with regeneration }}=\frac{h_{2}-h_{11}}{S_{2}-S_{11}}$
And $\left(T_{m 1}\right)_{\text {without regeneration }}=\frac{h_{2}-h_{7}}{S_{2}-S_{7}}$
Since $\left(\mathrm{T}_{\mathrm{m} 1}\right)_{\text {with regenerative }}>\left(\mathrm{T}_{\mathrm{m} 1}\right)_{\text {without regenerative }}$, the η of the regenerative cycle will be higher than that of the Rankine cycle.

The energy balance for heater 1 ,

$$
\mathrm{m}_{1} \mathrm{~h}_{3}+\left(1-\mathrm{m}_{1}\right) \mathrm{h}_{9}=1 \mathrm{~h}_{10}
$$

$$
\begin{equation*}
\therefore m_{1}=\frac{h_{10}-h_{9}}{h_{3}-h_{9}} \tag{1}
\end{equation*}
$$

The energy balance for heater 2,
$\mathrm{m}_{2} \mathrm{~h}_{4}+\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{h}_{7}=\left(1-\mathrm{m}_{1}\right) \mathrm{h}_{8}$
Or $m_{2}=\left(1-m_{1}\right) \frac{\left(h_{8}-h_{7}\right)}{\left(h_{4}-h_{7}\right)}$
Above equations (1) and (2) can also be written alternatively as
$\left(1-\mathrm{m}_{1}\right)\left(\mathrm{h}_{10}-\mathrm{h}_{9}\right)=\mathrm{m}_{1}\left(\mathrm{~h}_{3}-\mathrm{h}_{10}\right)$
and $\left(1-m_{1}-m_{2}\right)\left(h_{8}-h_{7}\right)=m_{2}\left(h_{4}-h_{8}\right)$
Energy gain of feed water = energy given off by vapour in condensation.
Heaters have been assumed to be adequately insulated and there is no heat gain from, or heat loss to, the surroundings.

In figure (a) path 2-3-4-5 represents the states of a decreasing mass of fluid.
For 1 kg of steam, the states would be represented by the path $2-3^{1}-4^{11}-5^{1}$. [Figure (b)].

We have $\mathrm{W}_{\mathrm{T}}=\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)+\left(1-\mathrm{m}_{1}\right)\left(\mathrm{h}_{3}-\mathrm{h}_{4}\right)+\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}\right)\left(\mathrm{h}_{4}-\mathrm{h}_{5}\right)$

$$
\begin{equation*}
=\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)+\left(\mathrm{h}_{3}{ }^{1}-\mathrm{h}_{4}{ }^{1}\right)+\left(\mathrm{h}_{4}{ }^{11}-\mathrm{h}_{5}{ }^{1}\right) \text { [From Figure } \mathrm{b} \text {] } \tag{3}
\end{equation*}
$$

The cycle $2-3-3^{1}-4^{1}-4^{11}-5^{1}-6-7-8-9-10-11-2$ represents 1 kg of working fluid. The heat released by steam condensing from 3 to 3^{1} is utilized in heating up the water from 9 to 10.
$\therefore \quad 1\left(\mathrm{~h}_{3}-\mathrm{h}_{3}{ }^{1}\right)=1\left(\mathrm{~h}_{10}-\mathrm{h}_{9}\right)$
Similarly, $1\left(h_{4}{ }^{1}-h_{4}{ }^{11}\right)=1\left(h_{8}-h_{7}\right)$

From equation (3), (4) and (5),

$$
\begin{align*}
\mathrm{W}_{\mathrm{T}} & =\left(\mathrm{h}_{2}-\mathrm{h}_{5}{ }^{1}\right)-\left(\mathrm{h}_{3}-\mathrm{h}_{3}{ }^{1}\right)-\left(\mathrm{h}_{4}{ }^{1}-\mathrm{h}_{4}{ }^{11}\right) \\
& =\left(\mathrm{h}_{2}-\mathrm{h}_{5}^{1}\right)-\left(\mathrm{h}_{10}-\mathrm{h}_{9}\right)-\left(\mathrm{h}_{8}-\mathrm{h}_{7}\right) \tag{6}
\end{align*}
$$

Also from Ideal regenerative cycle, [Previous article]

$$
\begin{equation*}
\mathrm{W}_{\mathrm{T}}=\left(\mathrm{h}_{2}-\mathrm{h}_{3}{ }^{1}\right)-\left(\mathrm{h}_{1}{ }^{1}-\mathrm{h}_{1}\right) \tag{1}
\end{equation*}
$$

The similarity of equations (6) and equation (1) from previous article is notices. It is seen that the stepped cycle $2-3^{1}-4^{1}-4^{11}-5^{1}-6-7-8-9-10-11$ approximates the ideal regenerative cycle in Figure (1) [previous article] and that a greater no. of stages would give a closer approximation. Thus the heating of feed water by steam 'bled' from the turbine, known as regeneration, "Carnotizes" the Rankine cycle.

Regenerative cycle with many stages of feedwater heating

The heat rejected Q_{L} in the cycle decreases from $\left(h_{5}-h_{6}\right)$ to $\left(h_{5}{ }^{1}-h_{6}\right)$. There is also loss in work output by the amount (area under $3-3^{1}+$ area under $4^{1}-4^{11}-$ area under $5-5^{1}$) as shown by the hatched area in Figure (b). So the steam rate increases by regeneration i.e., more steam has to circulate per hour to produce unit shaft output.

Reheat - Regenerative cycle:

Fig. Reheat-regenerative cycle flow diagram
Reheat - regenerative cycle flow diagram (Three-stages of feed water heating)

Fig. T-s diagram of reheat-regenerative cycle

The reheating of steam is employed when the vapourization pressure is high reheat alone on the thermal η is very small. \therefore Regeneration or the heating up of feed water by steam extracted from the turbine will effect in more increasing in the η_{th}.

Turbine work, $\mathrm{W}_{\mathrm{T}}=\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)+\left(1-\mathrm{m}_{1}\right)\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)+\left(1-\mathrm{m}_{1}\right)\left(\mathrm{h}_{4}-\mathrm{h}_{5}\right)+\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}\right)\left(\mathrm{h}_{5}-\mathrm{h}_{6}\right)$ $+\left(1-m_{1}-m_{2}-m_{3}\right)\left(h_{6}-h_{7}\right) \mathrm{kJ} / \mathrm{kg}$
Pump work, $\mathrm{W}_{\mathrm{P}}=\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}-\mathrm{m}_{3}\right)\left(\mathrm{h}_{9}-\mathrm{h}_{8}\right)+\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}\right)\left(\mathrm{h}_{11}-\mathrm{h}_{10}\right)$

$$
+\left(1-\mathrm{m}_{1}\right)\left(\mathrm{h}_{13}-\mathrm{h}_{12}\right)+1\left(\mathrm{~h}_{15}-\mathrm{h}_{14}\right) \mathrm{kJ} / \mathrm{kg}
$$

Heat added, $\mathrm{Q}_{\mathrm{H}}=\left(\mathrm{h}_{1}-\mathrm{h}_{15}\right)+\left(1-\mathrm{m}_{1}\right)\left(\mathrm{h}_{4}-\mathrm{h}_{3}\right) \mathrm{kJ} / \mathrm{kg}$
Heat rejected, $\mathrm{Q}_{\mathrm{L}}=\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}-\mathrm{m}_{3}\right)\left(\mathrm{h}_{7}-\mathrm{h}_{8}\right) \mathrm{kJ} / \mathrm{kg}$
The energy balance of heaters 1,2 and 3 gives

$$
\begin{aligned}
& \mathrm{m}_{1} \mathrm{~h}_{2}+\left(1-\mathrm{m}_{1}\right) \mathrm{h}_{13}=1 \times \mathrm{h}_{14} \\
& \mathrm{~m}_{2} \mathrm{~h}_{5}+\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{h}_{11}=\left(1-\mathrm{m}_{1}\right) \mathrm{h}_{12} \\
& \mathrm{~m}_{3} \mathrm{~h}_{6}+\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}-\mathrm{m}_{3}\right) \mathrm{h}_{9}=\left(1-\mathrm{m}_{1}-\mathrm{m}_{2}\right) \mathrm{h}_{10}
\end{aligned}
$$

From which m_{1}, m_{2} and m_{3} can be evaluated

Numerical Problems:

1. An ideal reheat cycle utilizes steam as the working fluid. Steam at $100 \mathrm{bar}, 400^{\circ} \mathrm{C}$ is expanded in the HP turbine to 15 bar. After this, it is reheated to $350^{\circ} \mathrm{C}$ at 15 bar and is then expanded in the LP turbine to the condenser pressure of 0.5 bar. Determine the thermal η and steam rate.
Solution:

From steam tables
$\mathrm{P}=100$ bar $\mathrm{t}=400^{\circ} \mathrm{C}=$

$$
\begin{aligned}
& \mathrm{v}=0.026408 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{~h}=3099.9 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~S}=6.2182 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}
\end{aligned}
$$

$\mathrm{P}=15$ bar $\quad \mathrm{t}_{\mathrm{S}}=192.28^{\circ} \mathrm{C}, \mathrm{v}_{\mathrm{f}}=0.0011538 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{v}_{\mathrm{g}}=0.13167 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\mathrm{h}_{\mathrm{f}}=844.6 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~h}_{\mathrm{fg}}=1845.3 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~h}_{\mathrm{g}}=2789.9 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{s}_{\mathrm{f}}=2.3144 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \quad \mathrm{~s}_{\mathrm{fg}}=4.1262 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \quad \mathrm{~s}_{\mathrm{g}}=6.4406 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}
$$

Dr. T.N. Shridhar, Professor, NIE, Mysore

$$
\begin{array}{llll}
\mathrm{P}=0.5 \mathrm{bar} \quad \mathrm{t}_{\mathrm{S}}=81.35^{0} \mathrm{C}, & \mathrm{v}_{\mathrm{f}}=0.0010301 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{v}_{\mathrm{g}}=3.2401 \mathrm{~m}^{3} / \mathrm{kg} & \\
& \mathrm{~h}_{\mathrm{f}}=340.6 \mathrm{~kJ} / \mathrm{kg}, & \mathrm{~h}_{\mathrm{fg}}=2305.4 \mathrm{~kJ} / \mathrm{kg} & \mathrm{~h}_{\mathrm{g}}=2646.0 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~s}_{\mathrm{f}}=1.0912 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} & \mathrm{~s}_{\mathrm{fg}}=6.5035 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, & \mathrm{~s}_{\mathrm{g}}=7.5947 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}
\end{array}
$$

$\mathrm{h}_{2}=3099.9 \mathrm{~kJ} / \mathrm{kg}$,
Process 2-3s is isentropic, i.e., $S_{2}=S_{3 S}$

$$
\begin{aligned}
& 6.2182=2.3144+\mathrm{x}_{3 S}(4.1262) \\
& \therefore \mathrm{x}_{3 S}=0.946 \\
& \therefore \mathrm{~h}_{3 S}=844.6+\mathrm{x}_{3 S}(1845.3) \\
& \quad=2590.44 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

\therefore Expansion of steam in the HP turbine $\quad=\mathrm{h}_{2}-\mathrm{h}_{3 \mathrm{~S}}$

$$
=3099.9-2590.44
$$

$$
=509.46 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{P}=15$ bar, $\mathrm{t}=350^{\circ} \mathrm{C}=\quad \begin{aligned} & \mathrm{v}=0.18653 \\ & \mathrm{~h}=3148.7 \\ & \mathrm{~s}=7.1044\end{aligned}$
Expansion of steam in the LP cylinder $=\mathrm{h}_{4}-\mathrm{h}_{5 \text { s }}$

$$
\mathrm{h}_{4}=3148.7 \mathrm{~kJ} / \mathrm{kg}
$$

To find $\mathrm{h}_{5 \text { s }}$:
We have $\mathrm{S}_{4}=\mathrm{S}_{5 \text { s }}$

$$
\begin{aligned}
7.1044 & =\mathrm{S}_{\mathrm{f} 5}+\mathrm{x}_{5 \mathrm{~S}} \mathrm{~S}_{\mathrm{fg} 5} \\
& =1.0912+\mathrm{x}_{5 \mathrm{~S}}(6.5035) \\
\therefore \mathrm{x}_{5 \mathrm{~S}}= & 0.925
\end{aligned}
$$

$\therefore \mathrm{h}_{5 \mathrm{~s}}=340.6+0.925(2305.4)=2473.09 \mathrm{~kJ} / \mathrm{kg}$
\therefore Expansion of steam in the LP turbine $=3148.7-2473.09$

$$
=675.61 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{h}_{6}=\mathrm{h}_{\mathrm{f}}$ for $\mathrm{P}_{3}=0.5$ bar i.e., $\mathrm{h}_{6}=340.6 \mathrm{~kJ} / \mathrm{kg}$
Pump work, $\mathrm{W}_{\mathrm{P}}=\mathrm{h}_{1 \mathrm{~s}}-\mathrm{h}_{6}=\mathrm{v}_{\mathrm{f} 5}\left(\mathrm{P}_{3}-\mathrm{P}_{1}\right)=0.0010301\left(100-0.501 \times 10^{5}\right)$

$$
=10.249 \mathrm{~kJ} / \mathrm{kg}
$$

$\therefore \mathrm{h}_{1 \mathrm{~s}}=350.85 \mathrm{~kJ} / \mathrm{kg}$
\therefore Heat supplied, $\quad \mathrm{Q}_{\mathrm{H}} \quad=\left(\mathrm{h}_{2}-\mathrm{h}_{1 \mathrm{~S}}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{3 \mathrm{~S}}\right)$

$$
=(3099.9-350.85)+(3148.7-2590.44)
$$

$$
=2749.05 \mathrm{~kJ} / \mathrm{kg}+558.26
$$

$$
=3307.31 \mathrm{~kJ} / \mathrm{kg}
$$

$\therefore \quad \eta_{t h}=\frac{W_{\text {net }}}{Q_{H}}=\frac{(W)_{H P}+(W)_{L P}-W_{P}}{Q_{H}}$

$$
=\frac{509.46+675.61-10.25}{3307.31}=0.355
$$

Steam rate, $\mathrm{SSC}=\frac{3600}{W_{\text {net }}}=3.064 \mathrm{~kg} / \mathrm{kWh}$

1. b) When η of the HP turbine, LP turbine and feed pump are $80 \%, 85 \%$ and 90% respectively.

$$
\begin{aligned}
\eta_{t H P}= & \frac{h_{2}-h_{3}}{h_{2}-h_{3 s}}=0.8=\frac{3099.9-h_{3}}{3099.9-2590.44} \\
& \therefore \mathrm{~h}_{3}=2692.33 \mathrm{~kJ} / \mathrm{kg} \\
\eta_{t L P}= & \frac{h_{4}-h_{5}}{h_{4}-h_{5 s}}=0.85=\frac{3148.7-h_{5}}{3148.7-2473.09}
\end{aligned}
$$

$$
\therefore \mathrm{h}_{5}=2574.43 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\eta_{P}=\frac{h_{15}-h_{6}}{h_{1}-h_{6}}=0.9=\frac{350.85-340.6}{h_{1}-340.6}
$$

$$
\therefore \mathrm{h}_{1}=351.99 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\therefore \eta_{t h}=\frac{\left(h_{2}-h_{3}\right)+\left(h_{4}-h_{5}\right)-\left(h_{1}-h_{6}\right)}{\left(h_{2}-h_{1}\right)+\left(h_{4}-h_{3}\right)}
$$

$$
=\frac{(3099.9-2692.33)+(3148.7-2574.43)-(351.99-340.6)}{(3099.9-351.99)+(3148.7-2692.33)}
$$

$$
=0.303 \text { or } 30.3 \%
$$

$\therefore \mathrm{SSC}=3.71 \mathrm{~kg} / \mathrm{kWh}$
Using Mollier-chart: $\mathrm{h}_{2}=3095 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{h}_{3 \mathrm{~s}}=2680 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{h}_{4}=3145 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{gathered}
\mathrm{h}_{5}=2475 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{~h}_{6}=340.6 \mathrm{~kJ} / \mathrm{kg} \text { (from steam tables) } \\
\mathrm{W}_{\mathrm{P}}=10.249 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

2. Steam at 50 bar, $350^{\circ} \mathrm{C}$ expands to $\mathbf{1 2}$ bar in a $\mathbf{H P}$ stage, and is dry saturated at the stage exit. This is now reheated to $280^{\circ} \mathrm{C}$ without any pressure drop. The reheat steam expands in an intermediate stage and again emerges dry and saturated at a low pressure, to be reheated a second time to $280^{\circ} \mathrm{C}$. Finally, the steam expands in a LP stage to 0.05 bar. Assuming the work output is the same for the high and intermediate
stages, and the efficiencies of the high and low pressure stages are equal, find: (a) η of the HP stage (b) Pressure of steam at the exit of the intermediate stage, (c) Total power output from the three stages for a flow of $1 \mathrm{~kg} / \mathrm{s}$ of steam, (d) Condition of steam at exit of LP stage and (e) Then η of the reheat cycle. Also calculate the thermodynamic mean temperature of energy addition for the cycle.
Solution:

From Mollier diagram

$$
\mathrm{h}_{2}=3070 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{~h}_{3 \mathrm{~s}}=2755 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{~h}_{3}=2780 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{~h}_{4}=3008 \mathrm{~kJ} / \mathrm{kg}
$$

(a) η_{t} for HP stage $=\frac{h_{2}-h_{3}}{h_{2}-h_{3 s}}=\frac{3070-2780}{3070-2755}$

$$
=0.921
$$

(b) Since the power output in the intermediate stage equals that of the HP stage, we have

$$
\begin{aligned}
& \mathrm{h}_{2}-\mathrm{h}_{3}=\mathrm{h}_{4}-\mathrm{h}_{5} \\
& \text { i.e., } 3070-2780=3008-\mathrm{h}_{5} \\
& \therefore \mathrm{~h}_{5}=2718 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Since state 5 is on the saturation line, we find from Mollier chart, $\mathrm{P}_{3}=2.6$ bar, Also from Mollier chart, $\mathrm{h}_{5 \mathrm{~s}}=2708 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{6}=3038 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{7 \mathrm{~s}}=2368 \mathrm{~kJ} / \mathrm{kg}$

Since η_{t} is same for HP and LP stages,

$$
\eta_{t}=\frac{h_{6}-h_{7}}{h_{6}-h_{7 s}}=0.921=\frac{3038-h_{7}}{3038-2368} \quad \therefore h_{7}=2420.93 \mathrm{~kJ} / \mathrm{kg}
$$

\therefore At a pressure $0.05 \mathrm{bar}, \mathrm{h}_{7}=\mathrm{h}_{\mathrm{f} 7}+\mathrm{x}_{7} \mathrm{~h}_{\mathrm{fg} 7}$

$$
2420.93=137.8+x_{7}(2423.8)
$$

$$
\therefore \mathrm{x}_{7}=0.941
$$

Total power output $=\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{5}\right)+\left(\mathrm{h}_{6}-\mathrm{h}_{7}\right)$

$$
\begin{aligned}
& =(3070-2780)+(3008-2718)+(3038-2420.93) \\
& =1197.07 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

\therefore Total power output $/ \mathrm{kg}$ of steam $=1197.07 \mathrm{~kW}$
For $\mathrm{P}_{4}=0.05$ bar from steam tables, $\mathrm{h}_{8}=137.8 \mathrm{~kJ} / \mathrm{kg}$;

$$
\begin{aligned}
\mathrm{W}_{\mathrm{P}}=0.0010052(50-0.05) 10^{2} & =5.021 \mathrm{~kJ} / \mathrm{kg} \\
& =\mathrm{h}_{8}-\mathrm{h}_{1 \mathrm{~s}}
\end{aligned}
$$

$$
\therefore \mathrm{h}_{1 \mathrm{~s}}=142.82 \mathrm{~kJ} / \mathrm{kg}
$$

Heat supplied, $\mathrm{Q}_{\mathrm{H}} \quad=\left(\mathrm{h}_{2}-\mathrm{h}_{1 \mathrm{~s}}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{3}\right)+\left(\mathrm{h}_{6}-\mathrm{h}_{5}\right)$

$$
\begin{aligned}
& =(3070-142.82)+(3008-2780)+(3038-2718) \\
& =3475.18 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{net}}= \mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}=1197.07-5.021=1192.05 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \eta_{t h}=\frac{W_{n e t}}{Q_{H}}=\frac{1192.05}{3475.18}=0.343 \\
& \eta_{t h}=1-\frac{T_{o}}{T_{m}}=1-\frac{(273+32.9)}{T_{m}}=0.343, \\
& 0.657=\frac{305.9}{T_{m}} \\
& \quad \therefore \mathrm{~T}_{\mathrm{m}}=465.6 \mathrm{~K}
\end{aligned}
$$

Or

$$
T_{m}=\frac{h_{2}-h_{1 s}}{S_{2}-S_{1 s}}=\frac{3070-142.82}{6.425-0.4763}=492 \mathrm{~K}
$$

$$
S S C=\frac{3600}{1192.05}=3.02 \mathrm{~kg} / \mathrm{kWh}
$$

3. A steam power station uses the following cycle: Steam at boiler outlet $\mathbf{- 1 5 0} \mathbf{~ b a r}$; reheat at 40 bar, $550^{\circ} \mathrm{C}$; condenser at 0.1 bar. Using Mollier chart and assuming that all processes are ideal, find (i) quality at turbine exhaust (ii) cycle $\boldsymbol{\eta}$ (iii) steam rate.
Solution:

$$
\begin{aligned}
\mathrm{P}_{2}=150 \mathrm{bar} & \mathrm{t}_{2}=550^{\circ} \mathrm{C} \quad \mathrm{P}_{3}=40 \mathrm{bar} \quad \mathrm{t}_{3}=550^{\circ} \mathrm{C} \\
& \mathrm{P}_{5}=0.1 \mathrm{bar}
\end{aligned}
$$

From Mollier diagram i.e., h-s diagram

$$
\begin{aligned}
h_{2} & =\left.h\right|_{150 \mathrm{bar}, 550^{\circ} \mathrm{C}}=3450 \mathrm{~kJ} / \mathrm{kg} \\
h_{4} & =\left.h\right|_{40 \mathrm{bar}, 550^{\circ} \mathrm{C}}=3562 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~h}_{3} & =3050 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~h}_{5} & =2290 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{x}_{5} & =0.876 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

h_{6} can not determined from h-s diagram, hence steam tables are used.

$$
h_{6}=\left.h_{f}\right|_{0.1 \mathrm{bar}}=191.8 \mathrm{~kJ} / \mathrm{kg}
$$

Process 6-1 is isentropic pump work i.e., $W_{P 1}=v \int d P$

$$
\begin{aligned}
= & 0.0010102(40-01) 10^{5} / 10^{3}=4.031 \mathrm{~kJ} / \mathrm{kg} \\
& =\left(\mathrm{h}_{1}-\mathrm{h}_{6}\right) \\
\therefore \mathrm{h}_{1}= & 195.8 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(i) Quality of steam at turbine exhaust $=\mathrm{x}_{5}=0.876$
(ii) $\eta_{\text {cycle }}=\frac{W_{T}-W_{P}}{Q_{H}}$

Turbine work, $\mathrm{W}_{\mathrm{T}}=\mathrm{W}_{\mathrm{T} 1}+\mathrm{W}_{\mathrm{T} 2}$

$$
\begin{aligned}
& =\left(h_{2}-h_{3}\right)+\left(h_{4}-h_{5}\right) \\
& =(3450-3050)+(3562-2290) \\
& =1672 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{H}}=\mathrm{Q}_{1}+\mathrm{Q}_{\mathrm{R}}=\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{3}\right)$

$$
\begin{gathered}
\qquad=(3450-195.8)+(3562-3050) \\
=3766.2 \mathrm{~kJ} / \mathrm{kg} \\
\therefore \eta_{\text {cycle }}=\frac{1672-4.031}{3766.2}=\frac{1667.97}{3766.2}=0.443 \\
\text { (iii) Steam rate }=\frac{3600}{1667.97}=2.16 \mathrm{~kg} / \mathrm{kWh}
\end{gathered}
$$

4. An ideal Rankine cycle with reheat is designed to operate according to the following specification. Pressure of steam at high pressure turbine $=20 \mathrm{MPa}$, Temperature of steam at high pressure turbine inlet $=550^{\circ} \mathrm{C}$, Temperature of steam at the end of reheat $=550^{\circ} \mathrm{C}$, Pressure of steam at the turbine exhaust $=15 \mathrm{KPa}$. Quality of steam at turbine exhaust $=\mathbf{9 0 \%}$. Determine (i) the pressure of steam in the reheater (ii) ratio of pump work to turbine work, (iii) ratio of heat rejection to heat addition, (iv) cycle η.
Solution:

$\mathrm{P}_{2}=200$ bar $\quad \mathrm{t}_{2}=550^{\circ} \mathrm{C} \quad \mathrm{t}_{4}=550^{\circ} \mathrm{C} \quad \mathrm{P}_{5}=0.15$ bar $\quad \mathrm{x}_{5}=0.9$
From Mollier diagram,

$$
\begin{aligned}
& \mathrm{h}_{2}=3370 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{3}=2800 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{4}=3580 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{5}=2410 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{x}_{5}=0.915 \\
& \mathrm{P}_{3}=\mathrm{P}_{4}=28 \mathrm{bar}
\end{aligned}
$$

But given in the data $\mathrm{x}_{5}=0.9$
From steam tables $\mathrm{h}_{6}=226 \mathrm{~kJ} / \mathrm{kg}$
Pump work $W_{P}=v \int d P$

$$
\begin{aligned}
& =0.001014(200-0.15) 10^{5} / 10^{3} \\
& =20.26 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

But $\mathrm{W}_{\mathrm{P}}=\mathrm{h}_{1}-\mathrm{h}_{6} \quad \therefore \mathrm{~h}_{1}=246.26 \mathrm{~kJ} / \mathrm{kg}$
(i) Pressure of steam in the reheater $=28$ bar
(ii) Turbine work $\mathrm{W}_{\mathrm{T}}=\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{5}\right)$

$$
\begin{aligned}
& =(3370-2800)+(3580-2410) \\
& =1740 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

\therefore Ratio of $\frac{W_{P}}{W_{T}}=0.0116$ i.e., 1.2%
(iii) $\mathrm{Q}_{\mathrm{L}} \quad=\left(\mathrm{h}_{5}-\mathrm{h}_{6}\right)=(2410-226)=2184 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{H}} & =\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{3}\right) \\
& =(3370-226)+(3580-2800) \\
& =3924 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$\therefore \frac{Q_{L}}{Q_{H}}=0.5565$ i.e., 55.65%
(iv) $\eta_{\text {cycle }}=\frac{W_{\text {net }}}{Q_{\text {Total }}}=\frac{(1740-20.26)}{3924}=0.4383$ i.e., 43.8%

Feedwater Heaters (FWH)

A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced more work by expanding further in the turbine, is used to heat the feed water instead. The device where the feedwater heated by regeneration is called a Regenerator or a Feedwater Heater (FWH).

A feedwater heater is basically a heat exchanger where heat is transferred from the steam to the feedwater either by mixing the two streams (open feedwater heaters) or without mixing them (closed feedwater heaters).

Open Feedwater Heaters

An open (or direct-contact) feedwater heater is basically a mixing chamber, where the steam extracted from the turbine mixes with the feedwater exiting the pump. Ideally, the mixture leaves the heater as a saturated liquid at the heater pressure.

The advantages of open heater are simplicity, lower cost, and high heat transfer capacity. The disadvantage is the necessity of a pump at each heater to handle the large feedwater stream.

Closed Feedwater Heaters

In closed feedwater heater, the heat is transferred from the extracted steam to the feedwater without mixing taking place. The feedwater flows through the tubes in the heater and extracted steam condenses on the outside of the tubes in the shell. The heat released from the condensation is transferred to the feedwater through the walls of the tubes. The condensate (saturated water at the steam extraction pressure), some times called the heater-drip, then passes through a trap into the next lower pressure heater. This, to some extent, reduces the steam required by that heater. The trap passes only liquid and no vapour. The drip from the lowest pressure heater could similarly be trapped to the condenser, but this would be throwing away energy to the condenser cooling water. The avoid this waste, the drip pump feed the drip directly into the feedwater stream.

A closed heaters system requires only a single pump for the main feedwater stream regardless of the number of heaters. The drip pump, if used is relatively small. Closed heaters are costly and may not give as high a feedwater temperature as do open heaters.

In most steam power plants, closed heaters are favoured, but atleast one open heater is used, primarily for the purpose of feedwater deaeration. The open heater in such a system is called deaerator.

Note: The higher the number of heater used, the higher will be the cycle efficiency. The number of heater is fixed up by the energy balance of the whole plant when it is found that the cost of adding another does not justify the saving in Q_{H} or the marginal increase in cycle efficiency. An
increase in feedwater temperature may, in some cases, cause a reduction in boiler efficiency. So the number of heaters get optimized. Five feedwater heaters are often used in practice.

Characteristics of an Ideal working fluid

The maximum temperature that can be used in steam cycles consistent with the best available material is about $600^{\circ} \mathrm{C}$, while the critical temperature of steam is $375^{\circ} \mathrm{C}$, which necessitates large superheating and permits the addition of only an infinitesimal amount of heat at the highest temperature.

The desirable characteristics of the working fluid in a vapour power cycle to obtain best thermal η are as follows:
a) The fluid should have a high critical temperature so that the saturation pressure at the maximum permissible temperature (metallurgical limit) is relatively low. It should have a large enthalpy of evaporation at that pressure.
b) The saturation pressure at the temperature of heat rejection should be above atmosphere pressure so as to avoid the necessity of maintaining vacuum in the condenser.
c) The specific heat of liquid should be small so that little heat transfer is required to raise the liquid to the boiling point.
d) The saturation vapour line of the T-S diagram should be steep, very close to the turbine expansion process so that excessive moisture does not appear during expansion.
e) The freezing point of the fluid should be below room temperature, so that it does not get solidified while flowing through the pipe lines.
f) The fluid should be chemically stable and should not contaminate the materials of construction at any temperature.
g) The fluid should be nontoxic, non corrosive, not excessively viscous, and low in cost.

Numerical Problems:

1. An ideal regenerative cycle operates with dry saturated steam, the maximum and minimum pressures being 30 bar and 0.04 bar respectively. The plant is installed with a single mixing type feed water heater. The bled steam pressure is 2.5 bar. Determine (a) the mass of the bled steam, (b) the thermal η of the cycle, and (c) SSC in $\mathrm{kg} / \mathrm{kWh}$.
Solution:

$$
\mathrm{P}_{1}=30 \text { bar } \quad \mathrm{P}_{2}=2.5 \text { bar } \quad \mathrm{P}_{3}=0.04 \text { bar }
$$

From steam tables, For $\mathrm{P}_{1}=30 \mathrm{bar}, \quad \mathrm{h}_{2}=2802.3 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{S}_{2}=6.1838 \mathrm{~kJ} / \mathrm{kg}-{ }^{0} \mathrm{k}$

$$
\text { But } S_{2}=S_{3 s} \quad \text { i.e., } 6.1838=1.6072+x_{3}(5.4448)
$$

$$
\begin{gathered}
\therefore \mathrm{x}_{3}=0.841 \\
\therefore \mathrm{~h}_{3}=535.4+0.841(2281.0) \\
=2452.68 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

Also $\mathrm{S}_{2}=\mathrm{S}_{4}$ i.e., $6.1838=0.4225+\mathrm{x}_{4}(8.053)$

$$
\therefore \mathrm{x}_{4}=0.715
$$

$\therefore \mathrm{h}_{4}=121.4+0.715$ (2433.1)
$=1862.1 \mathrm{~kJ} / \mathrm{kg}$
At $\mathrm{P}_{3}=0.04 \mathrm{bar}, \quad \mathrm{h}_{5}=121.4 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{v}_{5}=0.001004 \mathrm{~m}^{3} / \mathrm{kg}$
\therefore Condensate pump work $\quad=\left(\mathrm{h}_{6}-\mathrm{h}_{5}\right)=\mathrm{v}_{5}\left(\mathrm{P}_{2}-\mathrm{P}_{3}\right)$

$$
\begin{aligned}
& =0.001004(2.5-0.04)\left(10^{5} / 10^{3}\right) \\
& =0.247 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\therefore \mathrm{h}_{6}=0.247+121.4=121.65 \mathrm{~kJ} / \mathrm{kg}
$$

Similarly, $h_{1}=h_{7}+v_{7}\left(P_{1}-P_{2}\right)\left(10^{5} / 10^{3}\right)$

$$
\begin{aligned}
& =535.4+0.0010676(30-2.5) 10^{2} \\
& =538.34 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

a) Mass of the bled steam:

Applying the energy balance to the feed water heater

$$
\mathrm{mh}_{3}+(1-\mathrm{m}) \mathrm{h}_{6}=1\left(\mathrm{~h}_{7}\right)
$$

$\therefore m=\frac{\left(h_{7}-h_{6}\right)}{\left(h_{3}-h_{6}\right)}=\frac{(535.4-121.65)}{(2452.68-121.65)}=0.177 \mathrm{~kg} / \mathrm{kg}$ of steam
b) Thermal η :
c) SSC :

$$
S S C=\frac{3600}{W_{\text {net }}}=4.324 \mathrm{~kg} / \mathrm{kWh}
$$

2. In problem (3), also calculate the increase in mean temperature of heat addition, efficiency and steam rate as compared to the Rankine cycle (without regeneration)
Solution: Tm_{1} (with regeneration) $=\frac{h_{2}-h_{1}}{S_{2}-S_{1}}=\frac{2263.96}{(6.1838-1.6072)}=494.68 \mathrm{k}$
Tm_{1} (without regeneration) $=\frac{h_{2}-h_{6}}{S_{2}-S_{6}}=\frac{2802.3-121.65}{(6.1838-0.4225)}=465.29 k$
\therefore Increase in Tm_{1} due to regeneration $=494.68-465.29=\mathbf{2 9 . 3 9}{ }^{0} \mathbf{K}$
$\mathrm{W}_{\mathrm{T}}($ without regeneration $)=\mathrm{h}_{2}-\mathrm{h}_{4}=2802.3-1862.1=940.2 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{P}}(\text { without regeneration })= & \left(\mathrm{h}_{1}-\mathrm{h}_{5}\right)=\mathrm{v}_{5}(30-0.04) 10^{2} \\
& =0.001004(29.96) 10^{2}=3.01 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\therefore \mathrm{h}_{1}=3.01+121.4=124.41 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\begin{aligned}
& \text { Turbine work, } \mathrm{W}_{\mathrm{T}}=1\left(\mathrm{~h}_{2}-\mathrm{h}_{3 \mathrm{~s}}\right)+(1-\mathrm{m})\left(\mathrm{h}_{3}-\mathrm{h}_{4 \mathrm{~s}}\right) \\
& =1(2802.3-2452.65)+(1-0.177)(2452.68-1862.1) \\
& =835.67 \mathrm{~kJ} / \mathrm{kg} \\
& \text { Pump work, } \mathrm{W}_{\mathrm{P}} \quad=(1-\mathrm{m})\left(\mathrm{h}_{6 \mathrm{~s}}-\mathrm{h}_{5}\right)+1\left(\mathrm{~h}_{1 \mathrm{~s}}-\mathrm{h}_{7}\right) \\
& =(1-0.177)(121.65-121.4)+1(538.34-535.4) \\
& =3.146 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \mathrm{~W}_{\text {net }}=\mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}=832.52 \mathrm{~kJ} / \mathrm{kg} \\
& \text { Heat supplied, } \mathrm{Q}_{\mathrm{H}} \quad=1\left(\mathrm{~h}_{2}-\mathrm{h}_{1 \mathrm{~s}}\right) \\
& =1(2802.3-538.34) \\
& =2263.96 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \eta_{t h}=\frac{W_{\text {net }}}{Q_{H}}=\frac{832.52}{2263.96}=0.368 \text { or } \mathbf{3 6 . 8 \%}
\end{aligned}
$$

$\therefore \eta_{\text {th }}($ without regeneration $)=\frac{W_{\text {net }}}{Q_{H}}=\frac{(940.2-3.01)}{2802.3-124.41}=0.349$
\therefore Increase in $\eta_{\text {th }}$ due to regeneration $=0.368-0.349=0.018 \quad$ i.e., 1.8%
Steam rate $($ without regeneration $)=3.84 \mathrm{~kg} / \mathrm{kWh}$
\therefore Increase in steam rate due to regeneration $=4.324-3.84$

$$
=0.484 \mathrm{~kg} / \mathrm{kWh}
$$

3. Steam at 20 bar and $300^{\circ} \mathrm{C}$ is supplied to a turbine in a cycle and is bled at 4 bar. The bled-steam just comes out saturated. This steam heats water in an open heater to its saturation state. The rest of the steam in the turbine expands to a condenser pressure of 0.1 bar. Assuming the turbine efficiency to be the same before and after bleeding, find: a) the turbine η and the steam quality at the exit of the last stage; b) the mass flow rate of bled steam 1 kg of steam flow at the turbine inlet; c) power output / (kg/s) of steam flow; and d) overall cycle η.
Solution:

$\mathrm{P}_{1}=20 \mathrm{bar} \quad \mathrm{t}_{1}=300^{\circ} \mathrm{C} \quad \mathrm{P}_{2}=4 \mathrm{bar} \quad \mathrm{P}_{3}=0.1 \mathrm{bar}$
From steam tables,
For $\mathrm{P}_{1}=20$ bar and $\mathrm{t}_{1}=300^{\circ} \mathrm{C}$

$$
\mathrm{v}_{2}=0.12550 \quad \mathrm{~h}_{2}=3025.0 \quad \mathrm{~S}_{2}=6.7696
$$

For $\mathrm{P}_{2}=4$ bar, $\mathrm{h}_{3}=2737.6, \mathrm{t}_{\mathrm{s}}=143.63$

$$
\mathrm{h}_{\mathrm{f}}=604.7, \mathrm{~h}_{\mathrm{fg}}=2132.9, \mathrm{~S}_{\mathrm{f}}=1.7764, \mathrm{~S}_{\mathrm{fg}}=5.1179, \mathrm{~S}_{\mathrm{g}}=6.8943
$$

For $\mathrm{P}_{2}=0.1$ bar, $45.83,191.8,2392.9,2584.8,0.6493,7.5018,8.1511$
We have, $S_{2}=S_{3 \text { s }}$ i.e., $6.7696=1.7764+x_{3}(5.1179)$

$$
\therefore \mathrm{x}_{3}=0.976
$$

$\therefore \mathrm{h}_{3 \mathrm{~s}}=604.7+0.976(2132.9)=2685.63 \mathrm{~kJ} / \mathrm{kg}$
$\therefore \eta_{t}=\frac{h_{2}-h_{3}}{h_{2}-h_{3 s}}=\frac{3025-2737.6}{3025-2685.63}=0.847$
$\mathrm{S}_{3}=\mathrm{S}_{4 \mathrm{~s}} \quad$ i.e., $6.8943=0.6493+\mathrm{x}_{4}(7.5018)$
$\therefore \mathrm{x}_{4 \mathrm{~s}}=0.832$
$\therefore \mathrm{h}_{4 \mathrm{~s}}=191.8+0.832(2392.9)=2183.81 \mathrm{~kJ} / \mathrm{kg}$
But η_{t} is same before and after bleeding i.e., $\eta_{t}=\frac{h_{3}-h_{4}}{h_{3}-h_{4 s}}$

$$
\begin{aligned}
& \text { i.e., } 0.847=\frac{2737.6-h_{4}}{2737.6-2183.81} \\
& \therefore \mathrm{~h}_{4}=2268.54 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \mathrm{~h}_{4}=\mathrm{h}_{\mathrm{f} 4}+\mathrm{x}_{4} \mathrm{~h}_{\mathrm{fg} 4} \quad \therefore \mathrm{x}_{4}=0.868
\end{aligned}
$$

b) Applying energy balance to open heater, $\mathrm{mh}_{3}+(1-\mathrm{m}) \mathrm{h}_{6 \mathrm{~s}}=1\left(\mathrm{~h}_{7}\right)$

$$
\therefore m=\frac{h_{7}-h_{6}}{h_{3}-h_{6}}
$$

Condensate pump work, $\left(\mathrm{h}_{6 \mathrm{~s}}-\mathrm{h}_{5}\right)=\mathrm{v}_{5}\left(\mathrm{P}_{3}-\mathrm{P}_{2}\right)$

$$
=0.0010102(3.9) 10^{2}=0.394 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\therefore \mathrm{h}_{6 \mathrm{~s}}=191.8+0.394=192.19 \mathrm{~kJ} / \mathrm{kg}
$$

Similarly, $\mathrm{h}_{1 \mathrm{~s}}=\mathrm{h}_{7}+\mathrm{v}_{7}\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)$

$$
=604.7+-.0010839(16) 10^{2}=606.43 \mathrm{~kJ} / \mathrm{kg}
$$

$\therefore m=\frac{604.7-192.19}{2737.6-192.19}=0.162$
c) Power output or $W_{T}=\left(h_{2}-h_{3}\right)+(1-m)\left(h_{3}-h_{4}\right)$

$$
\begin{aligned}
& =(3025-2737.6)+(1-0.162)(2737.6-2268.54) \\
& =680.44 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

For $1 \mathrm{~kg} / \mathrm{s}$ of steam, $\quad \mathrm{W}_{\mathrm{T}}=680.44 \mathrm{~kW}$
d) Overall thermal efficiency, $\eta_{0}=\frac{W_{\text {net }}}{Q_{H}}$
$\mathrm{W}_{\mathrm{P}}=(1-\mathrm{m})\left(\mathrm{h}_{6 \mathrm{~s}}-\mathrm{h}_{5}\right)+1\left(\mathrm{~h}_{1 \mathrm{~s}}-\mathrm{h}_{7}\right)$

$$
=(1-0162)(192.19-191.8)+1(606.43-604.7)
$$

$$
=2.057 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{W}_{\text {net }}=680.44-2.057=678.38 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{Q}_{\mathrm{H}}=1\left(\mathrm{~h}_{2}-\mathrm{h}_{1 \mathrm{~s}}\right)=(3025-606.43)=2418.57 \mathrm{~kJ} / \mathrm{kg}$
$\therefore \eta_{0}=\frac{678.38}{2418.57}=0.2805$

Using Moiller Diagram

4. Steam at 50 bar, $350^{\circ} \mathrm{C}$ expands to $\mathbf{1 2}$ bar in a HP stage, and is dry saturated at the stage exit. This is now reheated to $280^{\circ} \mathrm{C}$ without any pressure drop. The reheat steam expands in an intermediate stage and again emerges dry and saturated at a low pressure, to be reheated a second time to $280^{\circ} \mathrm{C}$. Finally, the steam expands in a LP stage to 0.05 bar. Assuming the work output is the same for the high and intermediate stages, and the efficiencies of the high and low pressure stages are equal, find: (a) η of the HP stage (b) Pressure of steam at the exit of the intermediate stage, (c) Total power output from the three stages for a flow of $1 \mathrm{~kg} / \mathrm{s}$ of steam, (d) Condition of steam at exit of LP stage and (e) Then η of the reheat cycle. Also calculate the thermodynamic mean temperature of energy addition for the cycle.
Solution:

From Mollier diagram

$$
\mathrm{h}_{2}=3070 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{~h}_{3 \mathrm{~s}}=2755 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{~h}_{3}=2780 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{~h}_{4}=3008 \mathrm{~kJ} / \mathrm{kg}
$$

(a) η_{t} for HP stage $=\frac{h_{2}-h_{3}}{h_{2}-h_{3 s}}=\frac{3070-2780}{3070-2755}$

$$
=0.921
$$

(b) Since the power output in the intermediate stage equals that of the HP stage, we have

$$
\begin{aligned}
& \mathrm{h}_{2}-\mathrm{h}_{3}=\mathrm{h}_{4}-\mathrm{h}_{5} \\
& \text { i.e., } 3070-2780=3008-\mathrm{h}_{5} \\
& \therefore \mathrm{~h}_{5}=2718 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Since state 5 is on the saturation line, we find from Mollier chart, $\mathrm{P}_{3}=2.6$ bar, Also from Mollier chart, $\mathrm{h}_{5 \mathrm{~s}}=2708 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{6}=3038 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{7 \mathrm{~s}}=2368 \mathrm{~kJ} / \mathrm{kg}$

Since η_{t} is same for HP and LP stages,

$$
\eta_{t}=\frac{h_{6}-h_{7}}{h_{6}-h_{7 s}}=0.921=\frac{3038-h_{7}}{3038-2368} \quad \therefore h_{7}=2420.93 \mathrm{~kJ} / \mathrm{kg}
$$

\therefore At a pressure 0.05 bar, $\mathrm{h}_{7}=\mathrm{h}_{\mathrm{f} 7}+\mathrm{x}_{7} \mathrm{~h}_{\mathrm{fg} 7}$

$$
2420.93=137.8+x_{7}(2423.8)
$$

$$
\therefore \mathrm{x}_{7}=0.941
$$

Total power output $=\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{5}\right)+\left(\mathrm{h}_{6}-\mathrm{h}_{7}\right)$

$$
\begin{aligned}
& =(3070-2780)+(3008-2718)+(3038-2420.93) \\
& =1197.07 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

\therefore Total power output $/ \mathrm{kg}$ of steam $=1197.07 \mathrm{~kW}$
For $\mathrm{P}_{4}=0.05$ bar from steam tables, $\mathrm{h}_{8}=137.8 \mathrm{~kJ} / \mathrm{kg}$;

$$
\begin{aligned}
\mathrm{W}_{\mathrm{P}}=0.0010052(50-0.05) 10^{2} & =5.021 \mathrm{~kJ} / \mathrm{kg} \\
& =\mathrm{h}_{8}-\mathrm{h}_{1 \mathrm{~s}}
\end{aligned}
$$

$$
\therefore \mathrm{h}_{1 \mathrm{~s}}=142.82 \mathrm{~kJ} / \mathrm{kg}
$$

Heat supplied, $\mathrm{Q}_{\mathrm{H}} \quad=\left(\mathrm{h}_{2}-\mathrm{h}_{1 \mathrm{~s}}\right)+\left(\mathrm{h}_{4}-\mathrm{h}_{3}\right)+\left(\mathrm{h}_{6}-\mathrm{h}_{5}\right)$

$$
=(3070-142.82)+(3008-2780)+(3038-2718)
$$

$$
=3475.18 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{net}}= \mathrm{W}_{\mathrm{T}}-\mathrm{W}_{\mathrm{P}}=1197.07-5.021=1192.05 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \eta_{t h}=\frac{W_{n e t}}{Q_{H}}=\frac{1192.05}{3475.18}=0.343 \\
& \eta_{t h}=1-\frac{T_{o}}{T_{m}}=1-\frac{(273+32.9)}{T_{m}}=0.343, \\
& 0.657=\frac{305.9}{T_{m}} \\
& \quad \therefore \mathrm{~T}_{\mathrm{m}}=465.6 \mathrm{~K}
\end{aligned}
$$

Or

$$
T_{m}=\frac{h_{2}-h_{1 s}}{S_{2}-S_{1 s}}=\frac{3070-142.82}{6.425-0.4763}=492 \mathrm{~K}
$$

$$
S S C=\frac{3600}{1192.05}=3.02 \mathrm{~kg} / \mathrm{kWh}
$$

5. Steam at 30 bar and $350^{\circ} \mathrm{C}$ is supplied to a steam turbine in a practical regenerative cycle and the steam is bled at 4 bar. The bled steam comes out as dry saturated steam and heats the feed water in an open feed water heater to its saturated liquid state. The rest of the steam in the turbine expands to condenser pressure of 0.1 bar. Assuming the turbine η to be same before and after bleeding determine (i) the turbine η, (ii) steam quality at inlet to condenser, (iii) mass flow rate of bled steam per unit mass rate at turbine inlet and (iv) the cycle η.

Solution:

From superheated steam tables,

$$
\begin{aligned}
& \mathrm{h}_{2}=h_{3}=\left.h_{g}\right|_{P_{3}=4 b a r}=2737.6 \mathrm{~kJ} / \mathrm{kg} \\
& h_{2}=\left.h\right|_{P_{2}=30 \mathrm{bar} \& t_{2}=350^{\circ} \mathrm{C}}=3117.5 \mathrm{~kJ} / \mathrm{kg} \text { and } \mathrm{S}_{2}=6.7471 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
& h_{5}=\left.h_{f}\right|_{P_{5}=0.1 \mathrm{bar}}=191.8 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
h_{7}=\left.h_{f}\right|_{P_{7}=4 b \mathrm{ar}}=604.7 \mathrm{~kJ} / \mathrm{kg}
$$

Process 2-3s is isentropic, i.e., $\mathrm{S}_{2}=\mathrm{S}_{3 \mathrm{~S}}$

$$
6.7471=1.7764+x_{3 S}(5.1179)
$$

$$
\therefore \mathrm{x}_{3 S}=0.971
$$

$$
\begin{aligned}
\therefore \mathrm{h}_{3 \mathrm{~S}}= & \mathrm{h}_{\mathrm{f} 3}+\mathrm{x}_{3 \mathrm{~S}} \mathrm{~h}_{\mathrm{fg} 3} \\
& =604.7+0.971(2132.9) \\
& =2676.25 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Process 3-4s is isentropic i.e., $S_{3}=S_{4 s}$

$$
\begin{gathered}
\text { i.e., } 6.8943=0.6493+\mathrm{x}_{4 \mathrm{~S}}(7.5018) \\
\therefore \mathrm{x}_{4 \mathrm{~S}}=0.832
\end{gathered}
$$

$\therefore \mathrm{h}_{4 \mathrm{~S}}=191.8+0.832(2392.9)=2183.8 \mathrm{~kJ} / \mathrm{kg}$
Given, $\eta_{\mathrm{t}}($ before bleeding $)=\eta_{\mathrm{t}}($ after bleeding $)$
We have, η_{t} (before bleeding) $=\frac{h_{2}-h_{3}}{h_{2}-h_{3 S}}=\frac{3117.5-2737.6}{3117.5-2676.25}=0.86$
$\therefore 0.86=\frac{h_{3}-h_{4}}{h_{3}-h_{4 S}}=\frac{2737.6-h_{4}}{2737.6-2183.8} \quad \therefore h_{4}=2261.33 \mathrm{~kJ} / \mathrm{kg}$
But $\mathrm{h}_{4}=\mathrm{h}_{\mathrm{f} 4}+\mathrm{x}_{4} \mathrm{~h}_{\mathrm{fg} 4}$

$$
\begin{aligned}
& 2261.33=191.8+\mathrm{x}_{4}(2392.9) \\
& \therefore \mathrm{x}_{4}=0.865
\end{aligned}
$$

i.e., Dryness fraction at entry to condenser $=\mathrm{x}_{4}=\mathbf{0 . 8 6 5}$
iii) Let m kg of steam is bled. Applying energy balance to FWH,

$$
\mathrm{mh}_{3}+(1-\mathrm{m}) \mathrm{h}_{6}=\mathrm{h}_{7}
$$

We have $\mathrm{W}_{\mathrm{P} 1}=\left(\mathrm{h}_{6}-\mathrm{h}_{5}\right) \quad=\mathrm{v} \int \mathrm{dP}$

$$
\begin{aligned}
& =0.0010102(4-0.1) 10^{5} / 10^{3} \\
& =0.394 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\therefore \mathrm{h}_{6}=0.394+191.8=192.19 \mathrm{~kJ} / \mathrm{kg}
$$

Substituting,

$$
m(2737.6)+(1-m) 192.19=604.7
$$

$$
\therefore \mathrm{m}=0.162 \mathrm{~kg}
$$

Also, $\mathrm{W}_{\mathrm{P} 2}=\left(\mathrm{h}_{1}-\mathrm{h}_{7}\right)=\mathrm{v} \int \mathrm{dP}$

$$
\begin{aligned}
& =0.0010839 \times(30-4) 10^{2} \\
& =2.82 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mathrm{h}_{1}=2.82+604.7=607.52 \mathrm{~kJ} / \mathrm{kg} \\
& \therefore \eta_{\text {cycle }}=\frac{W_{T}=W_{P}}{Q_{H}}=\frac{\left[\left(h_{2}-h_{3}\right)+(1-m)\left(h_{3}-h_{4}\right)\right]-\left[(1-m)\left(h_{6}-h_{5}\right)+\left(h_{1}-h_{2}\right)\right]}{\left(h_{2}-h_{1}\right)}
\end{aligned}
$$

$\eta_{\text {cycle }}=\mathbf{0 . 3 1}$
6. In an ideal reheat regenerative cycle, the high pressure turbine receives steam at 20 bar, $300^{\circ} \mathrm{C}$. After expansion to 7 bar, the steam is reheated to $300^{\circ} \mathrm{C}$ and expands in an intermediate pressure turbine to 1 bar. A fraction of steam is now extracted for feed water heating in an open type FWH. The remaining steam expands in a low pressure turbine to a final pressure of $\mathbf{0 . 0 5}$ bar. Determine (i) cycle thermal $\boldsymbol{\eta}$, (ii) specific steam consumption, (iii) quality of steam entering condenser.
Solution:

$$
h_{2}=\left.h\right|_{20 \mathrm{bar}, 300^{\circ} \mathrm{C}}=3025 \mathrm{~kJ} / \mathrm{kg} \text { and } \mathrm{s}_{2}=6.7696 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}
$$

Process 2-3 is isentropic

$$
\text { i.e., } S_{2}=S_{3}
$$

$6.7696=1.9918+x_{3}(4.7134)$
$\therefore \mathrm{x}_{3}=1.014$
i.e., state 3 can be approximated as dry saturated.
$\therefore h_{3}=\left.h\right|_{7 \text { bar, dry sat. }}=2762 \mathrm{~kJ} / \mathrm{kg}$
$\therefore h_{4}=\left.h\right|_{7 b a r, 300^{\circ} \mathrm{C}}=3059.8 \mathrm{~kJ} / \mathrm{kg}$ and $\mathrm{s}_{4}=7.2997 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$

Process 4-5 is isentropic

$$
\text { i.e., } S_{4}=S_{5}
$$

$$
7.2997=1.3027+x_{5}(6.0571)
$$

$$
\therefore \mathrm{x}_{5}=0.99
$$

$$
\therefore \mathrm{h}_{5}=\mathrm{h}_{\mathrm{f} 5}+\mathrm{x}_{5} \mathrm{~h}_{\mathrm{fg} 5}=417.5+0.99(2257.9)=2652.9 \mathrm{~kJ} / \mathrm{kg}
$$

Process 5-6 is isentropic i.e., $S_{5}=S_{6}$

$$
7.2997=0.4763+x_{6}(7.9197)
$$

$$
\therefore \mathrm{x}_{6}=0.862
$$

$\therefore \mathrm{h}_{6}=137.8+0.862(2423.8)=2226.1 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{7}=h_{7}=\left.h_{f}\right|_{0.05 \text { bar }}=137.8 \mathrm{~kJ} / \mathrm{kg}$
Neglecting $\mathrm{W}_{\mathrm{P} 1}, \quad \mathrm{~h}_{8}=\mathrm{h}_{7}$, Also neglecting $\mathrm{W}_{\mathrm{P} 2}, \mathrm{~h}_{9}=\mathrm{h}_{1}$
$\therefore h_{9}=\left.h_{f}\right|_{1 \text { bar }}=417.5 \mathrm{~kJ} / \mathrm{kg}$
Applying energy balance to FWH

$$
\mathrm{mh}_{5}+(1-\mathrm{m}) \mathrm{h}_{8}=\mathrm{h}_{9}
$$

i.e., $\mathrm{m}(2652.9)+(1-\mathrm{m}) 137.8=417.5 \quad \therefore \mathrm{~m}=0.111 \mathrm{~kg} / \mathrm{kg}$ of steam
(i) $\quad \eta_{C}=\frac{\left(h_{2}-h_{3}\right)+\left(h_{4}-h_{5}\right)+(1-m)\left(h_{5}-h_{6}\right)}{\left(h_{2}-h_{1}\right)+\left(h_{4}-h_{3}\right)}=0.35$
(ii) $S S C=\frac{3600}{W_{\text {net }}}=3.57 \mathrm{~kg} / \mathrm{kWh}$
(iii) Quality of steam entering condenser, $\mathrm{x}_{6}=0.862$
7. The net power output of a regenerative - reheat cycle power plant is 80 mW . Steam enters the high pressure turbine at $80 \mathrm{bar}, 500^{\circ} \mathrm{C}$ and expands to a pressure P_{2} and emerges as dry vapour. Some of the steam goes to an open feed water heater and the balance is reheated at $400^{\circ} \mathrm{C}$ at constant pressure P_{2} and then expanded in the low pressure turbine to 0.05 bar. Determine (i) the reheat pressure P_{2}, (ii) the mass of bled steam per kg boiler steam, (iii) the steam flow rate in HP turbine, (iv) cycle η. Neglect pump work. Sketch the relevant lines on h-s diagram. Assume expansion in the turbines as isentropic.
Solution:

$\mathrm{P}=80000 \mathrm{~kW} \quad \mathrm{P}_{1}=80 \mathrm{bar} \quad \mathrm{t}_{2}=500^{\circ} \mathrm{C} \quad \mathrm{P}_{2}=? \quad \mathrm{t}_{3}=400^{\circ} \mathrm{C}$

$$
\mathrm{P}_{3}=0.05 \text { bar } \mathrm{m}=? \quad \dot{m}_{S}=? \quad \eta_{\text {cycle }}=?
$$

$$
h_{2}=\left.h\right|_{80 \mathrm{bar}, 500^{\circ} \mathrm{C}}=3398.8 \mathrm{~kJ} / \mathrm{kg} \text { and } \mathrm{s}_{2}=6.7262
$$

Process 2-3 is isentropic i.e., $\mathrm{S}_{2}=\mathrm{S}_{3}=6.7262 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
Given state 3 is dry saturated i.e., $S_{3}=6.7262=\left.S_{g}\right|_{P_{2}}$

From table $\mathrm{A}-1$, for dry saturated steam, at $\mathrm{P}=6.0$ bar, $\mathrm{S}_{\mathrm{g}}=6.7575$

$$
\text { and at } \mathrm{P}=7.0 \text { bar, } \mathrm{S}_{\mathrm{g}}=6.7052
$$

Using linear interpolation,

$$
\Delta P=\frac{6.0-7.0}{(6.7575-6.7052)} x(6.7262-6.7052)=0.402 \mathrm{bar}
$$

\therefore (i) $\mathrm{P}_{2}=6+0.402=6.402 \mathrm{bar}$

$$
\therefore h_{3}=\left.h\right|_{P_{2}=6.4 b a r}
$$

From table $\mathrm{A}-1$, For $\mathrm{P}=6$ bar

$$
\mathrm{h}_{\mathrm{g}}=2755.5 \quad \mathrm{~S}_{\mathrm{g}}=6.7575
$$

For $\mathrm{P}=7$ bar,

$$
h_{g}=2762.0
$$

$$
S_{g}=6.7052
$$

\therefore For $P=6.4$ bar $\Rightarrow \frac{2762-2755.5}{1} x(0.4)+2755.5=2758.1 \mathrm{~kJ} / \mathrm{kg}$

$$
\therefore \mathrm{h}_{3}=2758.1 \mathrm{~kJ} / \mathrm{kg}
$$

$$
h_{4}=\left.h\right|_{6.4 \mathrm{bar}, 400^{\circ} \mathrm{C}}
$$

From superheated steam tables, For $\mathrm{P}=6.0$ bar, $\mathrm{h}=3270.6 \quad \mathrm{~s}=7.709$

$$
\mathrm{P}=7.0 \text { bar }, \quad \mathrm{h}=3269.0 \quad \mathrm{~s}=7.6362
$$

\therefore For 6.4 bar, $\mathrm{h}_{4} \Rightarrow 3269.96 \mathrm{~kJ} / \mathrm{kg}$

$$
\mathrm{S}_{4} \Rightarrow 7.6798 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}
$$

Process 4-5 is isentropic, $\quad S_{4}=S_{5}$

$$
\begin{aligned}
& \text { i.e., } 7.6798=0.4763+\mathrm{x}_{5}(7.9197) \\
& \therefore \mathrm{x}_{5}=0.909
\end{aligned}
$$

$\therefore \mathrm{h}_{5}=137.8+0.909(2423.8)=2342.41 \mathrm{~kJ} / \mathrm{kg}$
$h_{6}=\left.h_{f}\right|_{0.05 \text { bar }}=137.8 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{7}=\mathrm{h}_{6}\left(\right.$ since $\mathrm{W}_{\mathrm{P} 1}$ is neglected $)$
$h_{8}=\left.h_{f}\right|_{6.4 \mathrm{bar}}=681.1 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{1}=\mathrm{h}_{8}$ (since $\mathrm{W}_{\mathrm{P} 2}$ is neglected)
(ii) Applying energy balance to FWH,

$$
\mathrm{mh}_{3}+(1-\mathrm{m}) \mathrm{h}_{7}=\mathrm{h}_{8}
$$

$m(2758.1)+(1-m) 137.8=681.1$

$$
\therefore \mathrm{m}=0.313 \mathrm{~kg} / \mathrm{kg} \text { of steam }
$$

(iii) $\mathrm{W}_{1}=\mathrm{W}_{\mathrm{HP}}=\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)=(3398.8-2758.1)$

$$
=640.7 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\begin{aligned}
\mathrm{W}_{2}=\mathrm{W}_{\mathrm{LP}} & =(1-\mathrm{m})\left(\mathrm{h}_{4}-\mathrm{h}_{5}\right) \\
& =(1-0.313)(3269.96-2342.41) \\
& =637.2 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$\therefore \mathrm{W}_{\text {net }}=\mathrm{W}_{1}+\mathrm{W}_{2}=1277.9 \mathrm{~kJ} / \mathrm{kg}$
\therefore Steam flow rate through HP turbine $=\frac{\text { Power }}{W_{\text {net }}}=\frac{80000}{1277.9}=62.6 \mathrm{~kg} / \mathrm{s}$
(iv) $\eta_{\text {cycle }}=? \quad \mathrm{Q}_{\mathrm{H}}=\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)+(1-\mathrm{m})\left(\mathrm{h}_{4}-\mathrm{h}_{3}\right)=3069.35 \mathrm{~kJ} / \mathrm{kg}$

$$
\therefore \eta_{\text {cycle }}=\frac{W_{\text {net }}}{Q_{H}}=\frac{1277.9}{3069.35}=0.42
$$

8. In a single heater regenerative cycle, the steam enters the turbine at $30 \mathrm{bar}, 400^{\circ} \mathrm{C}$ and the exhaust pressure is 0.01 bar. The feed water heater is a direct contact type which operates at 5 bar. Find (i) thermal η and the steam rate of the cycle, (ii) the increase in mean temperature of heat addition, η and steam rate as compared to the Rankine cycle without regeneration. Pump work may neglected.
Solution:

$\mathrm{P}_{2}=40$ bar $\quad \mathrm{t}_{2}=400^{\circ} \mathrm{C} \quad \mathrm{P}_{4}=0.01$ bar $\quad \mathrm{P}_{3}=5$ bar
From h-s diagram,

$$
\begin{aligned}
& h_{2}=\left.h\right|_{30 \mathrm{bar}, 400^{\circ} \mathrm{C}}=3230 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{3}=2790 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{4}=1930 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{5}=29.3 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{7}=640.1 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Since pump work may neglect, $\mathrm{h}_{6}=\mathrm{h}_{5} \& \mathrm{~h}_{1}=\mathrm{h}_{7}$
(i) $\eta_{\text {cycle }}=$?

Let $\mathrm{m}=$ mass of steam bled per kg boiler steam
Applying SFEE to FWH,

$$
\begin{aligned}
& \mathrm{mh}_{3}+(1-\mathrm{m}) \mathrm{h}_{6}=\mathrm{h}_{7} \\
& \mathrm{~m}(2790)+(1-\mathrm{m}) 29.3=640.1
\end{aligned}
$$

$\therefore \mathrm{m}=0.221 \mathrm{~kg} / \mathrm{kg}$ of boiler steam

$$
\begin{aligned}
\mathrm{W}_{\mathrm{T}} & =\left(\mathrm{h}_{2}-\mathrm{h}_{3}\right)+(1-\mathrm{m})\left(\mathrm{h}_{3}-\mathrm{h}_{4}\right) \\
& =(3230-2790)+(1-0.221)(2790-1930) \\
& =1109.73 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{Q}_{\mathrm{H}} \quad & =\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)=(3230-640.1) \\
& =2589.9 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$\therefore \eta_{\text {cycle }}=\frac{W_{T}}{Q_{H}}=0.428 \quad$ Since W_{P} is neglected
(ii) steam rate $=\frac{3600}{W_{T}}=3.24 \mathrm{~kg} / \mathrm{kWh}$
(iii) Mean temperature of heat addition, $\Delta T_{m}=\frac{Q_{H}}{s_{2}-s_{5}}$

From h-s diagram, $\mathrm{s}_{2}=6.83 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
From steam tables, $\mathrm{s}_{5}=0.1060 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$

$$
\therefore \Delta T_{m}=\frac{2589.9}{(6.83-0.106)}=385.2^{0} \mathrm{~K}
$$

Case (ii) Rankine cycle without Regeneration:

From h-s diagram,
$\mathrm{h}_{2}=3230 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{3}=1930 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{4}=29.3 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}_{1}=\mathrm{h}_{4}$
$\mathrm{S}_{2}=6.83 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
$\mathrm{S}_{4}=0.1060 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
(i) $\quad \eta_{\text {cycle }}=\frac{W_{T}}{Q_{H}}=\frac{\left(h_{2}-h_{3}\right)}{\left(h_{2}-h_{1}\right)}$

$$
=\frac{1300}{3200.7}=0.41
$$

(ii) Steam rate $=\frac{3600}{W_{T}}=2.76 \mathrm{~kg} / \mathrm{kWh}$
(iii) Mean temperature of heat addition, $\Delta T_{m}=\frac{3200.7}{(6.83-0.106)}=476^{\circ} \mathrm{K}$

Comparison	$\Delta \mathrm{T}_{\mathrm{m}}$	$\eta_{\text {cycle }}$	Steam rate
Rankine cycle with regeneration	385.2 K	0.428	$3.24 \mathrm{~kg} / \mathrm{kWh}$
Rankine cycle without regeneration	$476^{0} \mathrm{~K}$	0.41	$2.76 \mathrm{~kg} / \mathrm{kWh}$
\therefore Increase w.r.t	-0.19		
Rankine cycle	i.e., (-19%)	(4.4%)	0.174

VAPOUR POWER CYCLE

$$
\text { Vapour Power Cycle }-7
$$

$$
\begin{aligned}
& P=\operatorname{coss}, T_{2}(\mathrm{~km} \\
& P \sim, T=\cos (\mathrm{cr} \\
& P \vee, T=C D
\end{aligned}
$$

Rankine cycle is the practical working cycle for thermal Power plant \& it consist of four Process.

Adiabatic

Rev Adiabatic True. Alvah A he

$$
\begin{aligned}
d S=\frac{d Q}{T}=0 \quad d S & =\frac{d a r}{T} \\
& d S=S_{\text {se v }}
\end{aligned}
$$

Process 1:2 $;$ Reversible Adiabatic expansion of steam from Boiler to condersor pressure in turbine.

Process 2-3 \Rightarrow constant Pressure Heat rejection Process in the condensor to convert steam in to. saturated liquid.

Process $3-4 \rightarrow$ Reversible Adiabatic compression of liquid. From condenser to Boiler pressure in Boiler Feed Pump.

Process 4-1 \rightarrow Reversible constant Heat addition Process to convent water into steam in Boilers.

By SFEE -

$$
h_{1}+\frac{c_{1}^{2}}{2000}+\frac{g z_{1}}{1000}+\frac{d Q}{d m_{1}}=h_{2}+\frac{c_{2}^{2}}{2000}+\frac{g z_{2}}{1000}+\frac{d w_{2}}{d h_{1}}
$$

$\Delta k \cdot P=0, \quad \Delta P C=0, Q=0$
(i) limbos wonk

$$
w_{1}=\dot{h}\left(h_{1}-h_{2}\right) \quad \frac{k s}{k 2} \times k g \quad(k J)
$$

(ii) fall wonk -

$$
w_{p}=h_{4}-h_{3}=-\int v d p
$$

(i) Heat supplied.

$$
Q_{S}=h_{1}-h_{4}
$$

(iv) Heat Rejected-

$$
\begin{aligned}
& j_{\text {ceto }}=W_{T}-W_{p} \\
& Q_{R}
\end{aligned}
$$

Q - In a Power Plant water is Pumped from 80 kPa to 3 MPa . The Pump has an isentropic efficiency of 0.85 . Assuming that the temp of water remains same calculate the specific work supplied to the Pump.

$$
\begin{aligned}
W_{p} & =h_{4}-h_{3} \\
& =\int v d p \\
& =\int \frac{d p}{S} \\
& =\frac{d p}{s} \\
& =\frac{3 \times 10^{3}-80}{1000} \\
w_{\text {ideal }} & =2.92 \mathrm{~kJ} \\
W_{\text {actual }} & =\frac{2.92}{n_{p}}=\frac{2.92}{0.85}=3.435 \mathrm{~kJ}
\end{aligned}
$$

Note -1
For Power consuming devices $W_{\text {actual }}=\frac{W_{\text {idle }}}{\eta_{\text {isnbripic }}}$
for power devolping devices $w_{\text {ackal }}=w_{\text {ide }} \times \eta_{\text {is int }}$.bic
${ }^{4} \mathrm{Cl}$
Q The Rankine cycle operates Ww Pressure of 80 bar \& 0.1 bar the maxi cycle temp is $600^{\circ} \mathrm{C}$. Relarent stan table is extracted given below. calculate the thermal efficiency of cycle.

9
$80 \mathrm{bar}-600^{\circ} \mathrm{C} \quad v=0.486$
superheat table $\quad h=3642$

$$
8=7.0206
$$

$$
\eta=\frac{w_{\text {net }}}{Q_{\text {in }}}=\frac{w_{7}-w_{p}}{Q_{\text {in }}}
$$

$$
W_{T}=h_{1}-h_{2}, w_{p}=h_{4}-h_{3}, Q_{5}=h_{1}-h_{4}
$$

$S_{1}=S_{2}$

$$
\begin{aligned}
& 7.0206=0.648+x \times 0.7 .5006 \\
& x=0.8496 \\
& h_{2}=h_{f}+x h_{f g}=191.9+0.8402 \times 2392.3 \\
& h_{2}=2224.4268 \mathrm{~kJ} / \mathrm{kg} \\
& \text { by }=W_{P}=\int V d P=\frac{\left(80,0^{0.1}\right) \times 10^{5}}{1000}=7990 \mathrm{KJ} \\
& w_{p}=0.0010103[80+0.1] \times 100=8.09250 \\
& h_{4}-h_{3}=8.072297 \mathrm{~kJ} \\
& h_{y}=8.072297+191.9=199.972207 \mathrm{~kJ} / \mathrm{kg} \\
& \eta=\frac{h_{1}-h_{2}-8.072297}{h_{1}-h_{4}}=\frac{3642-2224.4218-8.9122}{3642-199.972291}
\end{aligned}
$$

$$
\eta=40.95 \%
$$

\# Steam Rate \Rightarrow It is the rate of steam required to produce 1 kw power output.

$$
\begin{aligned}
& S R=\frac{\dot{m}_{s}\left(\frac{k g}{\rho g \mathrm{~kg}}\right)}{\rho(\mathrm{kw}} \\
& S R=\frac{\dot{m}_{s}}{\dot{m}_{s} \times w_{\text {net }}}
\end{aligned}
$$

Trip

$$
S R=\frac{1 \times 3600}{w_{\text {net }}}\left(\frac{\mathrm{kg}}{\mathrm{kW-h}}\right)
$$

Gate-
Q2011 The value of enthalpy of stray at the inlet $\&$ Outlet of steam turbine in a rankine cycle are 2800 kJ 1 kg \& 1800 kJ 1 kg resp. Neglecting pump work. calculate the specific steam consumption in $\mathrm{kg} / \mathrm{kw-h}$.

$$
\begin{aligned}
& S \cdot R=\frac{3600}{W_{\text {net }}} \\
& S \cdot R=\frac{3600}{2800-1800}=3.6 \mathrm{~kg} / \mathrm{kw-h}
\end{aligned}
$$

$\mathrm{GaN}_{\mathrm{N}}^{\mathrm{t}-2013}$
Q- Specific enthalpy \& velocity of steam at inlet \& exit of a steam turbine running under steady state are as given below-

The rate of heat loss from the turblue ken kg of
steam flow rate is 5 kw . Neglecting changes of potential energy of steam. Calculate the power development in kw by the steam turbine per kg of steam flow rate.

$$
\begin{gathered}
h_{1}+\frac{c_{1}^{2}}{2000}+\frac{d Q}{d m}=h_{2}+\frac{c_{2}^{2}}{2000}+\frac{d w}{d m} \\
3250+\frac{(180)^{2}}{2000}+5=2360+\frac{5^{2}}{2000}+\frac{d w}{d m} \\
\frac{d w}{d m}=901.1875 \mathrm{kw}
\end{gathered}
$$

Heat rate: \rightarrow It is the rate of heat input required to produce 1 kw power output.

$$
\begin{aligned}
& H R=\frac{\text { Heat supplied }}{\text { Power output }} \\
& H R=\frac{\dot{m}_{s} Q_{s}}{\dot{m}_{s} \omega_{\text {nat }}} \\
& H R=\frac{Q_{s}}{\omega_{\text {net }}} \\
& H R=\frac{1}{\frac{w_{\text {net }}}{Q_{s}}}=\frac{1}{\eta}
\end{aligned}
$$

\# Carnot Vs Rankine cycle \Rightarrow

$$
\begin{aligned}
\text { Rankine } & \Rightarrow 1-2-3-4 \\
\text { Carnot } & \Rightarrow 1^{\prime}-2^{\prime}-3^{\prime}-4^{\prime} \\
& \Rightarrow 1^{\prime}-2^{\prime}-3-4^{\prime \prime} \\
& \Rightarrow 1^{\prime \prime}-2-3-4^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
&\left(q_{R}\right)_{S}=h_{1}^{\prime}-h_{4}=T_{m_{R}}\left(S_{a}-S_{h}\right)= \\
&=T_{m_{c}}\left(S_{1}^{\prime}-S_{1}\right) \\
& \eta=\frac{w_{m e t}}{\partial q_{s}}=1-\frac{T_{2}}{T_{1}} \\
& \eta_{\text {carnal }}>\eta_{\text {Rankine }}
\end{aligned}
$$

T_{2} is same for Aantiont f cannot.

$$
\text { But } T_{m} \rightarrow T_{1} \text { is mane }
$$

than cat Rankisis in collate

Carnot cycle in not practical in thermal power Plant duce to following reason.
(i) Problem of
(ii) It is not passible to control condensation Process in such a manner that desired quality of steam is found at state 3^{\prime}.
(iii) It is not Possible to design a pump which can handle a liquid \& vapour phase together.
(iv) The Pump work will be very Nigh for carnot cycle.
(v) It is impossible Add heat at constant temp with decreasing pressure (expansion in the boiler).
Q- Prove that efficiency of carnot cycle is more than that of rankine cycle whereas the done by the rankine cycle is more than that of carnot cyck.
\# Variables required to increase the Rankine cycle effricioncy,

1. Decreasing Condenser Pregsure: \rightarrow

2. $\left(T_{\text {mean }}\right)_{a_{R}} \downarrow$
3. I a can not be said theorthealy
4. $x \uparrow$

iisubererifical boilen is called Banson Boilen with No boilen drums. ITe cost of Banson Boilen is $2-3$ fimes of general Eovilen. ii) Leff ssection of boiler is at N egaftive Pressure of Right scfion of - Builer is at posifive Pressure.
(iii) SEAS are assoceres of billen.
(iv) We con conder the passuve in Boilen but in cooken it is mef hossite.
5. Increasing the Boilen Pressuxe \rightarrow

6. $\left(T_{\text {mann }}\right)_{Q_{R}}=$ constant
$82 \uparrow$
7. $8 \times \downarrow$
8. Superheating the $5 t 8 \mathrm{am} \div$
9. $\omega_{1} \uparrow$
10. $W_{p}=$ constant
11. $\omega_{N} \uparrow$
12. $Q_{S} \uparrow$
13. $Q_{R} \uparrow$

14. $\left(T_{\text {mean }}\right)_{a_{i n}} \uparrow$
15. $\left(T_{\text {mean }}\right)_{\theta_{R}}=$ cost
16. そ \uparrow
17. x 个
18. Reheating \rightarrow
19. W_{T}
20. W_{p}
21. w_{N}
22. Q_{S}
s. Q_{R}
23. $\left(T_{\text {Tran }}\right)_{\text {ain }}$

CH,
8. $\quad \eta$

Not ra 3
In Reheat cycle the expansion of steam from boiler to condenser pressure is carried out in more than ore stages with relation of steam in b/w the stages.

The net work output increases but main advantage is that it increases the dryness fraction at the exit of furbive.

Q- Consider a steam Power Plant using a reheat cycle as shown in the fig. Sind the efficiency of Plant when the Pump work is 8 kJlkg .

$$
\begin{aligned}
& h_{1}=324 \cdot \mathrm{~kJ} / \mathrm{kg} \\
& h_{2}=289 \cdot \mathrm{~kJ} 1 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
h_{3}= & 3410 \mathrm{~kJ} / \mathrm{kg} \\
h_{4} & =2616 \mathrm{~kJ} / \mathrm{kg} \\
h_{5} & =41 \mathrm{~kJ} / \mathrm{kg} \\
W_{p} & =\left\{h_{6}-h_{5}\right. \\
h_{6} & =41+8=49 \mathrm{kJ1kg} \\
\eta & =\frac{\left(h_{1}-h_{2}\right)+\left(h_{3}-h_{4}\right)-\left(h_{6}-h_{5}\right)}{\left(h_{1}-h_{6}\right)+\left(h_{3}-h_{2}\right)} \\
\eta & =\frac{3240-2890+3410-261 .-49+41}{3240-49+32 \%}+2890 \\
\eta & =30.77 \%
\end{aligned}
$$

Q 臣An ideal Reheat rankine cycle operates blu the Pressure limit of $10 \mathrm{kPa} \& 8 \mathrm{mla}$ with reheat done at 4 MPa ．The timing is pa．The temp of steam at the int of both turbine is $500^{\circ} \mathrm{C}$ \＆the enthalpy of steam is 318 s kJikg of the exit of High Pressure turbine \＆ 2247 kJing at the exist of low Pressure turbine，the enthalpy of water at exit from pump is 191 kJing ．Use the following table for relevant data

This regarding the pump work calculate the efficiency of cycle in \％．

$$
\begin{aligned}
& h_{1}=349 \% \quad k 51 \mathrm{~kg} \\
& h_{2}=3185 \mathrm{kr} 1 \mathrm{~kg} \\
& \begin{aligned}
& h_{3}=3449 h_{3} \\
&=-3399 \\
& h_{3}=46
\end{aligned} \\
& h_{y}=2247 \mathrm{kJlkg} \\
& h_{8}=191 \mathrm{kJikg} \\
& \eta=\frac{\begin{array}{c}
3399 \\
5446-3185+3446 \\
3492 \\
3399
\end{array}-2247+3446-3185}{(3646} \\
& \eta=40.187 \%
\end{aligned}
$$

(Bleading out stream from feed water heating)
5. Regenration \Rightarrow In Regenerative cycle the heat energy exchares (Breading out steam far fredternally bo the expanding steam in whatheatingturbine \& the compressed fluid coming out from the pump. The ideal regewrative cycle is not practical because -
(i) The moisture content at the exit of turbine will be very high.
(ii) Reversible heat transfer can not be obtain in finite five.
(ii) Heat exchanges in the turbine is not mechanically is not practical.

Therefore in actual thermal power plaint steam is extracted from intermediate stages for feed water Heating.

Types of feed wader Neater \rightarrow

1. Open feed water Neater
\because clos fied waten heatin
Dken fied water Heater \rightarrow (OFWH)

Energy Bolonce eqn for ofwheater (1) -

Scanned by CamScanner

$$
\begin{aligned}
& (\text { Energy })_{\text {in }}=(\text { Energy })_{\text {out }} \\
& x_{1} h_{2}+\left(1-x_{1}\right) h_{8}=h_{2}
\end{aligned}
$$

Every Balance eqn for of w heater (2) -

$$
\left(1-x_{1}\right) h_{7}=x_{2} h_{3}+\left(1-x_{1}-x_{2}\right) h_{6} h_{\left.\left(1-x_{1}\right) h_{7}-x_{2}\right) h_{6} \cdots}^{\text {ofwr(2) }}
$$

An open feed water Heater is basically a mixing chamber where the bleed out steam from the turbine is mixed with the feed water in feed water heater at the same For Pressure. The Pressure for the stream muse be same in order to decrease energy loss due fo mixing (flash loss).

Gote-2008
Q-

INTRODUCTION OF STEAM NOZZLES

- Nozzle is a duct by flowing through which the velocity of a fluid increases at the expense of pressure drop. if the fluid is steam, then the nozzle is called as Steam nozzle.
- The flow of steam through nozzles may be taken as adiabatic expansion. The steam possesses a very high velocity at the end of the expansion, and the enthalpy decreases as expansion occurs.

The major function of nozzle is to produce steam jet with high velocity to drive a turbine.

- Friction exists between the steam and the sides of the nozzle; heat is produced as the result of the resistance to the flow.
- The phenomenon of super saturation occurs in the steam flow through nozzles. This is because of the time lag in the condensation of the steam during the expansion.

INTRODUCTION OF STEAM NOZZLES

- The area of such duct having minimum cross-section is known as throat.
- A fluid is called compressible if its density changes with the change in pressure brought about by the flow.
- If the density changes very little or does not changes, the fluid is said to be incompressible.
Generally the gases and vapors are compressible, whereas liquids are incompressible.

TYPES OF NOZZLES

- There are three types of nozzles

1. Convergent nozzle
2. Divergent nozzle
3. Convergent-divergent nozzle

Fig1: Convergent Nozzle
Fig2: Divergent Nozzle

Fig3: Convergent-Divergent Nozzle

1.Convergent Nozzle

- A typical convergent nozzle is shown in the Fig.1.
- In a convergent nozzle, the cross sectional area decreases continuously from its entrance to exit.

Fig.1. Convergent nozzle

- It is used in a case where the back pressure is equal to or greater than the critical pressure ratio.

2.Divergent Nozzle

- The cross sectional area of divergent nozzle increases continuously from its entrance to exit.

Fig.2.Divergent nozzle

- It is used in a case where the back pressure is less than the critical pressure ratio.

3.Convergent-Divergent Nozzle

- In this condition, the cross sectional area first decreases from its entrance to the throat and then again increases from throat to the exit.
- This case is used in the case where the back pressure is less than the critical pressure.
- Also, in present day application, it is widely used in many types of steam turbines.

Fig.3. convergent-divergent nozzle

Flow of Steam through Nozzle

- Super-saturated flow or metastable flow of in Nozzles:
- As steam expands in the nozzle, the pressure and temperature in it drop, and it is likely that the steam start condensing when it strikes the saturation line. But this is not always the situation.
- Due to the high velocities, the time up to which the steam resides in the nozzle is small, and there may not be sufficient time for the needed heat transfer and the formation of liquid droplets due to condensation. As a result, the condensation of steam is delayed for a while.
- This phenomenon is known as super saturation, and the steam that remains in the wet region without holding any liquid is known as supersaturated steam.
- The locus of points where condensation occurs regardless of the initial temperature and pressure at the entrance of the nozzle is called the Wilson line.
- The Wilson line generally lies between 4 and 5 percent moisture curves in the saturation region on the h-s diagram in case of steam, and is often taken as 4 percent moisture line.

Flow of Steam through Nozzle

The phenomenon of super saturation is shown on the h-s chart below:

Fig 4. The h-s diagram for the expansion of steam in the nozzle

Flow of Steam through Nozzle

- Effects of Super-saturation:

The following are the effects of super-saturation in a nozzle.

1. The temperature at which the steam becomes supersaturated will be less than the saturation temperature corresponding to that pressure. Therefore, supersaturated steam will have the density more than that of equilibrium condition which results in the increase in the mass of steam discharged.
2. Super-saturation causes the specific volume and entropy of the steam to increase.
3. Super-saturation reduces the heat drop. Thus the exit velocity of the steam is reduced.
4. Super-saturation increases the dryness fraction of the steam.

Flow of Steam through Nozzle

- Effect of Friction on Nozzles:
- Entropy is increased.
- The energy available decreases.
- Velocity of flow at the throat get decreased.
- Volume of flowing steam is decreased.
- Throat area required to discharge a given mass of steam is increased.

Continuity and steady flow energy

 equations through a certain section of the nozzle:- Where m denotes the mass flow rate, v is the specific volume of the steam, A is the area of cross-section and C is the velocity of the steam.
- For steady flow of the steam through a certain apparatus, principle of conservation of energy states:

$$
h_{1}+\frac{C_{1}^{2}}{2}+g z_{1}+q=h_{2}+\frac{C_{2}^{2}}{2}+g z_{2}+\mathrm{w}
$$

- For nozzles, changes in potential energies are negligible, $w=0$ and $\mathrm{q}=0$.

$$
h_{1}+\frac{C_{1}^{2}}{2}=h_{1}+\frac{C_{2}^{2}}{2}
$$

- which is the expression for the steady state flow energy equation.

INTRODUCTION

What is a steam nozzle????

A nozzle is a device designed to control the direction or characteristics of a fluid flow (especially to increase velocity) as it exits (or enters) an enclosed chamber or pipe. A nozzle is often a pipe or tube of varying cross sectional area, and it can be used to direct or modify the flow of a fluid (liquid or gas). Nozzles are frequently used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the stream that emerges from them. Finally the goal of a nozzle is to increase the kinetic energy of the flowing medium at the expense of its pressure and internal energy.

Types of nozzles

Three types of nozzles:-
$>$ Convergent:- The cross section of nozzle tapers to a smaller section allow for changes which occur due changes in velocity, specific volume dryness fraction - as the flow expands, it has lower expansion ratio and hence lower outlet velocities.
> Convergent-----Divergent:- The nozzle which converges to throat and diverges afterwards. It has higher expansion ratio - as addition of divergent portion produces steam of higher velocities.Eg-De-Laval Nozzle

Divergent:- A nozzle whose cross section becomes larger in the direction of flow is known as divergent nozzle.

CONVERGENT-DIVERGENT NOZZLE

DIVERGENT NOZZLE

WORKING PR\#NQIRAFADF NEFZ太LA士 NOZZLE

Figure 2. A simple experiment

 padifoisigiog notreang of the nozzle (in the diverstig seftionssure and jet)tcan still changeif you lowonthe back pressure fulther, but theis mass flams rate is now fixed because, the flow in the ${ }^{\text {es }}$ throat (and for that matter in the entire converging section) is \rightarrow now fixed t ϕ o.

Throat

A further lowering of the back pressure changes and weakens the wave pattern in the jet. Eventually we will have lowered the back pressure enough so that it is now equal to the pressure at the nozzle exit. In this case, the waves in the jet disappear altogether (figure 3f), and the jet will be uniformly supersonic. This situation, since it is often desirable, is referred to as the 'design condition'.

Finally, if we lower the back pressure even further we will create a new imbalance between the exit and back pressures (exit pressure greater than back pressure), figure 3 g . In this situation (called 'underexpanded') what we call expansion waves (that produce gradual turning and acceleration in the jet) form at the nozzle exit, initially turning the flow at the jet edges outward in a plume and setting up a different type of complex wave pattern.

CRITICAL PRESSURE RATIO

For a perfect gas undergoing an adiabatic process the index-n-is the ratio of specific heats $-k=c_{p} / c_{v}$. There is no unique value for $-n$. Values for some common gases are

- Steam where most of the process occurs in the wet region : $n=1.135$
- Steam superheated : $n=1.30$
- Air : $n=1.4$
- Methane : $n=1.31$
- Helium : $n=1.667$

Example - Air Nozzles and Critical Pressure Ratios

The critical pressure ratio for an air nozzle can be calculated as

$$
\begin{aligned}
& p_{c} / p_{1}=(2 /(1.4+1))^{1.4 /(1.4-1)} \\
& =\underline{0.528}
\end{aligned}
$$

Critical pressures for other values of $-n$:

n	1.135	1.300	1.400	1.667
p_{c} / p_{1}	0.577	0.546	0.528	0.487

steam transonic flows in Laval nozzles

Figure 1: Steam tunnel with auxiliary devices: 1) Control valve, 2) By-pass, 3) Stop gate valve, 4) Stop gate valve at by-pass, 5) Inlet nozzle, 6) Test section, 7) Outlet elbow, 8) Water injec-tor, 9) Pipe, 10) Safety valve, 11) Condenser, 12) Suction line, 13) Throttle valve, 14) Desuperheater, 15) Condensate tank, 16) Control system of condensate level, 17) Condensate pump, 18) Discharge line, 19) Stop valve, 20) Water injector pump, 21)
 Cooling water pump, 22) Condensate pump, 23) Pump

Construction of steam nozzle

The flow nozzle was constructed based on the following specifications and dimensions;
Throat Diameter60mm
The diameter of the duct pipe 140 mm
The length of the up stream pipe 200 mm
The thickness of the nozzle 3.8 mm
The length of the down stream pipe 200mm
The height of the nozzle820mm
The length of the nozzle690mm
The size of the pressure valves $1 / 2$ inch
Furthermore, the selection of materials for the construction of this flow nozzle was based on the factors which includes; ductility, malleability, fabricability, mechanical strength and stability, availability, corrosion resistance and lastly cost factor.

Effects of friction on nozzle efficiency

For stream flowing through a nozzle, its final velocity for a given pressure drop is reduces to:

- Friction between nozzle surface and stream
- Internal friction of stream itself.
- Shock losses.

Most of the frictional losses occur between the throat and exit in nozzle, producing following effect.

- Expansion is no more isentropic.
- Enthalpy drop is reduced.
- Final dryness fraction of steam increases.(kinetic energy- heat, due to friction and gets absorbed.)
- Specific volume of steam increases.(steam becomes more dry due to friction reheating)

Parameters of steam nozzle

* Foundation
* Rotor or shaft
* Cylinder or Casing
* Blades
* Diaphragm
* Steam Chest
* Coupling
* Bearings
* Labyrinth seal
* Front pedestal
* TSI
* D-EHC(governor)
* MSV(main steam stop value)
* CV(control value)
* IV(intercept value)
* CRV(combined reheat value)
* Turbine Turning Gear
* Turbine Bypass and Drains
* Lube oil system
* EHC oil system
* Gland steam systems
* Condenser
* Steam jet Ejector
* Vacuum Breaker

SUPER SATURATED FLOW

When dry and saturated steam is caused to expand in a nozzle, the actual measured steam flow is found to be greater than the theoretical calculated flow. This is due to the time lag in the condensation of steam and the steam remains in dry state instead of wet. Such a steam is called supersaturated steam. This time lag is caused due to the fact that, the converging part of the nozzle is too short and the steam velocity is too high that the molecules of steam have insufficient time to form droplets.

EFFECTS OF SUPERSATURATED FLOW

\checkmark Final dryness fraction increases.
\checkmark Density of supersaturated steam is more than that for equilibrium conditions(As no condensation during supersaturated expansion $=>$ supersaturation temperature < saturation temperature corresponding to the pressure).Thus, measured discharge ($=>$ mass) is greater than that theoretically calculated.

MACH NUMBER

Mach number is the ratio of flow velocity passed the boundary to the local speed of sound. It is a dimensionless quantity: $M=u / c$ Where,

M= Mach Number.
$u=$ Local flow velocity with respect to the boundaries.
$c=$ Speed of the sound in the medium.

If ,
$M>1$, the flow is supersonic $M<1$, the flow is subsonic
$M=1$, the flow is sonic

Figure 4: Calculated Mach number distribution (top) and Schlieren pictures from experiment for D1 nozzle

APPLICATIONS OF STEAM NOZZLE

\square To rotate steam turbine.
\square Thermal power plant.
\square Steam nozzle are also used for cleaning purpose.

To produce a very fine jet spray.

21

Steam Nozzles

1. Indroducion. 2. Typer of Siean Narzies. 3. Fiow of Sieam throuph Convergentidivergrat Noutle. 4. Friction in a Nuctle or Notsle Efficlency. 5. Velocity of Stean Fluwing thruugh a Naule. 6 . Mast of Sinam Discharged through a Noute. 7. Comifion for Mavimum Dacharge toreugh a Nourle (Cribloal
 Ratio. 10 Phynical Significance of Critical Pressurt Ratio. 11. Diasieters of Throat and Erir for Maximum Discharge. 12. Superiahurated Flow or Menatable Flow Ahrough Nosples. I3 Effect of Supermaration. 14. Smant Injector. 15. Seran Injercor Calculations.

21.1. Introduction

A steam nozzle is a passage of varying cross-section, which converts beat energy of stearn into kinetic energy. Daring the first part of the nozzle, the steam increases its velocity, But in its later part, the steam gains more in volume than in velocity. Since the mass of steam, passing through any section of the nozzle terains constant, the variation of steam pressure in the nozale depends upon the velocity, specific volume and drysess fraction of steam. A well designod nozzle converts the lieat energy of steam into kinetic energy with a minimam loss.

The main use of steam nozzle in seam turhines, is to produce a jet of steam with a high velocity. The smallest section of the nozzle is called thoas.

21.2. Types of Steam Norales

Following three types of nozales are important from the subject point of view:

1. Cinvprgent nozzie. When the cross-section of a nozzle decreases continnously from estrance to exit, it is called a comvergent nozzle as shown in Fig. 21.1 (a).

(a) Converigent

(b) Divergent

(c) Comergeat-diveagenL

Fig. 21.1. Types of neam noualis.
2. Divergent nozzle. When the cross-section of a nozale increases continuously from entrance to exit, it ls called a divergent nozele, as shown in Figg. 21.1 (b).
3. Canvcrgent-divergen nozzle. When the cross-section of a nozzle first decreases from its citrance to throat, and then increases from its throat to exit, it is called a convergent-divergent nozale as shown in Fig. 21.1 (c). This type of sonzle is widely uved these drys in various types of steand tarbines.

21.3. Flow of Steam through Convergent-divergent Nazle

The steam esters the nozzle with a high pressure, but with a negligible velocily, it the converging portion (i.e from the inlet to the throat), there is a drop in the steam pressure with a tive in its velocity. There is also a drop in the enthalpy or total heat of the steam. This drop of heat is not atilised in dring sonse extemal wonk, but is converted ino kinetic energy. To the divergent portion (i.e. from the throat to outle), there is farther drop of steam porssare with a further rise in its velocily. Again, there is a drop in the enilhalpy or total heat of steam,' hich is converted into kinetic enerey.

It will be interesting to know that the steam ente + the nozzle with a high prossure and negligible velacity. But leaves the norrle with a ligh velocity and small pressure. The pressure, at which the steam ieaves the nouzle, is knownas back peessure: Moreover, noheat is supplied or rejected by the steam daring flow throogh a nozzle. Therefore, it is considered as isentropic flow, and the corresponding expansion is cuasidered as an iseritropic erpansion.

21.4. Friction In a Nozale or Nozale Efticiency

As a malter fact, when the stean flows through a nozzle, some luss in its enthalpy or lotal hent takes plice due to friction betweef the nozzle surface and the flowing steam. This can be best understood with the help of h-s diagram or Mollier chart, as shown in Fig. 21.2, which cin be completed as discussed below :

1. First of all, bocase the point A for the intitial conditions of the steain it is a point, where the saturation line meets the initial pressare $\left(p_{1}\right)$ line.
2. Now draw a vertical line through A fo mecl the final peessare $\left(p_{1}\right)$ line. This is done as the flow through the nozzle is isentropic, which is expressed by a vertical line $A B$. The heat drop $\left(h_{1}-h_{2}\right)$ is knownas itenirupic heat dirop.
3. Due to friction in the coztle the actual heat drop in the stean will be less than $\left(h_{1}-h_{2}\right)$ Let this

Fig. 21.2. h-s geaph far nisale efficienic. heat drop be shown as $A C$ instead of $A B$.
4. As the expantion of steam exds at the pressure β_{2}, therefore final condition of steam is obtained by drawing a horiantal line through C to meet the final pressure $\left(p_{2}\right)$ line at Δ^{\prime} '.
5. Now the actual expansion of steam in the nozzle is expressed by the curve $A B^{\prime}$ (adiahatic exparsion) instead of $A B$ (isetitopic exparsion). The actual heat drop $\left(h_{1}-A_{2}\right)$ is hnown as asefiul heat drop.

Now ibe coefficient of nozzle or nozzie efficiency (usually denoted by K) is defined as the ratio of wesfiul heaf ifny to the itcutropic heat drop. Mathematically.

$$
K=\frac{\text { Useful heat drop }}{\text { Isentropichat drop }}=\frac{A C}{A B}=\frac{A_{1}-A_{2}}{A_{1}-h_{2}}
$$

 obvians, that the effert of friction is so increace the dryness fractins of team. This is dare to the fact that the evergy bot in friction is inansferned noes hrat, which iends to try or mperhat ite strum.
2. A similar effect is proficed when the steim is supetheated at be entance of the notzle.

$$
\begin{aligned}
& \text { Let } \quad P R=\text { Useful heas drop, and } F Q=\text { lucningicheaidrup. } \\
& \therefore \text { Neorle efficitncy. } K=\frac{P R}{P Q}
\end{aligned}
$$

3. In egseral, if 15% of the heat drog is lost in friction, then effeciency of the niazie is equal to $100-15=85 \%-0.85$.

21.5. Velocity of Steam Flowing through a Nozzle

Consider a unit mass flow of steam through a noczle.
Let
$V_{1}=$ Velocity of steam at the entrance of nozzle in m/s
$V_{2}=$ Velocity of steam at any section considered in m / s,
$h_{i}=$ Enthalpy or loal heat of steam entering the nozzle in $\mathrm{kJ} / \mathrm{kg}$, and
$h_{2}=$ Eathalpy or total heat ef steam at the section considered in klikg.
We know than for a sieady flow process in a noizle,

$$
h_{1}+\frac{v 1}{1000}\left(\frac{V_{1}^{2}}{2}\right)=h_{2}+\frac{1}{1000}\left(\frac{V_{2}^{2}}{2}\right)+\text { Losses }
$$

Negleting losses in a nozzie,

$$
\begin{align*}
\frac{1}{1000}\left(\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2}\right) & =h_{1}-h_{2} \\
\therefore V_{2} & =\sqrt{V_{1}^{2}+2000\left(h_{1}-h_{2}\right)}=\sqrt{V_{1}^{2}+2000 h_{2}}
\end{align*}
$$

uthere

$$
h_{d}=\text { Enthalpy or heat dropduring expassion of steam in a nozzle }
$$

$$
=h_{1}-h_{2}
$$

Since the entrance velocity or velocily of approach $\left(V_{1}\right)$ is negEgible as comparal to V_{2}. therefore from equation (i),

$$
\begin{equation*}
v_{2}{ }^{*}=\sqrt{2000 h_{2}}=44.72 \sqrt{h_{2}} \tag{ii}
\end{equation*}
$$

Nole - In achial pacicice, there in always a certain amount of frictios prosent between the sleam and noczle surfices. This reduces the heat drop ty 10 is 15 percent and thas the exih velocity of stram is alwo rodoced cormpondingly. Thus the above relation may be wrinen as:

$$
V_{2}=44.72 \sqrt{K h_{j}}
$$

where K is tie rouke coefficint or nanke efficirncy.
Example 21.1. Dry saturated steam at 5 bar with negligible velocity expands isenurapicaliy in a convergent nazele to I bar and dryness fruction 0.94. Determine the velocity of sleam leanits the nozzle.

Solution. Girea : $p_{1}=5$ bar ; $p_{2}=1$ bar ; $x_{2}=0.94$
From steam tables, corresponding to a pressure of 5 bar, we find that enthalpy or total heat of dry saturated steam.

$$
h_{1}=h_{\mathrm{ri}}=2747.5 \mathrm{k} / \mathrm{kg}
$$

and corresponding to a pressure of I twr, we find that

$$
h_{h}=417.5 \mathrm{k} / \mathrm{kg}, \text { and } h_{h 1}=2257.9 \mathrm{~kJ} / \mathrm{kg}
$$

\therefore Enctulpy or total heat of final steam,

$$
h_{7}=h_{\Omega}+x_{2} h_{122}=417.5+0.94 \times 2257.9=2540 \mathrm{k} / \mathrm{kg}
$$

and enthalpy or hest drop, $h_{d}=h_{1}-h_{2}=2747.5-2540=207.5 \mathrm{kl} / \mathrm{kg}$
We know that velocity of steam leaving the nozzie,

$$
v_{2}=44.72 \sqrt{h_{d}}=44.72 \sqrt{207.5}=644 \mathrm{~m} / \mathrm{s} \text { Ans. }
$$

+Wehnow that $\mathrm{K} . \mathrm{E}=\frac{1}{2} \mathrm{an}^{2} \mathrm{~V}^{2}=\frac{1}{2} \times 1 \times V^{2}=\frac{\mathrm{V}^{2}}{2} \mathrm{~J}=\frac{1}{1000}\left(\frac{V^{2}}{2}\right) \mathrm{V}$

Example 21.2. Dry sohurated steam at a pressare of 15 har enters in a noczte and is discharged at a pressure of 1.5 bar. Find the final velocity of the steam, when the intitial veticity of the steam is negligible.

1/ 10% of the hear drop is lost in friction, firtshequercentage reduclion in ike final velocity.
Solution. Given $: p_{1}=1.5$ bar $: p_{2}=1.5$ bar
Final vilociry ef the steam
Fromsteam tables, coiresponding to a pressure of 15 har, we find ihat enthalpy of dry saturated steam,

$$
h_{1}=2789.9 \mathrm{~kJ} / \mathrm{kg}
$$

and comesponding to a pressure of 1.5 bar, enthalpy of dry saturated steam,

$$
h_{1}=2693.4 \mathrm{~kJ} / \mathrm{kg}
$$

\therefore Heat drop, $\quad h_{2}=h_{1}-h_{3}=2789.9-2693.4=96.5 \mathrm{~kJ} / \mathrm{kl}$
We know that final velocity of the steam,

$$
V_{2}=44.72 \sqrt{h_{4}}=44.72 \sqrt{96.5}=439.3 \mathrm{mK} . \mathrm{Ans} .
$$

Percentrge reduction in the final velocity
We know that heat drop lost in friction

$$
\begin{equation*}
=10 \%=0.1 \tag{Given}
\end{equation*}
$$

\therefore Noazle coefficient or nozzie efficiency

$$
K=1-0.1=0.9
$$

We know that final velocity of the steam,

$$
V_{2}=44.72 \sqrt{K h_{2}}=44.72 \sqrt{0.9 \times 96.5}=416.8 \mathrm{~m} / \mathrm{s}
$$

\therefore Percentage reduction in final velocity

$$
=\frac{439.3-416.8}{439.3}=0.051 \text { or } 5.1 \% \text { Ans. }
$$

Example 21.3. Dry ranurated steam at 10 bar is expanded isentropically in a nozzle so 0.1 bor. Using stram tables only, find the dryness fraction of she rteam ar etit Also find the velocity of steam keaving the nazzle when 1 . initial velocity is negligible, and 2. Inilial velocity of the steam is $135 \mathrm{~m} / \mathrm{s}$.

Solation. Given : $p_{1}=10$ bar : $p_{2}=0.1$ bar Brywiss frartion of the stram at enil

Let

$$
x_{2}=\text { Deyness fraction of the steam at exit. }
$$

Prom steam tables, corresponding to a pressure of 10 bar , we find that entropy of dry saturated steam,

$$
s_{1}=s_{s^{4}}=6.583 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

and corresponding to a pressure of 0.1 har, we find that

$$
s_{f}=0.649 \mathrm{kl} / \mathrm{kg} \mathrm{~K} \text {, and } \quad 1 / \mathrm{s}=7.502 \mathrm{k} / / \mathrm{kg} \mathrm{~K}
$$

Since the expansion of steam is isentropic, therefore
Entropy of steamiat intet $\left(s_{1}\right)=$ Entropy of steam at exit $\left(s_{2}\right)$

$$
\begin{aligned}
6.583 & =x_{n}+x_{7} x_{h 2}=0.649+x_{3} \times 2.502 \\
x_{2} & =0.791 \text { Ans. }
\end{aligned}
$$

From soeam tables, conesposiling to a pressure of 10 tar, we find that enthalpy or total beat of dry saturated steam,

$$
h_{1}=h_{k_{1}}=2776.2 \mathrm{~kJ} / \mathrm{kg}
$$

and corresponding to a pressure of 0.1 bar,

$$
A_{f t}=191.8 \mathrm{k} / \mathrm{kg} \text {, and } h_{i p}=2392.9 \mathrm{~kJ} / \mathrm{kg}
$$

\therefore Enthalpy or total heat of sieam of exit,

$$
\begin{aligned}
A_{2} & =A_{2}+x_{2} h_{k t} \\
& =191.8+12791 \times 2392.9=2084.6 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

and heat drop.

$$
h_{d}=h_{t}-h_{2}=27762-2084.6=691.6 \mathrm{~kJ} / \mathrm{kg}
$$

We know that velocity of steam leaving the nozzle,

$$
V_{2}=44.72 \sqrt{h_{4}}=44.72 \sqrt{691.6}=1176 \mathrm{mvs} \text { Anc. }
$$

We know that velecity of steam leavise the notale,

$$
V_{2}=\sqrt{V_{1}^{2}+21000 k_{2}}=\sqrt{(135)^{2}+2000 \times 691.6}=1184 \mathrm{~m} / \mathrm{ANs} .
$$

Example 21.4. Dry saturated stram at a pressure of 10 bor is expanded in a noxtle to a pressure of 07 bor. With the help of Moltier diagramf find the velocity and dry ness fracrion of stom issming from the nouzle, if she friction is neglected.

Also find she velocity and dryess fraction of the steam if 15% of the heat drop is lost in friction.

Solution. Given : $p_{1}=10$ bar $; p_{2}=0.7 \mathrm{bur}$ Velociry and dryess fruction of ishan israing from the mazzle, iffriction is neglected

The process on the Mollier diagram, as shown in Fig. 2F.3, is drawn as discussed below:

1. First of all, locate the point A on the saturation line (because the steam is initially dry saturaned) where the initial pressure line (I0 bas) meets it.
2. Since the expansion in the nozale is isentropic, therefore draw a vertical fane through A to meet the final pressure line (0.7 bar) at point B.

Now from the Mollier dagram, we Find that
and

$$
\begin{aligned}
& h_{1}=2772 \mathrm{~kJ} / \mathrm{kg} . \\
& h_{2}=2310 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Fig 21.3
\therefore Heat drup,

$$
h_{d}=h_{1}-h_{2}=2772-2310=462 \mathrm{~kJ} / \mathrm{kg}
$$

We knew that velocity of seeam issuing from the nozale,

$$
V_{2}=44.72 \sqrt{h_{i}}=44.72 \sqrt{462}=961 \mathrm{~m} / \mathrm{s} \text { Ans. }
$$

From Mollier diagram, we also find that the dryness fraction of steam issuing from ${ }^{-1}$ 年 nozzle (i.e. at point B) is $x_{2}=1284.8$. Ans.
 frietion.

Since 15% heat drop is lost in frictica, therefore nozzle coelficient of nozzle efficiency.

$$
\begin{aligned}
K & =100-15=85 \%=0.85 \\
\text { and heat drop due to friction } \quad & =462 \times 0.15=69.3 \mathrm{kl} / \mathrm{kg}
\end{aligned}
$$

We know that velocity of steam issuing from the nozzle,

$$
V_{2}=44.72 \sqrt{K h_{j}}=44.72 \sqrt{0.85 \times 462}=886 \mathrm{mis} \text { Ans. }
$$

Now let us complete the Mollier diagram as discussed below :

1. Lacate point C on the vertical line $A B$, such that $B C=69.3 \mathrm{~kJ} / \mathrm{kg}$.
2. Now through C, druw a horizontal line $C B^{\prime}$ to meet the final pressare line (0.7 bar) at B^{\prime}.

From the Mollier diagram, we find that the dyyess fraction of steam issuing from the nozzle, (ie. at point B^{\prime}) is $x_{3}=0.678$. Ans.

21.6. Mass of Steam Discharged through Nozzle

We have afready discussed that the flow of steam, through the nozzle is isentropic, which is approximately repersented by the general law:

$$
p \Delta^{\prime \prime}=\text { Constant }
$$

We know that gais in kinetic energy

$$
=\frac{v_{2}^{2}}{2}
$$

Heat drop = Work done during Rankise cycle

$$
=\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right)
$$

Since gain in kinetic energy is equal to heat drop therefore

$$
\begin{align*}
\frac{v_{3}^{2}}{2} & =\frac{n}{n-1}\left(p_{1} v_{1}-p_{2} v_{2}\right) \\
& =\frac{n}{n-1} \times p_{1} v_{1}\left(1-\frac{p_{3} v_{2}}{p_{1} v_{1}}\right) \tag{i}
\end{align*}
$$

We know that

$$
p_{1} v_{1}^{n}=p_{2} t E_{2}
$$

$$
\begin{array}{ll}
& \frac{v_{2}}{v_{3}}=\left(\frac{p_{1}}{p_{2}}\right)^{\frac{1}{4}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{4}} \\
\therefore \quad & v_{2}=v_{1}\left(\frac{p_{2}}{p_{1}}\right)^{-\frac{1}{\pi}} \tag{ii}
\end{array}
$$

Substituting, the value of $\mathrm{v}_{2} / \mathrm{v}_{1}$ in equation (1)

$$
\frac{v_{2}^{\prime}}{2}=\frac{n}{n-1} \times p_{1} v_{1}\left[1-\frac{p_{2}}{p_{1}}\left(\frac{p_{2}}{p_{1}}\right)^{-\frac{1}{n}}\right]
$$

$$
\begin{align*}
& =\frac{n}{n-1} \times p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right] \\
v_{2} & =\sqrt{2 \times \frac{n}{n-1} \times p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right]} \tag{iii}
\end{align*}
$$

Now the volume of steam flowing per secoed

$$
=\text { Criss-sectional area of nozale } x \text { Velocity of steam }=\Lambda V_{2}
$$

and volume of I kg of steam $i e$. specific velume of steam at pressure p_{2}

$$
=v_{2} \mathrm{~m}^{3} / \mathrm{kg}
$$

A. Mass of steam discharged through mozile per sncond,

$$
\begin{aligned}
m & =\frac{\text { Volume of stean flowing per second }}{\text { Volume of } 1 \text { kg of steamat pressure } p_{2}} \\
& =\frac{A V_{2}}{V_{2}}=\frac{A}{p_{2}} \sqrt{2 \times \frac{n}{n-1} \times p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{N-1}{n}}\right]}
\end{aligned}
$$

Substituting the value of v_{2} from equation ($\left.i\right)^{2}$,

$$
\begin{align*}
m & =\frac{A}{v_{1}}\left(\frac{p_{1}}{p_{2}}\right)^{-\frac{1}{n}} \sqrt{\frac{2 n}{n-1} \times p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right]} \\
& =\frac{A}{v_{1}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{n}} \sqrt{\frac{2 n}{n-1} \times p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right]} \\
& =A \sqrt{\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{n} \times \frac{2 n}{n-1} \times \frac{p_{1}}{p_{1}}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right]}} \\
& =A \sqrt{\frac{2 n}{n-1} \times \frac{p_{1}}{v_{1}}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\left.\frac{1}{n}-\left(\frac{p_{2}}{p_{1}}\right)^{n}\right]}\right.} \tag{iv}
\end{align*}
$$

Example 21.5. Dry air at a temperntare of $27^{\circ} \mathrm{C}$ and presture of 20 har enters a noxie and leatves at a pressure of 4 har. Find the mass of air discharged, if the area of the nozale is $200 \mathrm{~min}^{2}$.

Solution. Given: $T_{1}=27^{6} \mathrm{C}=27+273=300 \mathrm{~K} ; p_{1}=20 \mathrm{bur}=20 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2} ; p_{2}=4$ bar $=4 \times 10^{5} \mathrm{~N}^{2} ; A=200 \mathrm{~mm}^{2}=200 \times 10^{-6} \mathrm{~m}^{2}$

Let $\quad y_{1}=$ Specific volame of air in $\mathrm{m}^{3} / \mathrm{kg}:$
We knew that $p_{1} v_{1}=m R T_{1}$

$$
v_{1}=\frac{m N T_{1}}{p_{1}}=\frac{1 \times 2 \mathrm{R} 7 \times 300}{20 \times 10^{9}}=0.043 \mathrm{~m}^{3} /(\mathrm{gg} \ldots(: \ldots \text { for air }=287 / 2 \mathrm{~kg} \mathrm{~K})
$$

We know that mass of steam dichatged through the norile,

$$
\begin{aligned}
m & =A \sqrt{\frac{2 n}{n-1} \times \frac{p_{1}}{v_{r}}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\left.\frac{2}{*}-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n+1}{n}}\right]}\right.} \\
& =200 \times 10^{-5} \sqrt{\frac{2 \times 1.4}{1.4-1} \times \frac{20 \times 10^{5}}{0.043}\left[\left(\frac{4}{20}\right)^{\frac{3}{14}}-\left(\frac{4}{20}\right)^{\frac{1.2+1}{1.4}}\right]} \\
& =200 \times 10^{-5} \sqrt{3256 \times 10^{5}[0.1-0.06]}=0.72 \mathrm{~kg} / 5 \text { Ans. }
\end{aligned}
$$

21.7. Condition for Maximum Discharge throogh a Nazsle (Critical Pressure Ratio)

A nozzle is, normaily, designed for maximum discharge by designing a centain throat pressure which prodaces this condition.

$$
\begin{aligned}
& \text { Let } \quad \rho_{1}=\text { Initial pressure of steam in } \mathrm{N} / \mathrm{m}^{2} \text {, } \\
& P_{2}=\text { Pressure of steam at throat in } \mathrm{N} / \mathrm{m}^{2} \text {. } \\
& v_{1}=\text { Volume of } 1 \mathrm{~kg} \text { of steam at pressure }\left(p_{1}\right) \text { in } \mathrm{m}^{3} \text {, } \\
& v_{2}=\text { Volame of } 1 \mathrm{~kg} \text { of steam at pressure }\left(p_{2}\right) \text { in } \mathrm{m}^{3} \text {, and } \\
& A=\text { Criss-sectional area of nozzle at throat, in } \mathrm{m}^{2} \text {. }
\end{aligned}
$$

We have derived an equation in the previous article that the mas of steam discharged through nozzie.

$$
\begin{equation*}
m=\lambda \sqrt{\frac{2 n}{n-1} \times \frac{p_{1}}{v_{1}}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{n}}-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n+1}{n}}\right]} \tag{i}
\end{equation*}
$$

There is only one value of the ratio p_{2} / p_{1}, which produces maximum discharge from the nozale. This ratio p_{2} / p_{1}, is obtained by differentiating the right hand side of the equation. We see from this equation that except p_{2} / p_{5}, all other values ase coestant. Therefore, only that portion of the equation which contains p_{2} / p_{3}, is differentisted and equated to zero for maximum discharge.
or

$$
\begin{aligned}
& \frac{d}{d\left(\frac{p_{2}}{p_{1}}\right)}\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{2}{n}}-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n+1}{n}}\right]=0 \\
& \frac{2}{n}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{2}{n}-1}-\frac{n+1}{n}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n+1}{n}-1}=0 \\
& \frac{2}{n}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{2-n}{n}}=\frac{n+1}{n}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{n}} \\
& \left(\frac{p_{2}}{p_{1}}\right)^{\frac{2-n}{n}} \times\left(\frac{p_{2}}{p_{1}}\right)^{\frac{-1}{n}}=\frac{n+1}{n} \times \frac{n}{2}
\end{aligned}
$$

$$
\begin{align*}
\left(\frac{p_{2}}{p_{1}}\right)^{\frac{z-z}{n}-\frac{1}{n}} & =\frac{n+1}{2} \\
\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1-2}{n}} & =\frac{n+1}{2} \\
\frac{p_{1}}{p_{1}} & =\left(\frac{n+1}{2}\right)^{\frac{n}{1-n}}=\left(\frac{n+1}{2}\right)^{\frac{-n}{-1-n}} \\
& =\left(\frac{2}{n+1}\right)^{\frac{\theta}{n-1}} \tag{ii}
\end{align*}
$$

Noloss 1. The ratio β_{2} / β_{1} is kowe as criblal preaure ratio, and de persure β_{3} at the throat is known as crinical presisure.
2. The muifmum value of the divchurge per second is abtained by subiliting the value of $\beta_{3} f \rho_{1}$ in equation (0).
\therefore Maximem discharge $M_{\operatorname{man}}=A \sqrt{\frac{2 n}{n-1} \times \frac{p_{1}}{v_{i}}\left[\left(\frac{2}{n+1}\right)^{\frac{1}{n-1}}-\left(\frac{2}{n+1}\right)^{\frac{n+1}{n-1}}\right]}$

$$
=A \sqrt{\frac{2 n}{n-1} \times \frac{p_{1}}{v_{1}}\left(\frac{2}{n+1}\right)^{\frac{y}{n-1}}\left[1-\left(\frac{2}{n+1}\right)^{\left.\frac{n+1}{n-1} \frac{y}{n-1}\right]}\right.}
$$

$$
=\lambda \sqrt{\frac{2 n}{n-1} \times \frac{p_{1}}{v_{1}}\left(\frac{2}{n+1}\right)^{\frac{1}{n-1}\left[1-\left(\frac{2}{n+1}\right)\right]}}
$$

$$
=A \sqrt{\frac{2 n}{n-1} \times \frac{p_{1}}{v_{1}}\left(\frac{2}{n+1}\right)^{\frac{1}{n-1}}\left[\frac{n-1}{n+1}\right]}
$$

$$
\begin{equation*}
=A \sqrt{\frac{2 n}{n+1} \times \frac{P_{1}}{n_{1}}\left(\frac{2}{n+1}\right)^{\frac{2}{n-1}}} \tag{iii}
\end{equation*}
$$

1. We see from the above equation that is a convergent-divergent nozrie, the discharge depends upon Be area of nozerleathroat nod the ivital conditions of the stean (ie pressure p_{1} and volume v_{1}) It is independent of he exit conditiom of the steam. It is luve ebvion, that the Cisctagge remaies constint afivy the throat (if. in the divergent porion of the narzie).
2. The equations derived above art tur for gates also.

21.8. Valnes for Maximuan Discharge through a Nozale

In the last article we have derived a relation for the maximum discharge through a nozzie, i.e.

$$
m_{\text {mat }}=A \sqrt{\frac{2 n}{n+1} \times \frac{p_{1}}{v_{1}}\left(\frac{2}{n+1}\right)^{\frac{2}{n-1}}}
$$

Now we shall discuss the yalues of maximum dischage for the following three condition: :

1. When the strumi re initialls air sufuratiad

We know that for dry saturated steam, $n=1.135$. Therefore substituting the value of n in $1-$ relation for maximum discharge, we have

$$
m_{\text {rat }}=0.637 \mathrm{~A} \sqrt{\frac{p_{i}}{v_{i}}}
$$

We koobs that for supectieated soeam, $n=13$. Therefore subarituting the value of n in the relation for masimum discharge, we have

$$
m_{\text {exs }}=0.666 \mathrm{~A} \sqrt{\frac{p_{1}}{v_{1}}}
$$

3. Forgoses

We koow that for gaves, $n=1.4$. Therefore substituting the value of n in the relation for maximam discharge, we have

$$
m_{\text {mat }}=0.685 A \sqrt{\frac{p_{1}}{v_{1}}}
$$

Exauple 21.6. Dryair at a presrure of 12 bar and $300^{\circ} \mathrm{C}$ is eipanded isentropically ihrough a nozzle at a pressure, of 2 bar. Determine the marimum discharge through the nozzle of $150 \mathrm{~mm}^{2}$ area.

Solution. Given : $p_{1}=12$ bar $=12 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} ; T_{1}=300^{\circ} \mathrm{C}=300+273=573 \mathrm{~K} ; p_{2}=2 \mathrm{bar}$ $A=150 \mathrm{~mm}^{2}=150 \times 10^{-6} \mathrm{~m}^{2}$

Let $\quad v_{1}=$ Specific volune of air in $\mathrm{m}^{3} / \mathrm{kg}$.
We know that

$$
\begin{array}{ll}
\text { We know that } & p_{1} v_{1}=m R T_{1} \\
\therefore & v_{1}=\frac{m R T_{1}}{p_{1}}=\frac{1 \times 287 \times 573}{12 \times 10^{8}}=0.137 \mathrm{~m}^{3} / \mathrm{kg}
\end{array}
$$

We lnow that maximum discharge through the nozie.

$$
\begin{aligned}
m_{\text {mas }} & =0.685 \mathrm{~A} \sqrt{\frac{p_{1}}{\mathrm{v}_{1}}}=0.685 \times 150 \times 10^{-6} \sqrt{\frac{12 \times 10^{9}}{0.137}} \mathrm{~kg} / 5 \\
& =0.304 \mathrm{kgh} \mathrm{Ans}
\end{aligned}
$$

Example 21.7. Steam af a pressurre of 10 bar and 21IFC is supplied to a convergent divergent nozrle with a throat acea of $1500 \mathrm{~mm}^{2}$. The exit is below crivical pressure. Find the coefficient of discharge, Vi ihe flow is 7200 kg of steam per hour.

Solution. Given $; \rho_{1}=10 \mathrm{bar}=10 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} ; T_{1}=210^{\circ} \mathrm{C} ; A=1500 \mathrm{~mm}^{2}$ $z=1500 \times 10^{-5} \mathrm{~m}^{2}: m=7200 \mathrm{kgh}=2 \mathrm{~kg} / \mathrm{s}$

From steam tables, for superheatod steam, corresponding to a pressare of 10 bor and $210^{\circ} \mathrm{C}$, We find that specific volume of steam,

$$
v_{1}=0.2113 \mathrm{~m}^{3} / \mathrm{kg}
$$

We know that for superieated steam, $n=1,3$.
\therefore Maximum discharge, $m_{\max }=A \sqrt{\frac{2 n}{n+1} \times \frac{p_{1}}{v_{1}}\left(\frac{2}{n+1}\right)^{\frac{2}{n-1}}}$

$$
\begin{aligned}
& =1500 \times 10^{-6} \sqrt{\frac{2 \times 13}{1.3+1} \times \frac{10 \times 10^{5}}{0.2113}\left(\frac{2}{1.3+1}\right)^{\frac{7}{13-1}}} \mathrm{~kg} / \mathrm{s} \\
& =2.17 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

We know that coefficient of discharge

$$
=\frac{\text { Actual discharge }}{\text { Maximum disclurge }}=\frac{2}{2.17}=0.922 \mathrm{Ans} .
$$

Vole : The matimum discharge for supertitace ateam may abe be calculated by ssing the relation,

$$
m_{m}=0.666 \mathrm{~A} \sqrt{\frac{p_{1}}{v_{1}}}
$$

21.9. Values for Critical Pressure Rutio

We have also discussed in Art. 21.7 that the critical peessuee natio,

$$
\frac{p_{2}}{p_{1}}=\left(\frac{2}{n+1}\right)^{\frac{a}{n-1}}
$$

where

$$
p_{2} / p_{1}=\text { Cribical pressure ratio. }
$$

We shall now discuss the values of critical pressure ratio for the following cooditions :

1. When the stran is mitiofly suraraind

We know that for dry saharated steam, $n=1.135$,

$$
\therefore \quad \frac{p_{2}}{p_{1}}=\left(\frac{2}{1.135+1}\right)^{\frac{1.05}{1135-1}}=0.577 \text { or } p_{2}=0.577 p_{1}
$$

2. Where be stean ar initially superhented

We know that for superteated steam, $n=13$.

$$
\therefore \quad \frac{p_{2}}{p_{1}}=\left(\frac{2}{1.3+1}\right)^{\frac{13}{13-1}}=0.546 \text { or } p_{2}=0.546 p_{1}
$$

3. Whas the steam ir initimlly wet

It has been experimentally found that the critical peessure ratio for wet steam,

$$
\frac{p_{2}}{p_{1}}=0.582 \text { or } p_{2}=0.582 p_{1}
$$

, Fiur gases
We karow that for gaves, $n=1.4$.

$$
\therefore \quad \frac{p_{2}}{p_{1}}=\left(\frac{2}{1.4+1}\right)^{\frac{14}{1.4-1}}=0.528 \text { or } p_{2}=0.528 p_{1}
$$

21.15. Physical Significanse of Crilical Pressure Ratio

In the previous article, we discussed the values of critical pressure ratio for various forms of steam. But now we shall discuss the physical significance of the critical pressure ratio.

Now consider two vessels A and B connected by a convergent nozzle as shown in Fig. 21.A (a). Let the vessel A contains stearn at a high and secady pressure (p_{1}), and the vessel B contain steam at ancther pressure (p_{2}) which may be varisd at will.

First of all, ler the pressure (p_{2}) in the vessel B be made equal to the pressure (p_{9}) in the vessel A. In this case, there will be no flow of steam through the mozale. Now if the pressure (p_{2}) in the vessel B is gradually reduced, the discharge through the nozzle will increase accordingly as shown in Fig. 21,4 (b). As the pressure (p_{2}) in the vessel $B /$ approacbes the critical value, the rate of dischurge will also approach its maximum value. If the pressure (p_{7}) in the vessel B is further reduced, it will not increase the rate of dischurge. But the discharge will femain the same as that at critical peessare as shown in Fig. 21.4 (b). The ratio of exit pressure to the inlet pressure is called criticel pressire ratio.

Fig. 21.4
We know that the velocity of sterm at any section in the nozzio [Refer Art. 21.6, equation (jii)].

$$
\begin{equation*}
v_{1}=\sqrt{\frac{2 n}{n-1} \times p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right]} \tag{i}
\end{equation*}
$$

and the critical pressure ratio for maximum discharge,

$$
\frac{p_{2}}{p_{1}}=\left(\frac{2}{n+1}\right)^{\frac{a}{n-1}} \text { or }\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}=\frac{2}{n+1}
$$

Substituting this value in equation (f).

$$
\begin{align*}
& V_{2}=\sqrt{\frac{2 n}{n-1} \times p_{1} v_{1}\left[1-\frac{2}{n+1}\right]}=\sqrt{\frac{2 n}{n-1} \times p_{1} v_{1}\left[\frac{n+1-2}{n+1}\right]} \\
&=\sqrt{\frac{2 n}{n+1} \times p_{1} v_{1}}=\sqrt{\frac{2 n}{n+1} \times \frac{p_{1}}{p_{1}}} \tag{ii}\\
& \quad[\quad[(i)
\end{align*}
$$

We alvo know that for isentropic expansion,
or

$$
p_{1} v_{i}^{x}=p_{2} z_{1}^{n}
$$

$$
\frac{p_{1}}{p_{i}^{*}}=\frac{P_{2}}{P_{i}^{*}}
$$

$$
\ldots\left(\because v=\frac{1}{p}\right\}
$$

or

$$
\frac{1}{p_{1}}=\frac{1}{p_{2}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{a}}
$$

$$
\begin{aligned}
\therefore \quad \frac{p_{1}}{\rho_{1}} & =\frac{p_{1}}{p_{2}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{n}} \quad \quad \quad \text { (Mattiplying by } p_{1} \text {) } \\
& =\frac{p_{2}}{p_{1}} \times \frac{p_{1}}{p_{2}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1}{2}}=\frac{p_{2}}{p_{2}}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{1-n}{n}} \\
& =\frac{p_{3}}{p_{2}}\left(\frac{2}{n+1}\right)^{\frac{n}{n-1}} \cdot \frac{1-2}{n}=\frac{p_{2}}{p_{2}}\left(\frac{n+1}{2}\right) \cdots\left[\frac{p_{1}}{p_{1}}=\left(\frac{2}{n+1}\right)^{\frac{\pi}{n-1}}\right]
\end{aligned}
$$

Substinating, the value of p_{t} / p_{1}, in equation (ii),

$$
\begin{equation*}
v_{2}=\sqrt{2\left(\frac{n}{n+1}\right) \frac{p_{2}}{P_{2}}\left(\frac{n+1}{2}\right)}=\sqrt{\frac{n P_{2}}{P_{2}}} \tag{iii}
\end{equation*}
$$

This is the valoe of velocily of sound in the medium ti pessare p_{1} and is known as somic velocioy.
Nules: I. The critical pressure zives the velocity of veas at the throw equil to the velocity of sount
2. The flow in the convergent portios of the norale is subsweic and in the divergent portion it is supersonic.
3. Toincrease the velocity of stam above sonic velocity (opersonie) by expanting tueam below the critical pressure, the divergent gortion for the noozle is necessary-

21.11. Dianeters of Throat and Exit for Maximum Discharge

Coesider a convergend-divergeat nozzle discharging steam, as sbown in Fig. 21.5 (a),

(A)A-I grayh for a convergent-iveryent noaric.

Fig 215
Let

$$
\begin{aligned}
& p_{1}=\text { Initial pressure of steam, } \\
& h_{1}=\text { Entialpy or total heat of steam at inket. } \\
& p_{2}, b_{3}, h_{2}, h_{3}=\text { Corresponding valuesat threat and outlet, } \\
& c_{2}=\text { Dryness fraction ofsteam at throst, } \\
& V_{1}=\text { Velocity of veam at thront, } \\
& v_{n}=\begin{array}{c}
\text { Specific volumeof steam at throat corresponding } \\
\text { vo pocssurep, (fron steam tables). }
\end{array} \\
& \text { to pressurep, (from sleam tables). } \\
& A_{2}=\text { Area of throat, } \\
& x_{3}, V_{p}, v_{2}, A_{3}=\text { Cerrespooding values at exit, and } \\
& m=\text { Mass of steam discharged. }
\end{aligned}
$$

First of all, find the value of critical pressure (p_{2}) as discussed in Art 21.7.
Now complete the h-s diagram, as shown in Fig. 21.5 (b), for the expansion of stam throogh the convergent-divergent nozzle as divcussed below :

1. Fint of all, locase the point A for the initial conditions of tsean it is a poist, where the saturation line meets the initial poessure $\left(p_{1}\right)$ line.
2. Now traw a vertical line through A is moet the critical pressure $\left(p_{0}\right)$ line at 9 . This represents the throat of the nozzle,
3. Now extend the vertical line $A B$ to mees the outket pressire (p) line at C. This repesents the outlet of the nozzle.
4. Now tind the values of $h_{1}, h_{2}, h_{2}, r_{2}$ and r_{3} from the $h-s$ graph.

First of all, cossider the flow of steam from the inker to the throat. We know that:
Enthatphy or heat drop, $h_{02}=h_{1}-h_{2}$
\therefore Velocity of steam at throat,

$$
V_{2}=44.72 \sqrt{h_{a t}}
$$

(Neplecting friction)
We koow that mass of steam discharged per second,

$$
\begin{aligned}
m & =\frac{\text { Volume of stean flowing at throut }}{\text { Volume of } 1 \text { kg of steam at pressure } p_{2}} \\
& =\frac{A_{2} V_{2}}{b_{3}}=\frac{A_{2} V_{2}}{v_{2} v_{n}} \quad \quad \therefore\left(v_{2}=v_{2} v_{21}\right)
\end{aligned}
$$

Similarly, for exit cneditions,

$$
m=\frac{A_{1} V_{3}}{I_{3} V_{n 3}}=\frac{A_{2} V_{2}}{I_{2} V_{2}}
$$

Now knowing the valoe of $n 1$, we can determine the area or diameter of throat and exis.
Example 21.8. Sienm enters a groap of noczles of a xieqm turbine at 12 bar and $220{ }^{\prime} \mathrm{C}$ and lewivs at 1.2 bar. The serami narbine develngs 220 kW with a specific stemm comrumprion of 13.5 kg/Wh. If the dianoter of notaler at throot is 7 aimt, colcutate the a number of nozzles.

Solution. Given: $p_{1}=12$ bar ; $\tau_{1}=220{ }^{\circ} \mathrm{C} ; p_{1}=12 \mathrm{bar}$; Power developed $=220 \mathrm{~kW}$; $\mathrm{m}_{1}=135 \mathrm{kp} / \mathrm{WWh}: d_{2}=7 \mathrm{~mm}$

We know ihat for superheated steam, pressure of steam at throat,

$$
p_{2}=0.545 \pi_{1}=0.546 \times 12=6.552 \mathrm{tar}
$$

The Mollier diagram for the exponsionot steam through the nozzle is shown in Fig. 21.6.

From the Mollier diagran, we find that eathalpy of steam at entrance (i.e. at 12 bor and $220^{\circ} \mathrm{C}$),

$$
h_{1}=2860 \mathrm{k} / \mathrm{kg}
$$

Enthalpy of steam at throat (l.e. at pressure 6.552 tar).

$$
h_{2}=2750 \mathrm{kl} / \mathrm{kg}
$$

and dryness fraction of Ifeasu at throas,

Fe. 216

$$
x_{2}=0992
$$

From deam tables, we find that specific volume of dry saturated steatnat throat (h.e, at pressure 6552 bot).

$$
D_{s z}=0.29 \mathrm{ma}^{3} / \mathrm{kg}
$$

We keow that heat drop from entrance to thvoat,

$$
h_{A}=h_{1}-h_{2}=2860-2750=110 \mathrm{kI} / \mathrm{kg}
$$

\therefore Velocity of steam at throat,

$$
V_{2}=44.72 \sqrt{h_{s a}}=44.72 \sqrt{110}=470 \mathrm{~m} / \mathrm{s}
$$

Area of souste at throat.

$$
A_{2}=\frac{\pi}{4}\left(d_{3}\right)^{2}=\frac{\pi}{4} \times 7^{2}=38.5 \mathrm{~mm}^{2}=38.5 \times 10^{-6} \mathrm{mr}^{2}
$$

\therefore Mass flow rate per nozzle,

$$
m=\frac{A_{2} V_{1}}{\nabla_{1}}=\frac{A_{2} V_{2}}{x_{2} V_{f^{2}}}=\frac{38.5 \times 10^{-6} \times 470}{0.992 \times 0.29}=0.063 \mathrm{~kg} / \mathrm{s}
$$

We know that total mass flow rate

$$
=13.5 \times 220=2970 \mathrm{~kg} \mathrm{~h}=0.825 \mathrm{~kg} / \mathrm{s}
$$

\therefore Number of nozzles $=\frac{\text { Total mass flow rate }}{\text { Mass flow rate per nozzle }}=\frac{0.825}{0.063}=13.1$ say 14 Aas.
Example 21.9. Etimute ithe mass flow rute of steam in a nozule with the following data;
Inlet premure and temperamure $=10$ bar and $200^{\circ} \mathrm{C} ;$ Back presture $=0.5$ bar; Throat diameler $=12 \mathrm{~mm}$

Solution. Given : $p_{1}=10$ bar ; $T_{1}=200^{\circ} \mathrm{C} ; p_{1}=0.5 \mathrm{bar} ; d_{2}=12 \mathrm{~mm}$
We know that for superhented steam, pressure of steam st throat,

$$
p_{2}=0.546 p_{1}=0.546 \times 10=5.46 \mathrm{bar}
$$

The Mollier disgram for the expansion of steam through the nozzle is sbown in Fig 21.7. From the Mollier diagram, we find that
and

$$
\begin{aligned}
& A_{1}=2825 \mathrm{k} / \mathrm{kg} \\
& h_{2}=2710 \mathrm{k} / \mathrm{kg} \\
& x_{2}=0.982
\end{aligned}
$$

We know that heat drop.

$$
h_{d}=A_{1}-h_{2}=2825-2710=115 \mathrm{k} / / \mathrm{kg}
$$

Fig 21.7

From steam tables, corresponding to a pressure of 5.46 bar , we find that specific wolume of steam at throat,

$$
w_{f^{2}}=0.345 \mathrm{~m}^{3} / \mathrm{kg}
$$

Arca of nozzle it throat,

$$
A_{2}=\frac{\pi}{4}\left(d_{2}\right)^{2}=\frac{\pi}{4}(12)^{2}=113 \mathrm{~mm}^{2}=113 \times 10^{-5} \mathrm{~m}^{2}
$$

_. Mass flow rate of steam,

$$
\begin{aligned}
m & =\frac{A_{2} V_{2}}{x_{1} v_{R 2}}=\frac{113 \times 10^{-6} \times 480}{0.982 \times 0.345}=0.16 \mathrm{~kg} / \\
& =0.16 \times 3600=576 \mathrm{k} / 5 \mathrm{Ans} .
\end{aligned}
$$

Example 21.10. Dry saturated rteam enters a nazsle at a pretsure of 10 bar and wivt an ininial velocity of $90 \mathrm{~m} / \mathrm{s}$. The outlet presuure is 6 bar and the outlet velocity is 435 mb . The heat iont from the nozzle is $9 \mathrm{k} / \mathrm{kg}$ of steam fion.

Calculate the droness fraction and the area at the exit, if the area at the infet is $1256 \mathrm{~mm}^{2}$
Solution. Given : $p_{1}=10$ bar ; $V_{1}=90 \mathrm{~m} / \mathrm{s} ; p_{3}=6$ bar $; V_{3}=435 \mathrm{~m} V_{\mathrm{s}} ;$ Laces $=9 \mathrm{~kJ} / \mathrm{kg}$. $A_{1}=1255 \mathrm{~mm}^{2}=1256 \times 10^{-8} \mathrm{~m}^{2}$
Doymesis fraction of stram
Led

$$
x_{3}=\text { Dryness fraction of steam at the exit. }
$$

From steam tahlex, correspooding to a pressare of 10 bar, we lind that enthalpy of dry satarated steans,

$$
\kappa_{1}=2776.2 \mathrm{k} / \mathrm{kg} ; \text { and } v_{\mathrm{n}}=0.1943 \mathrm{~m}^{3} / \mathrm{kg}
$$

ant corresponding to a presture of 6 har, we find that

$$
\left.h_{\rho}=670.4 \mathrm{~kJ} / \mathrm{kg} ; h_{f \rho}=2085 \mathrm{k} \mathrm{I} / \mathrm{kg} ; \text { and } v_{f}\right)=0.3155 \mathrm{~m}^{7} / \mathrm{kg}
$$

We know that for a steady flow through the nozzle,

$$
\begin{aligned}
h_{1}+\frac{1}{1000}\left(\frac{V_{1}^{2}}{2}\right) & =h_{3}+\frac{1}{1000}\left(\frac{V_{3}^{2}}{2}\right)+\text { Losses } \\
h_{3} & =h_{1}+\frac{1}{2000}\left(V_{1}^{2}-V_{3}^{2}\right)-\text { Loses } \\
& =2776.2+\frac{1}{2000}\left[(90)^{2}-(435)^{2}\right]-9 \\
& =2776.2-99.6=26766 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

We also know that enthilpy of wet steam (h_{3}),

$$
\begin{aligned}
& 2676.6 & =h_{\rho}+x_{3} h_{99}=670.4+x_{3} \times 2085 \\
\therefore & x_{3} & =0.962 \text { Ans. }
\end{aligned}
$$

Arra at exif
Let $\quad A_{3}=$ Areaat exit in m ${ }^{2}$.
We knewe that $\frac{A_{1} V_{1}}{x_{1} v_{01}}=\frac{A_{1} V_{2}}{x_{3} v_{t 3}}$ or $\frac{1256 \times 10^{-5} \times 90}{1 \times 0.1943}=\frac{A_{1} \times 435}{0.962 \times 0.3155}$ $\ldots\left(\right.$ For dry satiratof stemen $\left.x_{1}-1\right)$
$\therefore \quad A_{3}=405 \times 10^{-6} \mathrm{~m}^{2}=406 \mathrm{~mm}^{2}$ Ans.
Example 21.11. Dry athurated steam at a pressure of 8 bar enters a convergent-divergent norble and leaves it at a presture of 1.5 bar, tf the flow is iseninopic, and ihe correspanding expansion index is 1.135 : find the ratio of cross-sectionai' area at exit und innoat for maximum discharge.

Solution. Given : $p_{1}=8$ bar $\div p_{3}=1.5$ bar ; $n=1.135$
Let $A_{3}=$ Cress-sectionalarea at dhroat,
$A_{3}=$ Cross-sectional ares at exit, and
$m=$ Mass of steam discharged per second.
We know that for dry saturated steam (or whea $n=$ 1.135), critical pressure ratio,

$$
\begin{aligned}
\frac{p_{2}}{p_{1}} & =0.577 \\
\therefore \quad p_{2} & =0.577 p_{1}=0.577 \times 8=4.616 \mathrm{har}
\end{aligned}
$$

Now complete the Mollier diagram for the expansion of steam through the nozile, as shown in $\mathrm{Fg}, 21.8$.

Fie. 218

From Mollier diagram, we find that

$$
h_{1}=2775 \mathrm{~kJ} / \mathrm{kg} ; h_{2}=2650 \mathrm{~kJ} / \mathrm{kg} ; h_{3}=2465 \mathrm{~kJ} / \mathrm{kg} ; x_{3}=0.965 ; \text { and } x_{3}=0.902
$$

From steam tables, we also find that the specific volume of steam at theoat corresponding to 4.616 tar.

$$
v_{\mathrm{s} 2}=0,465 \mathrm{~m}^{3} / \mathrm{kg}
$$

and specific vofume of steam at exit correspooding to i 5 bar,

$$
v_{e s}=1.159 \mathrm{~m}^{3} / \mathrm{kg}
$$

Heat drop between entrance and throm,

$$
h_{A}=h_{1}-h_{2}=2775-2650=125 \mathrm{k} / \mathrm{k}_{\mathrm{g}}
$$

\therefore Velocity of stam at throat,

$$
y_{2}=44.72 \sqrt{h_{A 2}}=44.72 \sqrt{125}=500 \mathrm{~m} / \mathrm{s}
$$

and

$$
\begin{align*}
& m=\frac{A_{2} V_{2}}{x_{2} v_{22}} \\
& A_{2}=\frac{m x_{2} v_{22}}{V_{2}}=\frac{m \times 0.965 \times 0.405}{500}=0,000786 \mathrm{~m}
\end{align*}
$$

Heat drop befween entrance and exit,

$$
h_{d s}=h_{1}-h_{3}=2775-2465=310 \mathrm{k} / \mathrm{kg}
$$

\therefore Velocity of steam at exit,

$$
V_{3}=44.72 \sqrt{h_{\mathrm{as}}}=44.72 \sqrt{310}=787.4 \mathrm{~m} / \mathrm{s}
$$

and
or

$$
\begin{align*}
& m=\frac{A_{2} V_{3}}{x_{1} v_{2}} \\
& A_{3}=\frac{m x_{1} v_{21}}{V_{3}}=\frac{m \times 0.902 \times 1.159}{787.4}=0.00133 \mathrm{~m} \tag{ii}
\end{align*}
$$

\therefore Ratio of cross-sectional area at exit and throas,

$$
\frac{A_{3}}{A_{2}}=\frac{0.00133 \mathrm{~m}}{0.000786 \mathrm{~m}}=1.7 \mathrm{Ans}
$$

Example 21.12. A convergens-divergent notzle is reyairad to discharge 2 kg of strum por
 hark presmure of f har. The expansion unto throat it iserishouc and the frictiona! repistance benween
 prenure of 4 bar, estim alte:

1. Suinable areas for he throat and ait bend 2. Overall efficiency of the razzle buad on the snthalyy drop berneen she artind inlet proscure and tenyprature and the esit prestare.

Solution. Given : $m=2 \mathrm{kj} / ; p_{1}=7 \mathrm{bar} ; T_{1}=180^{\circ} \mathrm{C} ; p_{1}=1 \mathrm{bar} ;$ Fictional resistance $=63 \mathrm{~kJ} / \mathrm{kg}$ of steam $; V_{3}=75 \mathrm{~m} / \mathrm{s}: p_{1}=4$ bor

1. Siuitabie areas for the throut and exit

Ixt

$$
\begin{aligned}
& A_{2}=\text { Area at the throat, and } \\
& A_{3}=\text { Area at the exit }
\end{aligned}
$$

The erparsion of steam drough the nozzle on the Mollier diagram is shown in Fig. 219. From the Mollier diagram, we find that
$h_{1}=2810 \mathrm{~kJ} / \mathrm{kg} ; h_{2}=2680 \mathrm{~kJ} / \mathrm{kg} ; h_{3}=2470 \mathrm{~kJ} / \mathrm{kg}:$ $x_{2}=0.97 i_{3}=0.934$

From steam tables, we also find that the specific vol. ume of steam at throat corresponding to 4 bar,

$$
v_{g^{2}}=0.462 \mathrm{~m}^{3} / \mathrm{kg}
$$

Fis 21.9
and specific volume of aseam corresponding to 1 bat,

$$
\nabla_{t s}=1.694 \mathrm{~m}^{\prime} / \mathrm{kg}
$$

We know that heat drop between entrance and throat,

$$
h_{a}=h_{1}-h_{2}=2810-2680=130 \mathrm{~kJ} / \mathrm{kg}
$$

\therefore Velocity of steam al throat,
and

$$
v_{1}=\sqrt{V_{1}^{2}+2000 h_{22}}=\sqrt{(75)^{1}+2000 \times 130}=515 \mathrm{~m} / \mathrm{s}
$$

$$
m=\frac{A_{1} V_{1}}{x_{2} v_{n 1}}
$$

$$
A_{7}=\frac{m x_{2} v_{12}}{V_{2}}=\frac{2 \times 0.97 \times 0.462}{515}=1.74 \times 10^{-3} \mathrm{~m}^{2}
$$

$$
=1740 \mathrm{~mm}^{2} \text { Ans. }
$$

Since there is a frictional resistance of $63 \mathrm{k} / \mathrm{kg}$ of steam between the throat and exit, therefore

$$
h_{3}-h_{7}=63 \text { or } h_{3} \approx h_{F}+63=2470+63=2533 \mathrm{kl} / \mathrm{kg}
$$

and heat drop between eatitance and exit,

$$
h_{n}=h_{1}-h_{3}=2810-2533-277 \mathrm{k} / \mathrm{kg}
$$

\therefore Velocity of stean at exiy,

$$
v_{3}=\sqrt{v_{1}^{2}+2000 \hbar_{25}}=\sqrt{(75)^{2}+2000 \times 277}=748 \mathrm{~m} / \mathrm{s}
$$

and

$$
\begin{aligned}
m & =\frac{A_{3} V_{3}}{x_{1} v_{e}} \\
A_{1} & =\frac{m x_{3} v_{2}}{V_{1}}=\frac{2 \times 0.934 \times 1.694}{748}=4.23 \times 10^{-3} \mathrm{~m}^{3} \\
& =42.30 \mathrm{~mm}^{2} A_{\mathrm{ns}} .
\end{aligned}
$$

2. Oixnult effoingm y if the nnatle

We know that owsall efficierky of the nuzzic,

$$
\begin{aligned}
\eta & =\frac{\text { Useful heal drop }}{\text { Isentropic heat drop }}=\frac{h_{3}-h_{3}}{h_{3}-h_{3}} \\
& =\frac{2810-2533}{2810-2470}=0.815 \text { or } 81.5 \% \text { Ans. }
\end{aligned}
$$

Example 21.13. Stom at a presure of 10 bar and 0.9 dry dibcharges itrough a notzle haring thenat area if $450 \mathrm{~mm}^{2}$. If the bock pressine is I bar. find 1 . final velacity of the steam, and 2. croses sectional areat of the inozle at erit for nuximam discharge.

Solution. Given : $p_{1}=10$ bar : $x_{1}=0.9: A_{2}=450 \mathrm{~mm}^{2}=450 \times 10^{-4} \mathrm{~m}^{2}: \rho_{3}=1$ bar Fiund woblaty of trem

Let $V_{s}=$ Final relocity is steam
We knswathat for nsaximum distharge, presure of steam at throat (for wet steam),

$$
p_{2}=0.582 p_{1}=0.582 \times 10=5.82 \mathrm{bur}
$$

Now complete the Mollier diagram for the expansion of steam through the nozale as shown in Fig. 21.10.

From the Mollicr diagrant, we find that

$$
\begin{aligned}
& h_{1}=2580 \mathrm{kM} / \mathrm{kg} ; h_{2}=2485 \mathrm{~kJ} / \mathrm{kg}: \\
& h_{3}=2225 \mathrm{k} / \mathrm{kg} ; x_{2}=0.87 ;
\end{aligned}
$$

and

$$
x_{1}=0.8
$$

Fiy. 21.10
\therefore Heat drop from entrance to ctit,

$$
h_{i l}=h_{1}-h_{3}=2580-2225=355 \mathrm{~kJ} / \mathrm{kg}
$$

and velocity of steam, $\quad V_{3}=44.72 \sqrt{h_{6 j}}=44.72 \sqrt{355}=842.6 \mathrm{mts}$ Ans.
Cress-sectiomal arean af the mozzle at esif
Let

$$
A_{3}=\text { Cross-sectional area of the nozale at exit. }
$$

Fromsteam tables, we find that specific volurne of steam at throat corresponding to a pressure of 5.82 har .

$$
\bullet_{22}=0.3254 \mathrm{~m}^{1} / \mathrm{kg}
$$

and specific volume of steam at exit comrespooding to a pressure of I bat,

$$
v_{n}=1.694 \mathrm{~m}^{3} / \mathrm{kg}
$$

We know that heat drop from entrance to thour,

$$
h_{a n}=h_{1}-h_{2}=2580-2485=95 \mathrm{~kJ} / \mathrm{k}_{\mathrm{L}}
$$

c. Velocity of stean at hroant,

$$
V_{1}=44.72 \sqrt{h_{n e}}=44.72 \sqrt{95}=436 \mathrm{~m} / \mathrm{s}
$$

*Since the mass flow rate is same at throat and exit, therelore

$$
\begin{aligned}
\frac{A_{2} V_{2}}{x_{2} v_{n}} & =\frac{A_{3} V_{2}}{x_{3} V_{n}} \\
\frac{450 \times 10^{-6} \times 436}{0.87 \times 0.3254} & =\frac{A_{3} \times 8426}{0.8 \times 1.694} \\
\therefore \quad A_{3} & =1114 \times 10^{-5} \mathrm{~m}^{2}=1114 \mathrm{~mm}^{3} \text { Ans. }
\end{aligned}
$$

Example 21.14. A gar exponds int a convergent divergent nozle from 5 bar to $/ 5$ bur, the initial temperature being $700^{\circ} \mathrm{C}$ and the nozzle officiency is 90%. Alt the lasses take place after the throat. For I kg's mats flow rate of the gas, find throat and exit arras.

Take $\mathrm{n}=1.4$ and $R=287 \mathrm{Jkg} R$.
Solution. Given : $p_{1}=5$ bar ; $p_{3}=1.5$ bar ; $T_{1}=700^{\circ} \mathrm{C}=700+273=973 \mathrm{~K} ; K=90 \%$ $=0.9 ; m=1 \mathrm{~kg} / \mathrm{s} ; n=1.4 ; R=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
Throat area
We know that pressure at the throat,

$$
p_{2}=0.528 p_{\mathrm{t}}=0.528 \times 5=2.64 \mathrm{bar}
$$

and heat drop between entrance and throat,

$$
\begin{align*}
h_{n}=h_{1}-h_{2} & =\frac{n}{n-1} \times p_{1} v_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right] \tag{RelerAn:21.8}\\
& =\frac{n}{n-1} \times m R T_{1}\left[1-\left(\frac{p_{2}}{p_{1}}\right)^{\frac{n-1}{n}}\right] \\
& =\frac{1.4}{1.4-1} \times 1 \times 287 \times 973\left[1-\left(\frac{2.64}{5}\right)^{\frac{14-1}{14}}\right] 1 / \mathrm{kg} \\
& =163220 \mathrm{Jkg}=163.22 \mathrm{~kJ} / \mathrm{kg}
\end{align*}
$$

\therefore Velocity of gas at the throat,

$$
v_{1}=44.72 \sqrt{h_{n 2}}=44.72 \sqrt{163.22}=571.3 \mathrm{mls}
$$

Let

$$
T_{1}=\text { Temperature of gas at the throat, }
$$

$$
v_{2}=\text { Volume of gas at the theoat, and }
$$

* This may also be found as discussed telow

We kiow dhat mass of steam dielanged per socond,

Similaty,

$$
m=\frac{A_{2} V_{2}}{N_{2} B_{f 2}}=\frac{450 \times 10^{-2} \times 436}{087 \times 0.3254}=0.693 \mathrm{~kg}
$$

$$
\begin{aligned}
0691 & =\frac{A_{1} V_{1}}{x_{2} V_{2}}=\frac{A_{1} \times 812.6}{0.8 \times 1.674}=6215 A_{3}, \\
A_{2} & =1114 \times 10^{-t} \mathrm{~m}^{2}=1114 \mathrm{~mm}^{2} \mathrm{Ans}
\end{aligned}
$$

$$
A_{1}=\text { Area at the throat. }
$$

We know that

$$
\frac{T_{1}}{T_{2}}=\left(\frac{p_{1}}{p_{2}}\right)^{\frac{\pi .1}{*}}=\left(\frac{5}{2.64}\right)^{\frac{1.4-1}{1.4}}=1.2
$$

and

$$
\therefore \quad T_{2}=T_{1} / 1.2=973 / 1.2=810.8 \mathrm{~K}
$$

or

$$
\begin{aligned}
p_{2} v_{2} & =m R T_{2} \\
v_{2} & =\frac{m R T_{2}}{p_{2}}=\frac{1 \times 287 \times 810.8}{2.64 \times 10^{5}}=0.88 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

We know that $\quad m=\frac{\Lambda_{2} V_{2}}{D_{2}}$
or

$$
A_{2}=\frac{m v_{2}}{V_{2}}=\frac{1 \times 0.88}{5713}=1.54 \times 10^{-3} \mathrm{~m}^{2}=1540 \mathrm{~mm}^{2} \text { Ans. }
$$

Eut orce

We know that heat drop between entrance and exit,

$$
\begin{aligned}
h_{n} & =h_{1}-h_{3}=\frac{n}{n-1} \times m R T_{1}\left[1-\left(\frac{p_{4}}{p_{1}}\right)^{\frac{2-3}{n}}\right] \\
& =\frac{1.4}{1.4-1} \times 1 \times 287 \times 973\left[1-\left(\frac{15}{5}\right)^{\frac{14-1}{14}}\right] 1 / \mathrm{kg} \\
& =284420.1 / \mathrm{kg}=284.42 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

\therefore Velocity of gas at exit,

$$
\begin{array}{r}
V_{3}=44.72 \sqrt{K K_{0 n}}=44.72 \sqrt{09 \times 284.42}=715.5 \mathrm{~m} / \mathrm{s} \\
\ldots(\text {) loses takes place alier throal }
\end{array}
$$

Let $\quad T_{Y}=$ Temperature of gas at exit whea friction is nezlected,

$$
T_{5}=\text { Temperature of gas at exit when friction is considered, }
$$

$$
v_{3}=\text { Volume of gas at exit, and }
$$

$$
A_{3}=\text { Aresat exit. }
$$

We know that

$$
\begin{aligned}
& \text { We know that } \frac{T_{1}}{T_{5}}=\left(\frac{p_{1}}{p_{3}}\right)^{\frac{2-1}{2}}=\left(\frac{5}{1.5}\right)^{\frac{14-1}{14}}=1 . A 1 \\
& \therefore \\
& T_{y}=T_{1} / 1.41=973 / 1.41=690 \mathrm{~K}
\end{aligned}
$$

Since ble rozzle efficiency is 90% (i.e. $K=0.9$), therefore heat drop lost in friction is

$$
=(1-K) h_{\rho}=(1-0.9) 284.42=28.442 \mathrm{kl} / \mathrm{kg}
$$

\therefore Increase in temperature due to finction

$$
\begin{aligned}
& =+28.442 \mathrm{~K} \\
\therefore \quad T_{3} & =690+28.442 \Rightarrow 71 \mathrm{~B} .442 \mathrm{~K}
\end{aligned}
$$

and

$$
\begin{aligned}
D_{3} v_{3} & =m R T_{3} \\
D_{3} & =\frac{m R T_{3}}{P_{3}}=\frac{1 \times 257 \times 718.442}{1.5 \times 10^{5}}=1.375 \mathrm{~m}^{3} / \mathrm{kg} \\
\text { We know that } m & =\frac{A_{3} V_{3}}{v_{3}} \\
A_{3} & =\frac{m v_{3}}{V_{3}}=\frac{1 \times 1375}{7155}=1.92 \times 10^{-3} \mathrm{~m}^{2}=1920 \mathrm{~mm}^{2} . A n c
\end{aligned}
$$

21.12. Sugersaturated Flow or Metashable Flow through Nozele

When dry satarated steam is expanded sdiabatically or isentropically, it becomes wet and is thowe by a vertical line on Mollier diagratu.

Fig 21. It supcristurated flow on T, and $k=$ diagram
We have already discussed that expansion of steam in an ideal nozzle is isentropic, which is accompunied by coedensation process. If the steam is initially superheated, the condensation should start after it has become dry saturited. This is possible when the steam has proceeded through some distance in the nozzle and in a short intervid of time. But from practical point of view, the steam has a great velocity (sometimes sonic and even supersonic). Thus the phenomenon of condensation does not take place at the expected rate. As a result of this, equilibrium between the liquid and vapour phuse is delayed and the seream continues to expand in a dry state. The stenm in such a set of coodition, is said to be supersaturated or in metastable stare. It is also called supercooled steam, as its temperature at any pressure is less than the saturation temperature corresponding to the pressure. The flow of supensaturated steam, through the nozzle is called rupersanarated flow or metuatathe flow.

[^0](: Sp heit is taken as I kilng X)

Expenments of supersaburated flow of steam have shown that there is a limit to which the supersaterastod flow is possible. This limit is represented by *Wilson line on $T-3$ and h - 5 diagram as shown in Fig 21.11 (a) and (b) respectively. It may be noted that the Willson line closely follows the 0.97 dryness fraction lise. Beyond this Wilson line, there is no sapersaturation. The steam wuddenly condenses and restores its normal equilibrium state.

In Fig. 21.11 (b) is sbown the isentropic exparsion of steamin a nozale. The point A represents the position of initial dyy satureted steam at pressure p_{l}. The line $A C$ represents the isentropic expanaion of steam in the supersaturated region. The metastable state (point C) is cotained by drawing a vertical lise through A to meet the Wilson line. At C, the steam condenses suddenly. The line $C D$ represents the condersation of steam at constant enthalpy. The point D is oblained by drawing a hectizontal line through C to meet the throus pressure (p_{2}) of the nozzle. The line D F represents the isentropic expansion of steam in the divergent portion.

Notes: 1. The same theory if applicable, if se team is initiaily superteated.

2. The difference of supersairaied lemperahurt and saturation temperature at that peessure is known as deger af wadercpoling. Mathematically, degree of undetwoling

$$
=T_{2}-T_{2}^{\prime}
$$

3. The ratio of presures comesponding to terperioures T_{1} and τ_{1}^{\prime} is hnown as dratre of oupersahuraDion, Mathematically, degree of supersaturation

$$
=\frac{\text { Pressure cocresponding to } T_{2}}{\text { Pressure comesponding to } T_{z}^{\prime}}=\frac{p_{2}}{n_{2}^{\prime}}
$$

4. The following relucions may be used in solving problem on sopersalunated flow.

$$
\text { (i) } v=\frac{0.0023(h-1943)}{p} \text { (ii) } p^{13}=\text { Conusas ; and (iii) } \frac{\overrightarrow{T^{1 / 3}}}{p}=\text { Constant }
$$

where

$$
\begin{aligned}
& v=\text { Volume of steam in } \mathrm{m}^{2} \mathrm{~kg} . \\
& r=\text { Phasure of steam in har, } \\
& h=\text { Estalyy or total heat of steam in } \mathrm{ki} / \mathrm{kg} \text {. ned } \\
& T=\text { Absolace lempensure of supersaturated steam is } \mathrm{K} .
\end{aligned}
$$

21.13. Effects of Supersaturation

The following effects in a nozzle, in which supersaturation occurs, are important from the subject point of view;

1. Sisce the condensation does not take place daring supersatursted expansion, so the temperatare an which the sppersatiration occurs will be less than the saturation temperature corrssponding to the pressure. Therefore, the density of supersaturated steam will be more** than for the equilitriem conditions, which gives the increase in the mass of steam discharged.
2. The supersaturation increases the entropy and specific volume of the steam.
3. The supersaturation reduces the beat drop (for the same pressure limits) below that for thermal equilitrium. Hence the exit velocity of the steam is reduced.
4. The supersaturatios increases dryness fraction of steam.

Example 21.15. The dry tanhrated stram is expanded in a natole from pressure of 10 bar to a pressure of 5 bar: If the expansion is supersaturuted, find : I. the degree of undercooling; and 2 . the degree of supersaturation.

[^1]Solution. Given : $p_{1}=10$ bar : $p_{2}=5$ tar

1. Drarre of ionderconling

From steam tables, corresponding to a pressure of 10 bar, wo find that the initial tempecature of steam,

$$
T_{1}=1799 \mathrm{C}=179.9+273=452.9 \mathrm{~K}
$$

Let

$$
T_{2}^{\prime}=\text { Teneperatureat which supersaturation occurs. }
$$

We know that for supersatarated expansion,

$$
\begin{aligned}
\frac{P_{1}}{\left(T_{1}\right)^{103}} & =\frac{P_{2}}{\left(T_{2}\right)^{133}} \circ \frac{T_{2}^{\prime}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\mathrm{m31}}=\left(\frac{5}{10}\right)^{313}=0.852 \\
\therefore \quad T_{2}^{\prime} & =T_{1} \times 0.852=4529 \times 0.852=385.9 \mathrm{~K} \\
& =3859-273=112.9^{\circ} \mathrm{C}
\end{aligned}
$$

From steam tables, corresponding to a pressure of 5 bar, we find that the saturation temperature,

$$
T_{2}=151.9^{\circ} \mathrm{C}
$$

\therefore Degree of undercooling $=I_{2}-T_{2}^{\prime}=151.9-1129=3 F \mathrm{C}$ Ans.
2. Degrec of sipperscturntiou

From steam tables, corresponding to a temperature of $112.9^{\circ} \mathrm{C}$, we find that

$$
P_{2}^{\prime}=1.584 \mathrm{bar}
$$

\therefore Degree of supersaturation

$$
=p_{2} / p_{2}^{\prime}=5 / 1.584=3.16 \mathrm{Ans}
$$

Example 21.16. Find the percentage increase in divcharge from a convergent-divergent noule expanding steam from 8.75 bar dry to 2 bar, when; 1. the expansion is taking place under thermal equilihrium, and 2 , the steam is in metastable state during part of its expansion.

Take ares of nouzle as $2500 \mathrm{~min}^{2}$.
Solation. Given : $p_{1}=8.75$ bar ; $p_{2}=2$ bar: $A_{2}=2500 \mathrm{~mm}^{2}=2500 \times 10^{-6} \mathrm{~m}^{2}$

1. Maus of steam discharged when the eypumsion is amder thermal equibibriaum

Let $\quad m_{1}=$ Mass of steam discharged.
The expansion of steam under conditions of *ibermal equilibrium is shown on Mollicr diagram as in Fig. 21.12

From Mollier diagram, we lind that

$$
h_{1}=2770 \mathrm{~kJ} / \mathrm{kg}: h_{2}=2515 \mathrm{~kJ} / \mathrm{kg} ; \text { and } x_{2}=0.91
$$

From steam tables, at a pressure of 2 bar, we find that the specific volume of steam at exit,

$$
v_{v y}=0.885 \mathrm{~m}^{3} / \mathrm{kg}
$$

Fig. 21.12

[^2]We know that hest drop from inlet to exit,

$$
h_{a}=h_{1}-h_{2}=2770-2515=255 \mathrm{k} / \mathrm{kg}
$$

二 Velocity of steam at exit,
and

$$
V_{1}=44.72 \sqrt{h_{a}}=44.72 \sqrt{255}=714 \mathrm{mis}
$$

$$
m_{1}=\frac{A_{2} V_{2}}{v_{2}}=\frac{A_{2} V_{2}}{x_{2} v_{n}}=\frac{2500 \times 10^{-6} \times 714}{0.91 \times 0.885}=2.21 \mathrm{kgjs} \mathrm{Ans}
$$

2. Mass af stean discharged when it is in 'melatsable stave

Let $\quad m_{2}=$ Mass of steam discharged.
We k.ow that volume of steam at inlet,

$$
v_{1}=\frac{0.0023\left(h_{1}-1943\right)}{p_{i}}=\frac{0.0023(2770-1943)}{8.75}=0.217 \mathrm{~m}^{3} / \mathrm{kg}
$$

and volume of steam at exit,

$$
v_{2}=v_{1}\left(\frac{p_{1}}{p_{2}}\right)^{133}=0.217\left(\frac{8.75}{2}\right)^{1 / 3}=0.675 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\cdots\left(\because p_{1} v_{1}^{U 3}=p_{2} \theta_{3}^{\theta_{1}}\right)
$$

We know that volume of steam at exit $\left(v_{2}\right)$,

$$
0.675=\frac{0.0023\left(h_{2}-1943\right)}{p_{2}}=\frac{0.0023\left(h_{2}-1943\right)}{2}
$$

$$
\therefore \quad h_{2}=2530 \mathrm{kl} / \mathrm{kg}
$$

We know that heat drop from inlet to exit,

$$
h_{a}=h_{1}-h_{2}=2770-2530=240 \mathrm{~kJ} / \mathrm{kg}
$$

\therefore Velocity of steam at exit,
and

$$
V_{2}=44.72 \sqrt{h_{a}}=44.72 \sqrt{240}=693 \mathrm{~m} / \mathrm{s}
$$

$$
m_{2}=\frac{A_{2} V_{2}}{v_{2}}=\frac{2500 \times 10^{-6} \times 693}{0.675}=2.57 \mathrm{~kg} / \mathrm{s} \text { A15. }
$$

\therefore Percentage increase in discharge

$$
=\frac{m_{2}-m_{1}}{m_{1}}=\frac{2.57-2.21}{2.21}=0.163 \text { or } 16.3 \% \text { Ans. }
$$

21.14. Stecam Injector

The priaciple of a steam nocale may also be applied to a steam injector. It utilises the kinefic energy of a steum jet for increasing the pessure and velocity of water. It is mostly used for forcing the feed water into steam boilers under pressure. The action of a steam injector is shown in Fig. 21.13.

The steam from the boiler is expanded to a high velocity by passing it through a convergent nozzle A. The sveam jet enters the mixing cone and imparts its momentum to the insoming water supply from the feed tank** The cold water causes the steam to condense. The resulting jet at \boldsymbol{B},

[^3]fomed by the steam and water is at atmospheric pressure, and has a large velocity. The mixture then enters delivery pipe at C through a diverging cone or diffuser, in which the kinetic energy is reduced and converted into pressure entrgy. This peessare energy is sufficient to overcome the boiler pressare

Fig 21.13 Steamiajector
and to lift the water through a height H_{2}. The pressere of water on leaving the delivery pipe must be about 20% hijper than the boiler pressure in order to overcome all resistances. The gap between the mixing cone and diverging cone is provided with an outlet through which any excess water may overflow during the starting of the injector.

21.15. Stemm Injector Calculations

The following calculations of a stearn injector are important from the subject point of view :

1. Amount of water injectrd

Let $\quad m_{\sim}=$ Mass of water entering the mixing cone in $\mathrm{kg} / \mathrm{kg}$ of steam,
$V_{y}=$ Velocity of steam leaving the converging cone of nozzle,
$V_{-}=$Velocity of water entering the mixing cone, and
$V_{n}=$ Velocity of the mixture leaving the mixing cone.
According to the principle of conservation of mamentum,
Monentam of steam + Momenturn of waler $=$ Morsentum of mixture
or

$$
\begin{equation*}
I \times V_{s}+m_{\infty} V_{*}=\left(1+m_{\infty}\right) V_{m}=V_{m}+m_{n} V_{m} \tag{1}
\end{equation*}
$$

$$
V_{s}-V_{m}=m_{m}\left(V_{m}-V_{m}\right)
$$

$$
\therefore \quad m_{\infty}=\frac{\left(V_{s}-V_{m}\right)}{\left(V_{m}-V_{\infty}\right)} \mathrm{kg} / \mathrm{kg} \text { of steam }
$$

Nute : In case be food tank is below the level of ibe skam injector, tice equation 60 may be wriaen at:
or

$$
\begin{aligned}
& \left(\times V_{*}-m_{\sim} V_{*}=\left(1+m_{\infty}\right) V_{\infty}\right.
\end{aligned}
$$

2. Vefocity of stemm Iening the mozle

Let $\quad p_{1}=$ Initial pressure of steam,
$P_{2}=$ Pressure of steam leaving the nozzle at A, and
$h_{d}=I$ sentropic heat drop.
\therefore Velocity of stean leaving the nozzle,

$$
v_{1}=44.72 \sqrt{h_{d}}
$$

3. Valaity of water entering the miting cone

Let $\quad H_{1}=$ Height of water in the foed tank from the level of steam injecton
\therefore Velocity of water entering the mixing cone,

$$
V_{*}=\sqrt{2 g H_{1}}
$$

1) Vrivir ut mature leovink the miving tone

Let $\quad p_{1}=$ Pressure of steam in the boiler in bar,
$P_{n}=$ Pressure of the mixture leaving the mixing cone at B in bar,
$\rho=$ Density of the mixtore at B in $\mathrm{kg} / \mathrm{m}^{3}$, and
$V_{m}=$ Velocity of mixture at B.
\therefore Total energy per kg of water at \bar{B}

$$
\begin{equation*}
=\frac{10^{5} p_{m}}{\rho}+\frac{V_{m}^{2}}{2}(i \hbar \text { joules }) \tag{i}
\end{equation*}
$$

This energy must be sufficient to lift the water through a height H_{2} metres and inject it into se boiler. The final pressure head on leaving at C, must be somewhat greater than the height H_{2} plus ie boiler pressure. If H is the necessary excess head in metres, then

Total energy per kg of water at B

$$
=\frac{10^{3} p_{1}}{p}+g\left(H_{2}+H\right)(\text { in } j o d l e s)
$$

Equating equations (i) and (ii),

If

$$
\begin{align*}
\frac{10^{5} p_{a}}{\rho}+\frac{V_{m}^{2}}{2} & =\frac{10^{3} p_{1}}{P_{0}}+g\left(H_{2}+H\right) \\
V_{n} & =\sqrt{\frac{2 \times 10^{3}\left(p_{1}-p_{m}\right)}{\rho}+2 g\left(H_{2}+H\right)} \tag{iii}
\end{align*}
$$

We have already discussed that the pressure of the misture lesving the mixing cone is itmospheric. Therefore, taking the valae of p_{m} as 1.013 bar and ausunuing the density of the mixtare as $1000 \mathrm{~kg} / \mathrm{m}^{1}$ (equal to densily of water), we get

$$
\begin{aligned}
V_{n} & =\sqrt{\frac{2 \times 10^{3}\left(p_{1}-1.013\right)}{1000}+2 g\left(H_{2}+H\right)} \\
& =4.43 \sqrt{10.2\left(p_{1}-1.013\right)+H_{2}+H}
\end{aligned}
$$

Note: If V_{d} is the velocity in be delvery ploc, then

$$
H=\frac{V_{q}^{2}}{2 g}
$$

5. Nozzle arem:

Let
$A_{a}=$ Area of steam nocule at A_{1}
$A_{k}=$ Area of combining nozzle (or mixing cone) at B_{1}
$V_{z}=$ Velofty of steam leaving the converging cone,
$v_{a}=$ Specific volume of steam after expansion in nozzle at A,
$m=$ Mass of water required to be delivered in kg / s, and
$m_{w}=$ Mass of water entering the mixing cone in $\mathrm{kg} / \mathrm{kg}$ of steam.
\therefore Mass of steam supplied,
or

$$
\begin{aligned}
& m_{s}=\frac{A_{e} V_{s}}{v_{e}}=\frac{m}{m} \\
& A_{e}=\frac{m}{m_{e}} \times \frac{v_{e}}{V_{s}}
\end{aligned}
$$

Also

$$
\begin{aligned}
m_{s}+m & =A_{\Delta} V_{m} \rho \\
A_{b} & =\frac{m_{1}+m}{1000 V_{m}}=\frac{m\left(1+\frac{1}{m_{m}}\right)}{1000 V_{m}}
\end{aligned}
$$

or

$$
\cdots\left(1 \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\right)
$$

Hent balance per ig of neam
Let
$h=$ Eathalpy or total heat of iteam ectering the injector in kJ ,
$t_{w}=$ Temperature of water in feed tank in ${ }^{\circ} \mathrm{C}$,
$h_{\text {/ur }}=$ Sensible hest of water supplied to the injector, corresponding to a temperature of t , in $\mathrm{E} / \mathrm{M} \mathrm{Kg}$.
$t_{v}=$ Temperature of water leaving the mexing cone at B in ${ }^{\circ} \mathrm{C}$, and
$h_{p m}=$ Sensible heat of water leaving the mixing cone as B, correspooding to a temperature of t_{∞} in $\mathrm{kJ} / \mathrm{kg}$.
Then heal supplied in steam + Heat supplied in water + Kinetic energy of waser
$=$ Heat in mixture + Kinetic eaergy of mixtare

$$
h+m_{-} h_{p} \pm \frac{m_{-} V_{v}^{2}}{2000}=\left(1+m_{\nu}\right) h_{p_{m}}+\frac{\left(1+m_{q}\right) V_{m}^{2}}{2000}
$$

From this equation, the value of h_{j} may be deternined and hence the temperature of the mixtare t_{n} is known.
Note: In the abore equation pler sign is used when feed tark is above the level of the steam injector, while negative sign is uied when it is below the level of injector.

Example 21.17. An injecior is required to deliver 120 kg of water per minule from a lank, whase constant water level is 3 mbelow the level of injector, into a boiler in which the steam pressure is 15 bor. The water level in the boiler is 0.7 metre abowe the level of the injector. The steam for the injector is taken frow the same boiler and it is arsumed so be dry and saturated. The pressure of steam leaving steam nausle is 0.6 timer that of the supply pressure. The temperature of the water in thie feed tank is $25^{\circ} \mathrm{C}$. Uf the velocity in the delivery pipe is $15 \mathrm{~m} / \mathrm{s}$, find :

1. Mass of water injected per kg of atham, 2. Area of miuing cone, 3. Area of strom notzie, and 4. Temperature of water leaving the iniersor

Stewm Nozles

Solutiun.Given : $m=120 \mathrm{~kg} / \mathrm{min} n 2 \mathrm{~kg} / \mathrm{s}: \mathrm{H}_{3}=3 \mathrm{~m}$ below the level of injector : $p_{1}=15 \mathrm{bar}$: $H_{1}=0.7$ m above the level of injector ; $p_{2}=0.6 p_{1}=0.6 \times 15=9 \mathrm{bar} ; t_{w}=25^{\circ} \mathrm{C} ; V_{d}=15 \mathrm{~m} / \mathrm{s}$

1. Mass of water itjecieid per kg of sinwm

From Mollier chart, the isentropic heat drop between pressure 15 har dry and 9 bar,

$$
h_{d}=h_{1}-h_{2}=2795-2700=95 \mathrm{k} / \mathrm{kg}
$$

and diryness fraction of steam after expansion,

$$
x_{3}=0.965
$$

We know that velocity of steam leaving the norzle,

$$
v_{s}=44.72 \sqrt{k_{u}}=44.72 \sqrt{95}=436 \mathrm{~m} / \mathrm{s}
$$

We know that velocity of water embling the mixing cone,

$$
V_{\mathrm{o}}=\sqrt{28 H_{1}}=\sqrt{2 \times 9.81 \times 3}=7.67 \mathrm{~m} / \mathrm{s}
$$

and velocity of mixtura leaving the mixing conc,

$$
\begin{aligned}
& V_{\sim}=4.43 \sqrt{10.2\left(p_{1}-1.013\right)+H_{2}+H} \\
&=4.43 \sqrt{10.2(15-1.013)+0.7+11.47}=55 \mathrm{~m} / \mathrm{s} \\
& \qquad \quad\left[\because H=\frac{v_{i}^{\mathrm{d}}}{2 g}=\frac{15^{2}}{2 \times 9.81}=11.47 \mathrm{~m}\right]
\end{aligned}
$$

\therefore Mass of water injected per kg of sseam,

$$
m_{m}=\frac{V_{s}-V_{m}}{V_{m}+V_{m}}=\frac{436-55}{55+7.67}=6.08 \mathrm{~kg} \text { Ans }
$$

2. Atrar of mixitg cone

We know that arra of the mising cone

$$
\begin{aligned}
A_{b} & =\frac{+m\left(1+\frac{1}{m_{*}}\right)}{1000 V_{m}}=\frac{2\left(1+\frac{1}{6.08}\right)}{1000 \times 55}=423 \times 10^{-5} \mathrm{~m}^{2} \\
& =42.3 \mathrm{~mm}^{2} \text { Ans. }
\end{aligned}
$$

3. Arer of strmwnetle

From steam tables, corresponding to a pressure of 9 bar, we find that specific volume of stesm,

$$
v_{s 4}=0.2148 \mathrm{~m}^{3} / \mathrm{kg}
$$

We know that area of steam nozzle;

$$
\begin{aligned}
A_{a} & =\frac{m}{m_{w}} \times \frac{v_{d}}{V_{s}}=\frac{m}{m_{s}} \times \frac{x_{1} v_{s i}}{V_{t}}=\frac{2}{6.08} \times \frac{0.965 \times 0.2148}{436} \\
& =156 \times 10^{-4} \mathrm{~m}^{3}=156 \mathrm{~mm}^{2} \text { Anc. }
\end{aligned}
$$

4. Tengrerature ef water haning the ingeroor

From steam tables, corresponding to a temperature of $t=25^{\circ} \mathrm{C}$, we find that

$$
h_{\% / 0}=104.8 \mathrm{kI} / \mathrm{kg}
$$

We know that $h_{1}+m_{v} h_{*}-\frac{m_{*} V_{*}^{2}}{2000}=\left(1+m_{v}\right) h_{j_{n}}+\frac{\left(1+m_{*}\right) v_{-}^{2}}{200}$

$$
\begin{aligned}
2795+6.08 \times 104.8-\frac{6.08(7.67)^{2}}{2000} & =(1+6.08) h_{/ \omega}+\frac{(1+6.08)(55)^{2}}{2000} \\
3432 & =7.08 \mathrm{~h}_{\mathrm{m}}+10.71
\end{aligned}
$$

or

$$
h_{\text {/h }}=483.2 \mathrm{kJ/kg}
$$

\therefore Temperature of water leaving the injector (from steam tables corresponding to $483.2 \mathrm{k} / / \mathrm{kg}$),

$$
t_{n}=115^{\circ} \mathrm{C} \text { Ans. }
$$

EXERCISES

1. The dry and saturated sieam at a peessure of 5 bar is expanded isentiopically in a morale toa pressine of 0.2 tar. Find the velocity of sieam leaving the sorzle.
[Ans. $11000 \mathrm{~m} / \mathrm{s}$]
2. The dry and samutal aleam at a pressore of 10.5 tar is expasbod iventropically in a norxe to a pressure of 0.7 bar. Deternint the firal velaciy of the stam isruing from the nozzic, when (a) friaion is neglectiol, and (b) 10Fs. of the hest drop is lest in friktion.

> The initial velacily of skan may be reglestod.

3. Sicam at a prosure of 6.3 bes and $200^{\circ} \mathrm{C}$ is eapanded in a sorzle lo a pressure uf 0.2 har. Fisd the fixal velochy and dryness fraction of skam, if
(a) friktion is negletadi ; and (b) 103 of the heat drep is lost in friction.

4. Sieam is nupplied to a noule at 35 har and $0.98 \mathrm{~d} y$. The sleam cnters be mocile at 240 mk . The pressure drops to 08 bar. Determise the velocity and dryness friction of the sieam when it leares he nople.
|Ane $545.5 \mathrm{mh} ; 0.92 \mid$
5. Stem expands through an ideally, indalued nozale following a revervible poly yropiclawn of ${ }^{\prime 2}-C$ There is no chatge in potential energy but the presure drops from 20 har to 2 bar and the specific volune increases from $0.05 \mathrm{~m}^{\prime} 100.3 \mathrm{~m}^{3}$, If the entrance velocity is 80 mh , devernine the exit velocity.
|Ance $6975 \mathrm{~m} / \mathrm{l} \mid$
6. Cilcubte the throat area of socezle suppled with seam it 10 bar and 200 C . The cate of now of steam is 1.2 k g . Neglect friction and assume the velosity at inket to te smail. [Ans. $837 \mathrm{~mm}^{2}$]
7. 5seam expands isenaropically from ibe state of 8 bar and $250^{\circ} \mathrm{C} s 01.5$ bar in a courvegent-divergent nuale. The sheam flow nate is $0.75 \mathrm{~kg} / \mathrm{s}$. Find: 1, Bhe velocity of stean at exit fom the sorxle; and 2 the enit area of nozzle. Nieglect the inlet velocity of seam.
|Ans, k 0 CO mss : $1054 \mathrm{~mm} \mathrm{~m}^{\prime} \mid$
8. Stementes a gricup of evnvergent-divergentnozzies at a presure of 22 tar and with a temperanise of $240^{\circ} \mathrm{C}$. The exit pressurt is 4 tar and 9% of the intal hear drop is lest in friction. The mass flow ried is 10 $\mathrm{kg} / \mathrm{and}$ the flow appo the throas may be assumod friction loss. Calculate

1. the theoal and evir velocilies, and 2. the thruat and exit areas.

$$
\text { [Ans. } 529 \mathrm{~m} / \mathrm{c} .775 \mathrm{mb}: 3000 \mathrm{~mm}^{2}, 5500 \text { inim'] }
$$

9. The throat diameter of a norre is 5 mm . If dry and saturatad stem at 10 tar is supplisd io the nonalt, cakulate the mass fow per second. The tahaus preisure is i 5 bus. Ass ame fricion less adiabatic flow and iodex of expmention, $n=1.135$.

If 10 pereent of the isentropic bers drop is lont in fricios, what shauld be ilie correct dianseler at outits for steam io issuc at the sume eshanst pessure?
[Ams. W13 3 kpph; 7.12 mm |
10. Cakuhie the throat and ait diumeiens of a convergent divergent novzle which will diachurge 820 kg of seese per hour from a prisure of 8 har superteaved to 220° C invo a chamber having a pressure of 15 tor. The friction loss in the divergent part of the nozele may be miken us 0.15 of the sotal enthalpy drop.
[Anc. $15.2 \mathrm{~mm} ; 20.0 \mathrm{~mm}$]
11. A seam tuiftise develogs 185 kW with a conisumpion of 10.5 kg WW... The perssure and temperature of the stean enfering the rooxle are 12 bar and $22 \sigma^{\circ}$ C. The steam keaves the norale al 12 tar. The diametra of se moisle at thout is 7 mm . Find the number of novales

If 8% of the toal enthulpy drop is lost in friction in the diverging part of the norzle, determine the diancter al the evit of the nouzle and the exit velocity of the leaving steam.

Sketch the skekton Motlic diagram and show on it the values of preware, lemperatire or drysess frscien, enthalpy and spocific volume at inke, throat and exit.
[Ans. 14;11.1 mm ; 847 mb]
12. Steamexpands in a noazk undat the following conditions: Inlee pressure $=15$ bas ; Inlet temperature $=250^{\prime} \mathrm{C} ;$ Final pessure $=4 \mathrm{bor} ;$ Mass flow $=1 \mathrm{~kg} / \mathrm{s}$.

Calculaie the requirot throat and exit artas, aning Mollier diagram, when 1. the expansion is frictionlest, and 2, the friction loss at any peessurt amonts to 10 percent of the total heat drop down to that pressure.
[Ans, $480 \mathrm{~mm}^{2}, 606 \mathrm{~mm}^{2} \div 508 \mathrm{~mm}^{2}, 650 \mathrm{~mm}^{2}$]
13. Cases expuind in a cosvergenid divergent notrle from 3.6 bar und $425^{\circ} \mathrm{C}$ to a back pressure of 1 ber, at the rate of 18 kels. If the nozale efficiescy is 0.92 , calculate the recpited diroat and crin areas of the nozrile Neglect inlot velocity and frittion in the convergent part. For the gases, take $\mathrm{c},=1.113 \mathrm{kJkg} \mathrm{K}$ and $\gamma=1.33$.
[Ans. $0.0325 \mathrm{~m}^{7} ; 0.04 \mathrm{~m}^{2}$]
14. The dry sutanted saam expands in a nozule from a peasure of 2 bas to 1 bas. If the expansico in Mopeashurated. detemine the degree of undercooiligg and ace degrec of supersaburation. [Ans. $37.63^{\circ} \mathrm{C} ; 4.58$]
15. Steam al 42 bar and $260^{\circ} \mathrm{C}$ enters a nozzle and lezves at 28 bac . Neglecting initial kinetic energy and consiftring seper saturation, deternine the dischage asea for a flow of 10350 kgh and a nozrle velocity coelficient of 96%
[Ans. $484 \mathrm{mmi}^{1}$]
16. Conpore de mass of dischrge from a convergem-divergent norzie expanding from 8 tar and 210° C to 2 bas, when

1. the expansion takes place under termal equiliriam, snd 2. the steam in in super-saturated condition daring a part of its espassion.

Take area of nuzzle as $2400 \mathrm{~mm}^{2}$.
[Ans. 8.3\%]
17. An injector is to deliver 100 kg of water per minute feom a tank, whose cosstal water level is 1.2 ? mbelow the level of the injector into a beiter in which the steam pressure is 14 bur . The watcr level in the bolier is 15 metre above the level of the injector. The stean for the injector is taken from the same boiler and it is assumed to be dy and saturated. The presure of steam leaviag sseam nozale in 0.5 times that of dee supply pressere. If the velocity in the delivery pipe is $13.5 \mathrm{~m} /$, find:

1. Mass of watet pumped per hg of steam: 2. Area of mixing cone ; 3 . Area of stram noule ; ans 4. Temperamer of water kaving the injector, if the temperature of water in the feed unk is $15^{\prime} \mathrm{C}$.
[Ans. $7.9 \mathrm{~kg}: 35.5 \mathrm{~mm}^{\top} 1107.4 \mathrm{~mm}^{7}: 878^{\circ} \mathrm{C}$]

QUESTIONS

1. Explain the function of noczles used with steam turbines.
2. Discuss the fusctions of the convergent portion, the throat and the divergent portion of a convergent-divergent nozzle with reference to flow of steam.
3. What is steady flow energy equation as applied to steam nozzles? Explain its use in the calculation of steam velocity at the exit of a nozzle.
4. Discuss the effect of friction during the expansion of steam through a convergem-divergent nozzle when
(i) the steam at entry to the neizie is saturated, and
(ii) the steam at entry is superteated.

Assame the pressurc of steam to be initially same in boch the cases. Mark the processes on a sketch of enthalpy-entropy diagram.
5. Explain what is meant by critical pressure natio of a nozzle.
6. Starting frum fundanionials, show that for maximum discharge through a nozzle, the ratio of throat peessute to inlet peessure is given by $\left(\frac{2}{n+1}\right)^{\frac{n}{n-1}}$ where n is the index for izentropic
expaasion through the nozzle.
7. Derive an expression for maximum discharge through coavergent divergent nozzle for steam.
8. Draw the 'discharge' verivs 'ratio of pressures at outler to inlet' carve for a convergent steam nozzle. Discuss the physical significance of critical pressure ratio.
9. Explain the supersmurnted or metastable flow of steam through a nozzle and the significance of Wilson's line.
10. What are the effects of supersaturation on dischage and leat drop?

ORJECTIVE TYPE QUESTIONS

1. The steam leaves the nozzle at a
(a) high peessure and low velocity
(b) high pressure and high velocity
(c) low pressure and low velocity
(d) low peessure and high velociry
2. The effect of friction in a nozale dryness fraction of steam.
(a) increases
(b) decreases
3. The velocity of stean leaving the nomale (V) is given by
(a) $V=44.72 \mathrm{Kh}$
(b) $V=44.72 \mathrm{~K} \sqrt{h_{d}}$
(c) $V=44.72 \sqrt{K h_{d}}$
(d) $V=44.72 h_{d} \sqrt{K}$
where
$K=$ Nouzle coefficient, and

$$
h_{d}=\text { Enthalpydrop during expansion. }
$$

4. The critical pressure ratio for initially dry saturated steam is
(a) 0.528
(b) 0.546
(c) 0.577
(a) 0.582
5. The critical pressure ratio for initially superheated steam is -.... as compared to initially dry saturated steam.
(a) more
(b) less
6. The flow of steam is super sonic
(a) at the entrance to the sozzle
(b) at the throat of the nozzle
(c) in the convergent portion of the nozzie
(d) in the divergem portion of the noazle
7. The difference of supersaturated temperature and saturation temperature at that pressure is known as
(a) degree of supersaturation
(b) degree of superheat
(c) degree of undercooling
(di) none of these
8. In a nozzle, the effect of supersaturation is to
(a) decrease the dryass fraction of steam
(b) decrease the specific volume of steam
(c) increase the entropy
(d) increase the euthalpy drop
9. The density of supersmurated steam is about - that of the ordinary satarated vapoor at the corresponding piessure.
(a) same as
(b) 2 times
(c) 4 times
(d) 8 times
10. When the back pressure of a noxzle is below the designed value of pressure at exit of nozale, the nozale is said to be
(a) choked
(b) under damping
(c) over damping

ANSWERS

1. (d)	$2 .(a)$	3. (c)	4. (c)	5. (b)
6. (d)	$7 .(c)$	8. (c)	$9 .(d)$	$10 .(b)$

Definition

A steam turbine is a prime mover in which the potential energy of the steam is transformed into kinetic energy and later in its turn is transformed into the mechanical energy of rotation of the turbine shaft.

Classification of steam turbines

According to the action of steam:

$>$ Impulse turbine: In impulse turbine, steam coming out through a fixed nozzle at a very high velocity strikes the blades fixed on the periphery of a rotor. The blades change the direction of steam flow without changing its pressure. The force due to change of momentum causes the rotation of the turbine shaft. Ex: De-Laval, Curtis and Rateau Turbines
$>$ Reaction turbine: In reaction turbine, steam expands both in fixed and moving blades continuously as the steam passes over them. The pressure drop occurs continuously over both moving and fixed blades.
> Combination of impulse and reaction turbine

According to the number of pressure stages:
> Single stage turbines: These turbines are mostly used for driving centrifugal compressors, blowers and other similar machinery.
> Multistage Impulse and Reaction turbines: They are made in a wide range of power capacities varying from small to large.

According to the type of steam flow:

- Axial turbines: In these turbines, steam flows in a direction parallel to the axis of the turbine rotor.
> Radial turbines: In these turbines, steam flows in a direction perpendicular to the axis of the turbine, one or more low pressure stages are made axial.

According to the number of shafts:

> Single shaft turbines
> Multi-shaft turbines

According to the method of governing:

> Turbines with throttle governing: In these turbines, fresh steam enter through one or more (depending on the power developed) simultaneously operated throttle valves.
> Turbines with nozzle governing: In these turbines, fresh steam enters through one or more consecutively opening regulators.
> Turbines with by-pass governing: In these turbines, the steam besides being fed to the first stage is also directly fed to one, two or even three intermediate stages of the turbine.

According to the heat drop process:

Condensing turbines with generators: In these turbines, steam at a pressure less than the atmospheric is directed to the condenser. The steam is also extracted from intermediate stages for feed water heating). The latent heat of exhaust steam during the process of condensation is completely lost in these turbines.
> Condensing turbines with one or more intermediate stage extractions: In these turbines, the steam is extracted from intermediate stages for industrial heating purposes.
> Back pressure turbines: In these turbines, the exhaust steam is utilized for industrial or heating purposes. Turbines with deteriorated vacuum can also be used in which exhaust steam may be used for heating and process purposes.
Topping turbines: In these turbines, the exhaust steam is utilized in medium and low pressure condensing turbines. These turbines operate at high initial conditions of steam pressure and temperature, and are mostly used during extension of power station capacities, with a view to obtain better efficiencies.

According to the steam conditions at inlet to turbine:

> Low pressure turbines: These turbines use steam at a pressure of 1.2 ata to 2 ata.
> Medium pressure turbines: These turbines use steam up to a pressure of 40 ata.
> High pressure turbines: These turbines use steam at a pressure above 40 ata.
> Very high pressure turbines: These turbines use steam at a pressure of 170 ata and higher and temperatures of $550^{\circ} \mathrm{C}$ and higher.
> Supercritical pressure turbines: These turbines use steam at a pressure of 225 ata and higher.

According to their usage in industry:

$>$ Stationary turbines with constant speed of rotation: These turbines are primarily used for driving alternators.
> Stationary turbines with variable speed of rotation: These turbines are meant for driving turbo-blowers, air circulators, pumps, etc.
> Non-stationary turbines with variable speed: These turbines are usually employed in steamers, ships and railway locomotives.

Advantages of steam turbines over steam engines

1. The thermal efficiency is much higher.
2. As there is no reciprocating parts, perfect balancing is possible and therefore heavy foundation is not required.
3. Higher and greater range of speed is possible.
4. The lubrication is very simple as there are no rubbing parts.
5. The power generation is at uniform rate \& hence no flywheel is required.
6. The steam consumption rate is lesser.
7. More compact and require less attention during operation.
8. More suitable for large power plants.
9. Less maintenance cost as construction and operation is highly simplified due to absence of parts like piston, piston rod, cross head, connecting rod.
10. Considerable overloads can be carried at the expense of slight reduction in overall efficiency.

Methods of reducing rotor speed (Compounding of turbines)

> If high velocity of steam is allowed to flow through one row of moving blades, it produces a rotor speed of about $\mathbf{3 0 0 0 0} \mathbf{~ r p m}$ which is too high for practical use.
$>$ It is therefore essential to incorporate some improvements for practical use and also to achieve high performance.
$>$ This is possible by making use of more than one set of nozzles, and rotors, in a series, keyed to the shaft so that either the steam pressure or the jet velocity is absorbed by the turbine in stages. This is called compounding of turbines.
$>$ The high rotational speed of the turbine can be reduced by the following methods of compounding:
1)Velocity compounding
2)Pressure compounding, and
3)Pressure-Velocity compounding

VELOCITY COMPOUNDING

> It consists of a set of nozzles and a few rows of moving blades which are fixed to the shaft and rows of fixed blades which are attached to the casing.
As shown in figure, the two rows of moving blades are separated by a row of fixed blades.
$>$ The high velocity steam first enters the first row of moving blades, where some portion of the velocity is absorbed.
$>$ Then it enters the ring of fixed blades where the direction of steam is changed to suit the second ring of moving blades. There is no change in the velocity as the steam passes over the fixed blades.
$>$ The steam then passes on to the second row of moving blades where the velocity is further reduced. Thus a fall in velocity occurs every time when the steam passes over the row of moving blades. Steam thus leaves the turbine with a low velocity.
The variation of pressure and velocity of steam as it passes over the moving and fixed blades is shown in the figure. It is clear from the figure that the pressure drop takes place only in the nozzle and there is no further drop of pressure as it passes over the moving blades.
$>$ This method of velocity compounding is used in Curtis turbine after it was first proposed by C.G. Curtis.

Advantages

1) The arrangement has less number of stages and hence less initial cost
2) The arrangement requires less space
3) The system is reliable and easy to operate
4) The fall of pressure in the nozzle is considerable, so the turbine itself need not work in high pressure surroundings and the turbine housing need not be very strong.

Disadyantages

1) More friction losses due to very high velocity in the nozzles
2) Less efficiency because ratio of blade velocity to steam velocity is not optimum
3) Power developed in the later rows is only fraction of first row. Still all the stages require same space, material and cost.

Pressure compounding

> It consists of a number of fixed nozzles which are incorporated between the rings of moving blades. The moving blades are keyed to the shaft.
$>$ Here the pressure drop is done in a number of stages. Each stage consists of a set of nozzles and a ring of moving blades.
$>$ Steam from the boiler passes through the first set of nozzles where it expands partially. Nearly all its velocity is absorbed when it passes over the first set of moving blades.
> It is further passed to the second set of fixed nozzles where it is partially expanded again and through the second set of moving blades where the velocity of steam is almost absorbed. This process is repeated till steam leaves at condenser pressure.
$>$ By reducing the pressure in stages, the velocity of steam entering the moving blades is considerably reduced. Hence the speed of the rotor is reduced. Rateau \& Zoelly turbines use this method of compounding.

1) In this method of compounding, both pressure and velocity compounding methods are utilized.
2) The total drop in steam pressure is carried out in two stages and the velocity obtained in each stage is also compounded.
3) The ring of nozzles are fixed at the beginning of each stage and pressure remains constant during each stage.
4) This method of compounding is used in Curtis and More turbines.

Pressure-Velocity compounding

Simple impulse principle

> It primarily consists of a nozzle or a set of nozzles, a rotor mounted on a shaft, one set of moving blades attached to the rotor and a casing.
$>$ A simple impulse turbine is also called De-Laval turbine, after the name of its inventor
$>$ This turbine is called simple impulse turbine since the expansion of the steam takes place in one set of nozzles.

Basics of impulse turbine

$>$ In impulse turbine, steam coming out through a fixed nozzle at a very high velocity strikes the blades fixed on the periphery of a rotor.
$>$ The blades change the direction of steam flow without changing its pressure.
$>$ The force due to change of momentum causes the rotation of the turbine shaft.
$>$ Examples: De-Laval, Curtis and Rateau turbines.
$>$ The impulse turbine consists basically of a rotor mounted on a shaft that is free to rotate in a set of bearings.
$>$ The outer rim of the rotor carries a set of curved blades, and the whole assembly is enclosed in an airtight case.
$>$ Nozzles direct steam against the blades and turn the rotor. The energy to rotate an impulse turbine is derived from the kinetic energy of the steam flowing through the nozzles.
$>$ The term impulse means that the force that turns the turbine comes from the impact of the steam on the blades.
$>$ The toy pinwheel can be used to study some of the basic principles of turbines. When we blow on the rim of the wheel, it spins rapidly. The harder we blow, the faster it turns.
$>$ The steam turbine operates on the same principle, except it uses the kinetic energy from the steam as it leaves a steam nozzle rather than air.
$>$ Steam nozzles are located at the turbine inlet. As the steam passes through a steam nozzle, potential energy is converted to kinetic energy.
$>$ This steam is directed towards the turbine blades and turns the rotor. The velocity of the steam is reduced in passing over the blades.
$>$ Some of its kinetic energy has been transferred to the blades to turn the rotor.
$>$ Impulse turbines may be used to drive forced draft blowers, pumps, and main propulsion turbines.

Construction and working of impulse turbine

> The uppermost portion of the diagram shows a longitudinal section through the upper half of the turbine.
> The middle portion shows the actual shape of the nozzle and blading.
$>$ The bottom portion shows the variation of absolute velocity and absolute pressure during the flow of steam through passage of nozzles and blades.
> The expansion of steam from its initial pressure (steam chest pressure) to final pressure (condenser pressure) takes place in one set of nozzles.
$>$ Due to high drop in pressure in the nozzles, the velocity of steam in the nozzles increases.

$>$ The steam leaves the nozzle with a very high velocity and strikes the blades of the turbine mounted on a wheel with this high velocity.
> The loss of energy due to this higher exit velocity is commonly known as carry over loss (or) leaving loss.
$>$ The pressure of the steam when it moves over the blades remains constant but the velocity decreases.
$>$ The exit/leaving/lost velocity may amount to 3.3 percent of the nozzle outlet velocity.
> Also since all the KE is to be absorbed by one ring of the moving blades only, the velocity of wheel is too high (varying from 25000 to 30000 RPM).
$>$ However, this wheel or rotor speed can be reduced by adopting the method of compounding of turbines.

Disadvantages of impulse turbine

1. Since all the KE of the high velocity steam has to be absorbed in only one ring of moving blades, the velocity of the turbine is too high i.e. up to 30000 RPM for practical purposes.
2. The velocity of the steam at exit is sufficiently high which means that there is a considerable loss of KE.

Velocity diagram / velocity triangle

Combined velocity triangle

combined Velocity Triangle

WORK OUTPUT, POWER,
 BLADE EFFICIENCY \& STAGE EFFICIENCY

Force in the tangential direction $=$ Rate of change of momentum in the tangential direction.
$=$ Mass per second \times change in velocity Newtons
$=m\left(V_{w 1} \pm V_{w 2}\right)$ Newtons
Force in the axial direction $=$ Rate of change of momentum in the axial direction.

$$
\text { (axial thrust) } \quad=m\left(V_{a 1}-V_{a 2}\right) \text { Newtons }
$$

Work done by steam on blades $=m\left(V_{w l} \pm V_{w 2}\right) u \quad \mathrm{~N}-\mathrm{m} / \mathrm{s}$
Power developed by the turbine $=\frac{m\left(V_{w 1} \pm V_{w 2}\right) u}{1000} k W$
Blade efficiency $=\frac{\text { Work done on the blade(s) }}{\text { Energy supplied to the blade(s) }}=\frac{m\left(V_{w l} \pm V_{w 2}\right) u}{\frac{1}{2} m V_{1}^{2}}=\frac{2 u\left(V_{w l} \pm V_{w 2}\right) u}{V_{1}^{2}}$
Energy lost due to blade friction $=\frac{1}{2} m\left(V_{r 1}{ }^{2}-V_{r 2}{ }^{2}\right)^{2} \mathrm{~N}-\mathrm{m} / \mathrm{s}$
Stage efficiency $=\frac{\text { Work done on the blade(s) }}{\text { Total energy supplied per stage }}=\frac{m\left(V_{w l} \pm V_{w 2}\right) u}{m\left(H_{1}-H_{2}\right)}=\frac{\left(V_{w l} \pm V_{w 2}\right) u}{H_{d}}$ where $H_{d}=H_{1}-H_{2}=$ Heat drop in the nozzle ring

MAXIMUM WORK \& MAXIMUM DIAGRAM EFFICIENCY

From the combined velocity triangle (diagram), we have

$$
V_{w 1}=V_{1} \cos \alpha_{1}=V_{r 1} \cos \beta_{1}+u \quad \text { and } \quad V_{w 2}=V_{2} \cos \alpha_{2}=V_{r 2} \cos \beta_{2}-u
$$

$$
\therefore V_{w 1}+V_{w 2}=V_{r 1} \cos \beta_{1}+V_{r 2} \cos \beta_{2}=V_{r 1} \cos \beta_{1}\left[1+\frac{V_{r 2} \cos \beta_{2}}{V_{r 1} \cos \beta_{1}}\right]=V_{r 1} \cos \beta_{1}(1+K C)
$$

$$
\text { where } K=\frac{V_{r 2}}{V_{r 1}} \text { and } C=\frac{\cos \beta_{2}}{\cos \beta_{1}}
$$

$$
\text { (or) } \quad V_{w 1}+V_{w 2}=\left(V_{1} \cos \alpha_{1}-u\right)(1+K C)
$$

Rate of doing work per kg of steam per second $=\left(V_{1} \cos \alpha_{1}-u\right)(1+K C) u$
\therefore Diagram efficiency, $\eta_{b}=\frac{\left(V_{1} \cos \alpha_{1}-u\right)(1+K C)}{V_{1}^{2}}$
Let, $\rho=\frac{u}{V_{1}}=$ Blade speed ratio
Then, Diagram efficiency,

$$
\eta_{b}=2\left(\rho \cos \alpha_{1}-\rho^{2}\right)(1+K C)
$$

MAXIMUM WORK \& MAXIMUM DIAGRAM EFFICIENCY

From the above equation, it is evident that diagram efficiency depends on the following factors:

1) Nozzle angle, α_{1}
2) Blade speed ratio, ρ
3) Blade angles, $\beta_{1} \& \beta_{2}$
4) Blade velocity coefficient, K
$>$ If the values of α_{l}, K and C are assumed to be constant, then diagram efficiency depends only on the value of blade speed ratio, ρ
$>$ In order to determine the optimum value of for maximum diagram efficiency, $\frac{\partial \eta_{b}}{\partial \rho}=0$
$>$ Then, ρ becomes, $\rho=\frac{\cos \alpha_{1}}{2}$

MAXIMUM WORK \& MAXIMUM DIAGRAM EFFICIENCY

पaximum diagram efficiency =

$$
\left(\eta_{b}\right)_{\max }=2(1+K C)\left[\frac{\cos \alpha_{1}}{2} \cdot \cos \alpha_{1}-\frac{\cos ^{2} \alpha_{1}}{4}\right]=(1+K C) \frac{\cos ^{2} \alpha_{1}}{2}
$$

Note: If the blade is symmetrical \& friction is absent, then, we have $\beta_{l}=\beta_{2}$ and $K=C=1$

Then, maximum diagram efficiency, $\left(\eta_{b}\right)_{\max }=\cos ^{2} \alpha_{1}$ Work done $/ \mathrm{kg}$ of steam $/$ second $\left(V_{1} \cos \alpha_{1}-u\right)(1+K C) u$

Then maximum rate of doing work $/ \mathrm{kg}$ of steam $/$ second $=2 u^{2}$

2. Reaction turbine

$>$ A turbine in which steam pressure decreases gradually while expanding through the moving blades as well as the fixed blades is known as reaction turbine.
$>$ It consists of a large number of stages, each stage consisting of set of fixed and moving blades. The heat drop takes place throughout in both fixed and moving blades.
$>$ No nozzles are provided in a reaction turbine. The fixed blades act both as nozzles in which velocity of steam increased and direct the steam to enter the ring of moving blades. As pressure drop takes place both in the fixed and moving blades, all the blades are nozzle shaped.
$>$ The steam expands while flowing over the moving blades and thus gives reaction to the moving blades. Hence the turbine is called reaction turbine.
$>$ The fixed blades are attached to the casing whereas moving blades are fixed with the rotor.
$>$ It is also called Parson's reaction turbine.

Isentropic expansion in Reaction Turbine

Work output \& power in reaction turbine

The work done per kg of steam in the stage $($ per pair $)=$

$$
u\left(V_{w 1}+V_{w 2}\right) N-m
$$

The work done per kg of steam per second in the stage (per pair) $=$

$$
m u\left(V_{w 1}+V_{w 2}\right) N-m / s
$$

where, $m=$ mass of steam flowing over blades in kg / s
Power developed (per pair) $=\frac{m u\left(V_{w 1}+V_{w 2}\right)}{1000} k W$
Efficiency, $\eta=\frac{\text { work done per } \mathrm{kg} \text { of steam in the stage per pair }}{\text { Enthalpy drop in the stage per pair }}$
\therefore Efficiency, $\eta=\frac{u\left(V_{w 1}+V_{w 2}\right)}{1000 H}$
where, $H=$ Enthalpy drop in the stage per pair in $k J / k g$

Degree of reaction in reaction turbine

DEGREE OF REACTION

The degree of reaction is defined as the ratio of isentropic heat drop in the moving blades to the isentropic heat drop in the entire stage of reaction turbine. It is denoted by R.

$$
R=\frac{\text { Enthalpydrop inthe moving blade }}{\text { Enthalpydropinthe stage }}=\frac{d H_{2}}{d H_{1}+d H_{2}}
$$

Where, $\quad d H_{1}=$ Enthalpy drop in the fixed blade per kg of steam $=\frac{V_{1}^{2}-V_{2}^{2}}{2} \mathrm{~kJ} f \mathrm{~kg}=H_{1}-H_{2}$

$$
d H_{2}=\text { Enthalpy drop in the moving blade per } \mathrm{kg} \text { of steam }=\frac{V_{r 2}^{2}-V_{r 1}^{2}}{2} \mathrm{~kJ} / \mathrm{kg}=\mathrm{H}_{2}-\mathrm{H}_{3}
$$

Also, $\quad d H_{1}+d H_{2}=$ Enthalpy drop in the stage per kgof steam

$$
=\quad H_{1}-H_{3}
$$

$=\quad$ Work done by the steam in the stage
$=u\left(V_{w 1}+V_{w 2}\right)$
\therefore Degree of Reaction, $R=\frac{V_{r 2}{ }^{2}-V_{r r}{ }^{2}}{2 u\left(V_{\mathrm{w} 1}+V_{\mathrm{w} 2}\right)}$
Note-1: In Pearson's furbine, the degree of reaction, $R=0.5$, then, $\alpha_{1}=\beta_{2} a n d \alpha_{2}=\beta_{1}$. This means that moving blade and fixed blade have the same shape.
Note-2: If degree of reaction, $R=0$, then the turbine is a simple impulse turbine.
Note-3: If degree of reaction, $R=1$, then the turbine is a pure reaction turbine,

Work done \& efficiency in reaction turbine

BLADE EFFICIENCY AND STAGE EFFICIENCY

The condition for maximum efficiency is calculated considering the following assumptions:

- The degree of reaction, $\mathrm{R}=0.5$, ie. $\alpha_{1}=\beta_{2}$ and $\alpha_{2}=\beta_{1}$
- The fixed and moving blades are symmetrical, i.e. $V_{1}=V_{r 2} \& V_{2}=V_{n}$

The kinetic energy supplied to the fixed blade per kg of steam $=\frac{V_{1}^{2}}{2}$
The kinetic energy supplied to the moving blade per kg of steam $=\frac{V_{\gamma z}{ }^{2}-V_{r 1}{ }^{2}}{2}$
Total energy supplied in the stage per kg of steam $=\frac{V_{1}^{2}}{2}+\frac{V_{r 2}{ }^{2}-V_{r 1}{ }^{2}}{2}$
Since blades are symmetrical, $V_{1}=V_{r 2} \& V_{2}=V_{r 1}$ \& from velocity triangles, $V_{r 1}^{2}=V_{1}^{2}+u^{2}-2 \cdot V_{1} \cdot u \cdot \cos \alpha_{1}$
Therefore, total energy supplied in the stage per kg of steam $=V_{1}^{2}-\frac{V_{1}^{2}+u^{2}-2 \cdot V_{1} \cdot u \cdot \cos \alpha_{1}}{2}$
Work done per kg of steam is given by,

$$
\begin{aligned}
\text { Work Done } & =u\left(V_{w 1}+V_{w 2}\right) \\
& =u\left(V_{1} \cos \alpha_{1}+V_{r 2} \cos \beta_{1}-u\right) \\
& =u\left(2 V_{1} \cos \alpha_{1}-u\right) \quad\left(\because \alpha_{1}=\beta_{2} \text { and } V_{1}=V_{r 2}\right)
\end{aligned}
$$

Work done \& efficiency in reaction turbine

Diagram efficiency, $\quad=M_{d}=\frac{\text { Worw done per Kg of steam }}{\text { Total energy supplied per } \mathrm{kg} \text { of steam }}$

$$
\begin{aligned}
& =\quad \frac{u\left(2 V_{1} \cos \alpha_{1}-u\right)}{V_{1}^{2}-\frac{V_{1}^{2}+u^{2}-2 \cdot V_{1}-u-\cos \alpha_{1}}{2}} \\
& =\quad \frac{2 u\left(2 V_{1} \cos \alpha_{1}-u\right)}{V_{u}^{2}-u^{2}+2-V_{1}-u-\cos \alpha_{1}} \\
& \frac{2 u V_{1}\left(2 \cos \alpha_{1}-\frac{u}{V_{1}}\right)}{\left(1-\frac{u^{2}}{V_{1}^{2}}+2 \cdot \frac{u}{V_{1}} \cos \alpha_{1}\right)} \\
& =\frac{2 \frac{u}{V_{1}}\left(2 \cos \alpha_{1}-\frac{u}{V_{n}}\right)}{\left(1-\frac{u^{2}}{\bar{V}_{0}^{2}}+2-\frac{u}{V_{1}} \cos \alpha_{u}\right)} \\
& \left.\therefore \eta_{d}=\frac{2 \rho\left(2 \cos \alpha_{1}-\rho\right)}{\left(1-\rho^{2}+2 \rho-\cos \alpha_{4}\right)} \right\rvert\, \\
& \text { where } \rho=\frac{u}{V_{i}}=\text { Blade speed natio }
\end{aligned}
$$

The efficiency is maximum when the term $\left(1-\rho^{2}+2 \cdot \rho \cdot \cos \alpha_{1}\right)$ is minimum or when $\frac{d \eta_{d}}{d \rho}=0$

$$
\frac{d}{d \rho}\left(1-\rho^{2}+2 \cdot \rho \cdot \cos \alpha_{1}\right)=0
$$

$$
\begin{aligned}
& \text { (or) }\left(-2 \rho+2 \cos \alpha_{1}\right)=0 \\
& \text { (or) } \rho=\cos \alpha_{1}
\end{aligned}
$$

Therefore efficiency is maximum when $\rho=\cos \alpha_{1}$

$$
\text { Then, } \begin{array}{r}
\therefore\left(\eta_{d}\right)_{\max }=\frac{2 \cos \alpha_{1}\left(2 \cos \alpha_{1}-\cos \alpha_{1}\right)}{\left(1-\cos ^{2} \alpha_{1}+2 \cdot \cos \alpha_{1} \cdot \cos \alpha_{1}\right)}=\frac{2 \cos ^{2} \alpha_{1}}{\left(1+\cos ^{2} \alpha_{1}\right)} \\
\therefore\left(\eta_{d}\right)_{\max }=\frac{2 \cos ^{2} \alpha_{1}}{\left(1+\cos ^{2} \alpha_{1}\right)}
\end{array}
$$

Impulse turbine vs Reaction turbine

Impulse turbine

Reaction turbine

> The steam completely expands in the nozzle and its pressure remains constant during its flow through the blade passages
> The relative velocity of steam passing over the blade remains constant in the absence of friction
$>$ Blades are symmetrical
$>$ The pressure on both ends of the moving blade is same
$>$ For the same power developed, as pressure drop is more, the number of stages required are less
The blade efficiency curve is less flat The steam velocity is very high and therefore the speed of turbine is high.
> The relative velocity of steam passing over the blade increases as the steam expands while passing over the blade
$>$ Blades are asymmetrical
> The pressure on both ends of the moving blade is different
> For the same power developed, as pressure drop is small, the number of stages required are more
$>$ The blade efficiency curve is more flat $>$ The steam velocity is not very high and therefore the speed of turbine is low.

IMPULSE TURBINE VS REACTION TURBINE

Governing of turbines

$>$ Governing is the method of maintaining the speed of the turbine constant irrespective of variation of the load on the turbine.
$>$ A governor is used for achieving this purpose which regulates the supply of steam to the turbine in such a way that the speed of the turbine is maintained as far as possible a constant under varying load conditions.
$>$ The various methods of governing of steam turbines are:

1) Throttle governing
2) Nozzle governing
3) By-pass governing
4) Combination of (1) \& (2) or (2) \& (3)

Throttle governing

Throttle governing

WILLIAN'S LINE

2. Nozzle governing

Nozzle Control governing

3. By-pass governing

Losses in steam turbines

> Residual velocity loss Losses in regulating valves Loss due to steam friction in nozzle Loss due to leakage Loss due to mechanical friction Loss due to wetness of steam Radiation loss

Effect of blade friction in steam turbines

overall efficiency $\boldsymbol{\&}$ reheat factor

Reheat factor:

It is defined as the ratio of cumulative heat drop to the adiabatic heat drop in all the stages of the turbine. The value of reheat factor depends on the type and efficiency of the turbine, the average value being 1.05. Reheat factor $=\frac{\text { Cumulative heat drop }}{\text { Adiabatic heat drop }}=\frac{\mathrm{A}_{1} \mathrm{~B}_{1}+\mathrm{A}_{2} \mathrm{~B}_{2}+\mathrm{A}_{3} \mathrm{~B}_{3}}{\mathrm{~A}_{1} \mathrm{D}}$ Overall efficiency:
It is defined as the ratio of total useful heat drop to the total heat supplied.

$$
\text { Overall efficiency }=\frac{\text { Total useful heat drop }}{\text { Total heat supplied }}=\frac{\mathrm{A}_{1} \mathrm{C}_{1}+\mathrm{A}_{2} \mathrm{C}_{2}+\mathrm{A}_{3} \mathrm{C}_{3}}{\mathrm{H}_{\mathrm{A} 1}-\mathrm{h}_{\mathrm{D}}}
$$

Steam Turbines

Abstract

19.1. Introduction. 19.2. Classification of steam turbines. 19.3. Advantages of steam turbine over the steam engines. 19.4. Description of common types of turbines, 19.5. Methods of reducing wheel or rotor speed. 19.6. Difference between impulse and reaction turbines. 19.7. Impulse turbines-Velocity diagram for moving blade-Work done on the blade-Blade velocity co-efficient-Expression for optimum value of the ratio of hlade speed to steam speed (for maximum efficiency for a single stage impuise turbine-Advantages of velocity compounded impulse turbine. 19.8. Reaction turbines-Velocity diagram for reaction turbine blade-Degree of reaction $\left(\mathrm{R}_{d}\right)$-Condition for maximum efficiency, 19.9. Turbines efficiencies, 19.10. Typen of power in steam turbine practice. 19.11, "State point locus" and "Reheat factor", 19.12. Reheating steam. 19.13. Bleeding. 19.14. Energy losses in ateam turbines. 19.15. Steam turbine governing and control. 19.16. Special forms of steam turbines-Highlights-Otjective Type QuestionsTheoretical Questions-Unsolved Examples.

19.1. INTRODUCTION

The steam turbine is a prime-mover in which the potential energy of the steam is transformed into kinetic energy, and latter in its turn is transformed into the mechanical energy of rotation of the turbine shaft. The turbine shaft, directly or with the help of a reduction gearing, is connected with the driven mechanism. Depending on the type of the driven mechanism a steam turbine may be utilised in most diverse fields of industry, for power generation and for transport. Transformation of the potential energy of steam into the mechanical energy of rotation of the shaft is brought about by different means.

19.2. CLASSIFICATION OF STEAM TURBINES

There are several ways in which the steam turbines may be classified. The most important and common division being with respect to the action of the steam, as :
(a) Impulse.
(b) Reaction.
(c) Combination of impulse and reaction.

Other classification are :

1. According to the number of pressure stages :

(i) Single stage turbines with one or more velocity stages usually of amall power capacities ; these turbines are mostly used for driving centrifugal compressors, blowers and other similar machinery.
(ii) Multistage impulse and reaction turbines; they are made in a wide range of power capacities varying from small to large.

2. According to the direction of steam flow :

(i) Axial turbines in which steam flows in a direction parallel to the axis of the turbine.
(ii) Radial turbines in which steam flows in a direction perpendicular to the axis of the turbine ; one or more low-pressure stages in such turbines are made axial.
3. According to the number of cylinders :
(i) Single cylinder turbines.
(ii) Double cylinder turbines.
(iii) Three cylinder turbines.
(iv) Four cylinder turbines.

Multi-cylinder turbines which have their rotors mounted on one and the same shaft and coupled to a single generator are known as sinfle shaft turbines ; turbines with separate rotor shafts for each cylinder placed parallel to each other are known as multiaxial turbines.

4. According to the method of governing :

(i) Turbines with throttle governing in which fresh steam enters through one or more (depending on the power developed) simultaneously operated throttle valves.
(ii) Turbines with nozzle governing in which fresh steam enters through two or more consecutively opening regulators.
(iii) Turbines with by pass governing in which steam turbines besides being fed to the first stage is also directly fed to one, two or even three intermediate stages of the turbine.

5. According to heat drop process :

(i) Condensing turbines with generators; in these turbines steam at a pressure less than atmospheric is directed to a condenser ; besides, steam is also extracted from intermediate stages for feed water heating, the number of such extractions usually being from 2-3 to as much 8-9. The latent heat of exhaust steam during the process of condensation is completely lost in these turbines.
(ii) Condensing turbines with one or two intermediate stage extractions at specific pressures for industrial and heating purposes.
(iii) Back pressure turbines, the exhaust steam from which is utilised for industrial or heating purposes ; to this type of turbines can also be added (in a relative sense) turbines with deteriorated vacuum, the exhaust steam of which may be used for heating and process purposes.
(iv) Topping turbines ; these turbines are also of the back pressure type with the difference that the exhaust steam from these turbines is further utilised in medium and low pressure condensing turbines. These turbines, in general, operate at high initial conditions of steam pressure and temperature, and are mostly used during extension of power station capacities, with a view to obtain better efficiencies.
(v) Back pressure turbines with steam extraction from intermediate stages at specific pressure ; turbines of this type are meant for supplying the consumer with steam of various pressures and temperature conditions.
(vi) Low pressure turbincs in which the exhaust steam from reciprocating steam engines, power hammers, presses, etc., is utilised for power generation purposes.
(vii) Mixed pressure turbines with two or three pressure stages, with supply of exhaust steam to its intermediate stages.
6. According to steam conditions at inlet to turbine :
(i) Low pressure turbines, using steam at a pressure of 1.2 to 2 ata.
(ii) Medium pressure turbines, using steam at pressures of upto 40 ata.
(iii) High pressure turbines, utilising pressures above 40 ata.
(iv) Turbines of rery high pressures, utilising steam at pressures of 170 ata and higher and temperatures of $550^{\circ} \mathrm{C}$ and higher.
(b) Turbines of supercritical pressures, using steam at pressures of 225 ata and above.

7. According to their usage in industry :

(i) Stationary turbines with constant speed of rotation primarily used for driving alternators.
(ii) Stationury steam turbines with variable speed meant for driving turbo-blowers, air circulators, pumps, etc.
(iii) Non-stationary turbiner with variable spend; turbines of this type are usually employed in steamers, ships and railway locomotives.

19.3. ADVANTAGES OF STEAM TURBINE OVER STEAM ENGINES

The following are the principal advantages of steam turbine over steam engines :

1. The thermal efficiency of a steam turbine is much higher than that of a steam engine.
2. The power generation in a steam turbine is at a uniform rate, therefore necessity to use a flywheel (as in the case of steam engine) is not felt.
3. Much higher speeds and greater range of speed is possible than in case of a steam engine.
4. In large thermal stations where we need hugher outputs, the steam turbines prove very suitable as these can be made in big sizes.
5. With the absence of reciprocating parts (as in steam engine) the balancing problem is minimised.
6. No internal lubrication is required as there are no rubbing parts in the steam turbine.
7. In a steam turbine there is no loss due to initial condensation of steam.
8. It can utilise high vacuum very advantageously,
9. Considerable overloads can be carried at the expense of slight reduction in overall efficiency.

19.4. DESCRIPTION OF COMMON TYPES OF TURBINES

The common types of steam turbinef are :

1. Simple impulse turbine.
2. Reaction turbine.

The main difference between these turbines lies in the way in which the steam is expanded while it moves through them. In the former type steam expands in the nozzles and its pressure does not alter as it moves over the blades thile in the latter type the steam expands continuously as it passes oter the blades and thus there is gradua! fall in the pressure during expanston.

1. Simple impulse turbines

Fig. 19.1 shows a simple impulse turbine diagrammatically. The top portion of the figure exhibita a longitudinal section through the upper half of the turbine, the middle portion shows one set of nozzles which is followed by a ring of moving blades, while lower part of the diagram indicates approximately changes in pressure and velocity during the flow of steam through the turbine. This turbine is called simple' impuise turbine since the expansion of the steam takes place in one set of the nozzles.

As the steam flows through the nozzle its pressure falls from steam chest pressure to condenser pressure (or atmospheric pressure if the turbine is non-condensing). Due to this relatively higher ratio of expansion of steam in the nozzles the steam leaves the nozzle with a very high velocity. Refer Fig. 19.1, it is evident that the velocity of the steam leaving the moving blades is a large portion of the maximum velocity of the steam when leaving the nozzle. The loss of energy due to this higher exit velocity is commonly called the "carry over loss" or "leaving loss"

Fig. 19.1. Simple impulse turbine.
The principal example of this turbine is the well known "De laval turbine" and in this turbine the 'exit velocity' or 'leaving velocity' or 'lost velocity' may amount to 3.3 per cent of the nozzle outlet velocity. Also since all the kinetic energy is to be absorbed by one ring of the moving
blades only, the velocity of wheel is too high (varying from 25000 to 30000 r.p.m.). This wheel or rotor speed however, can be reduced by different methods (discussed in the following article).

2. Reaction turbine

In this type of turbine, there is a gradual pressure drop and takes place continuously over the fixed and moving blades. The function of the fixed blades is (the same as the nozzle) that they alter the direction of the steam as well as allow it expand to a larger velocity. As the steam passes over the moving blades its kinetic energy (obtained due to fall in pressure) is absorbed by them. Fig. 19.2, shows a three stage reaction turbine. The changes in pressure and velocity are also shown there in.

Fig. 19.2. Reaction turbine (three stage).
As the volume of steam increases at lower pressures therefore, the diameter of the turbine must increase after each group of blade rings. It may be noted that in this turbine since the pressure drop per stage is small, therefore the number of stages required is much higher than an impulse turbine of the same capacity.

19.5. METHODS OF REDUCING WHEEL OR ROTOR SPEED

As already discussed under the heading 'simple impulse turbine' that if the steam is expanded from the boiler pressure to condenser pressure in one stage the speed of the rotor becomes tremendously high which crops up practical complicacies. There are several methods of reducing this speed to lower value; all these methods utilise a multiple system of rotor in series, keyed on a common shaft and the steam pressure or jet velocity is absorbed in stages as the steam flows over the blades. This is known as 'compounding'. The different methods of compounding are :

1. Velocity compounding.
2. Pressure compounding.
3. Pressure velocity compounding.
4. Reaction turbine.

1. Velocity compounding

Steam is expanded through a stationary nozzle from the boiler or inlet pressure to condenser pressure. So the pressure in the nozzle drops, the kinetic energy of the steam increases due to increase in velocity. A portion of this available energy is absorbed by a row of moving blades. The

Fig. 19.2.Velocity compounding.
steam (whose velocity has decreased while moving over the moving blades) then flows through the second row of blades which are fixed. The function of these fixed blades is to re-direct the steam flow without altering its velocity to the following next row moving blades where again work is done on them and steam leaves the turbine with a low velocity. Fig. 19.3 shows a cut away section of such a stage and changes in pressure and velocity as the steam passes through the nozzle, fixed and moving blades.

Though this method has the advantage that the initial cost is low due to lesser number of stages yet its efficiency is low.

2. Pressure compounding

Fig. 19.4 shows rings of fixed nozzles incorporated between the rings of moving blades. The steam at boiler pressure enters the first set of nozzles and expands partially. The kinetic energy of the steam thus obtained is absorbed by the moving blades (stage 1). The steam then expands partially in the second set of nozzles where its pressure again falls and the velocity increases ; the

Pig. 19.4. Prossure compounding.
kinetic energy so obtained is absorbed by the second ring of moving blades (stage 2). This is repeated in stage 3 and steam finally leaves the turbine at low velocity and pressure. The number of stages (or pressure reductions) depends on the number of rows of nozzles through which the steam must pass.

This method of compounding is used in Rateau and Zoelly turbine. This is most efficient turbine since the speed ratio remains constant but it is expensive owing to a large number of stages.

3. Pressure velocity compounding

This method of compounding is the combination of two previously discussed method. The total drop in steam pressure is divided into stages and the velocity obtained in each stage is also compounded. The rings of nozzles are fixed at the beginning of each stage and pressure remains constant during each stage. The changes in pressure and velocity are shown in Fig. 19.5.

Fig. 19.5. Pressure velocity compounding.
This method of compounding is used in Curits and Moore turbine.

4. Reaction turbine

It has been discussed in Article 19.4.

19.6. DIFFERENCE BETWEEN IMPULSE AND REACTION TURBINES

S. Na .	Particulars	Impulse turbine	Reaction turbine
1.	Pressure drop	Only in nozzles and not in moving blades.	In fixed blades (nozzlea) as well as in moving blades.
2	Area of blade channels	Constant	Varying (converging type).
3.	Blades	Profile type.	Aerofoil type.
4.	Admission of steam	Not all round or complete.	All round or complete.
5.	Nozzles/fixed blades	Diaphrum contains the nozzle.	Fixed blades similar to moving blades attached to the casing serve as nozzles and guide the steam.
6.	Power	Not much power can be developed.	Much power can be developed.
7.	Space	Requires less space for same power,	Requires more space for same power.
8.	Efficiency	Low.	High.
9.	Suitability	Suitable for small power requirements.	Suitable for medium and higher power requirements.
10.	Blade manufacture	Not difficult.	Difficult.

19.7. IMPULSE TURBINES

19.7.1. Velocity Diagram for Moving blade

Fig. 19.6 shows the velocity diagram of a single stage impulse turbine.
$C_{b l}=$ Linear velocity of moving blade (m / s)
$C_{1}=$ Absolute velocity of steam entering moving blade (m / s)
$\boldsymbol{C}_{\mathrm{o}}=$ Absolute velocity of steam leaving moving blade (m / s)
$C_{\omega_{1}}=$ Velocity of whirl at the entrance of moving blade.
$=$ tangential component of C_{1}.
$C_{W G}=$ Velocity of whirl at exit of the moving blade.
$=$ tangential component of C_{0}.
$C_{h_{1}}=$ Velocity of flow at entrance of moving blade.
$=$ axial component of C_{1}.
$C_{f 0}=$ Velocity of flow at exit of the moving blade.
$=$ axial component of C_{0}.
$C_{r_{1}}=$ Relative velocity of steam to moving blade at entrance.
$C_{n}=$ Relative velocity of steam to moving blade at exit.
$\alpha=$ Angle with the tangent of the wheel at which the steam with velocity C_{1} enters. This is also called nozzle engle.
$\beta=$ Angle which the discharging steam makes with the tangent of the wheel at the exit of moving blade.
$\theta=$ Entrance angle of moving blade.
$\phi=$ Exit angle of moving blade.

Fig. 19.6. Velocity diagram for moving blade.
The steam jet issuing from the nozzle at a velocity of C_{1} impinges on the blade at an angle α. The tangential component of this jet ($C_{w_{1}}$) performs work on the blade, the axial component ($C_{f_{1}}$) however does no work but causes the steam to flow through the turbine. As the blades move with a tangential velocity of C_{k}, the entering steam jet has a relative velocity C_{n} (with respect to blade) which makes an angle θ with the wheel tangent. The steam then glides over the blade without any shock and discharges at a relative velocity of C_{0} at an angle ϕ with the tangent of the blades. The relative velocity at the inlet (C_{n}) is the same as the relative velocity at the outlet ($C_{r_{0}}$) if there is no frictional loss at the blade. The absolute velocity $\left(C_{0}\right)$ of leaving steam make an angle β to the tangent at the wheel.

To have convenience in solving the problems on turbines it is a common practice to combine the two vector velocity diagrams on a common base which represents the blade velocity (C_{b}) as shown in Fig. 19.7. This diagram has been obtained by superimposing the inlet velocity diagram on the outlet diagram in order that the blade velocity lines C_{M} coincide.

Fige 19.7
19.7.2. Work done on the Blade

The work done on the blade may be found out from the change of momentum of the steam jet during its flow over the blade. As earlier discussed, it is only the velocity of whirl which performs work on the blade since it acts in its (blade) direction of motion.

From Newton's second law of motion,
Force (tangential) on the wheel $=$ Mass of steam \times acceleration

$$
\begin{align*}
& =\text { Mass of steam/sec. } \times \text { change of velocity } \\
& =\dot{m}_{s}\left(C_{w_{1}}-C_{u_{5}}\right) \tag{19.1}
\end{align*}
$$

The value of $C_{u_{0}}$ is actually negative as the steam is discharged in the opposite direction to the blade motion, therefore due consideration should be given to the fact that values of $C_{\omega_{9}}$ and $C_{w_{0}}$ are to be added while doing the solution of the problem. (i.e., when $\beta<90^{\circ}$)

Work done on blades/sec. $=$ Force \times distance travelled/sec.

Power per wheel

$$
\begin{align*}
& =\dot{m}_{s}\left(C_{w_{1}}+C_{w_{0}}\right) \times C_{B} \\
& =\dot{m}_{s}\left(C_{w_{1}}+C_{w_{0}}\right) \times C_{W} \\
& =\frac{\dot{m}_{s} C_{W} C_{W}}{1000} \mathrm{~kW} \tag{19.2}
\end{align*}
$$

$$
\left(\because C_{w}=C_{w_{1}}+C_{w_{v}}\right)
$$

Blade or diagram efficiency $=\frac{\text { Work done the blade }}{\text { Energy supplied to the blade }}$

$$
\begin{align*}
& =\frac{\dot{m}_{s}\left(C_{m}+C_{w_{0}}\right) \cdot C_{b l}}{\frac{\dot{m} C_{1}^{2}}{2}} \\
& =\frac{2 C_{b l}\left(C_{w_{1}}+C_{w c_{0}}\right)}{C_{1}^{2}} \tag{19.3}
\end{align*}
$$

If h_{1} and h_{2} be the total heats before and after expansion through the nozzlea, then ($h_{1}-h_{2}$) is the heat drop through a stage of fixed blades ring and moving blades ring.
\therefore Stage efficiency, $\quad \eta_{\text {stags }}=\frac{\text { Work dono on blade por } \mathrm{kg} \text { of steam }}{\text { Total energy supplied per } \mathrm{kg} \text { of steam }}$

$$
\begin{equation*}
=\frac{C_{\Delta v}\left(C_{m_{1}}+C_{w_{q}}\right)}{\left(h_{1}-h_{2}\right)} \tag{19.4}
\end{equation*}
$$

Now, nozzle efficiency

$$
=\frac{C_{1}^{2}}{2\left(h_{1}-h_{2}\right)}
$$

Also

$$
\begin{aligned}
\eta_{\text {tase }} & =\text { Blade efficiency } \times \text { nozzle efficiency } \\
& =\frac{2 C_{N}\left(C_{w_{1}}+C_{w_{2}}\right)}{C_{1}^{2}} \times \frac{C_{3}^{2}}{2\left(h_{1}-h_{2}\right)}=\frac{C_{u 1}\left(C_{w_{1}}+C_{w_{0}}\right)}{\left(h_{1}-h_{2}\right)}
\end{aligned}
$$

The axial thrust on the wheel is due to difference betweon the velocities of flow at enirance and outlet.

Axial force on the wheel $=$ Mass of steam \times axial acceleration

$$
\begin{equation*}
=\dot{m}_{2}\left(C_{f_{1}}-C_{f_{0}}\right) \tag{19.5}
\end{equation*}
$$

The axial forse on the wheel must be balanced or must be taken by a thrust bearing.
Energy converted to heat by blade friction

$$
\begin{align*}
& \text { = loss of kinetic energy during flow over blades } \\
& =\dot{m}_{8}\left(C_{n}{ }^{2}-C_{n}{ }^{2}\right) \tag{19.6}
\end{align*}
$$

19.7.3. Blade Velocity Co-efficient

In an impulse turbine, if friction is neglected the relative velocity will remain unaltered as it passes over blades. In practice the flow of steam over the blades is resisted by friction. The effect of the friction is to reduce the relative velocity of steam as it passes over the blades. In general there is a loss of 10 to 15 per cent in the relative velocity. Owing to friction in the blades, $C_{r,}$ is less than C_{n} and wo may write

$$
\begin{equation*}
C_{r_{n}}=K \cdot C_{n} \tag{19.7}
\end{equation*}
$$

where K is termed a blade velocity co-efficient.
19.7.4. Expression for optimum Value of the Ratio of Blade Speed to Steam Speed (for maximum efficiency) for a Single Stage Impulse Turbine

Refer Fig. 19.7.

$$
\begin{align*}
C_{m} & =P Q=M P+M Q=C_{n} \cos \theta+C_{n} \cos \theta \\
& =C_{n} \cos \theta\left[1+\frac{C_{n_{0}} \cos \phi}{C_{n} \cos \theta}\right] \\
& =C_{n} \cos \theta(1+K, Z) \text { where } Z=\frac{\cos \phi}{\cos \theta} \tag{i}
\end{align*}
$$

Generally, the angles θ and ϕ are nearly equal for impulse turbine and hence it can safely be assumed that Z is a constant.

But,
From eqn. (i),

$$
C_{n} \cos \theta=M P=L P-L M=C_{1} \cos \alpha-C_{s}
$$

$$
C_{w}=\left(C_{1} \cos \alpha-C_{b j}\right)(1+K . Z)
$$

We know that, Blade efficiency, $\eta_{N}=\frac{2 C_{U} \cdot C_{w}}{C_{1}{ }^{2}}$

$$
\begin{align*}
\eta_{l d} & =\frac{2 C_{d(}\left(C_{1} \cos \alpha-C_{b}\right)(1+K Z)}{C_{1}^{2}} \tag{ii}\\
& =2\left(\rho \cos \alpha-\rho^{2}\right)(1+K Z) \\
& =2 \rho(\cos \alpha-\rho)(1+K Z) \tag{iii}
\end{align*}
$$

where $\rho=\frac{C_{b L}}{C_{1}}$ is the ratio of blade speed to steam speed and is commonly called as "Blade speed ratio".

For particular impulse turbine α, K and Z may assumed to be constant and from equation (iii) it can be seen clearly that $\pi_{s /}$ depends on the value of ρ only. Hence differentiating (iii),

$$
\frac{d \eta_{w}}{d \rho}=2(\cos \alpha-2 \rho)(1+K Z)
$$

For a maximum or minimum value of η_{M} this should be zero

$$
\begin{aligned}
\cos \alpha-2 \rho & =0, \quad \therefore \rho=\frac{\cos \alpha}{2} \\
\frac{d^{2} \eta_{\mu}}{d \rho^{2}} & =2(-2)(1+K Z)=-4(1+K Z)
\end{aligned}
$$

which is a negative quantity and thus the value so obtained is the maximum.
Optimum value of ratio of blade speed to steam speed is

$$
\begin{equation*}
\rho_{\text {ept }}=\frac{\cos \alpha}{2} \tag{19.8}
\end{equation*}
$$

Substituting this value of p in eqn. (iii), we get

$$
\begin{align*}
\left(\eta_{N}\right)_{\max } & =2 \times \frac{\cos \alpha}{2}\left(\cos \alpha-\frac{\cos \alpha}{2}\right)(1+K . Z) \\
& =\frac{\cos ^{2} \alpha}{2}(1+K Z) \tag{19.9}
\end{align*}
$$

It is sufficiently accurate to assume symmetrical blades $(\theta=\phi)$ and no friction in fluid passage for the purpose of analysis.

$$
\begin{array}{lr}
\therefore & Z=1 \text { and } K=1 \\
\therefore & \left(\eta_{\alpha)_{\text {max }}}=\cos ^{2} \alpha\right. \tag{19.10}
\end{array}
$$

The work done per kg of steam is given by

$$
W=\left(C_{m}+C_{w_{0}}\right) C_{N}
$$

Substituting the value of $C_{w_{1}}+C_{\omega_{0}}\left(=C_{w}\right)$

$$
W=\left(C_{1} \cos \alpha-C_{K}\right)(1+K Z) C_{N}=2 C_{N}\left(C_{1} \cos \alpha-C_{M}\right) \text { when } K=1 \text { and } Z=1
$$

The maximum value of W can be obtained by substituting the value of $\cos \alpha$ from equation (19.8),

$$
\begin{array}{ll}
\cos \alpha=2 \rho=2 \frac{C_{b}}{C_{1}} \\
\therefore \quad W_{\text {max }}=2 C_{b l}\left(2 C_{b l}-C_{b d}\right)=2 C_{b d}{ }^{2} \tag{19.11}
\end{array}
$$

It is obvious from the equation (19.8) that the blade velocity should be approximately half of absolute velocity of steam jet coming out from the nozzle (fixed blade) for the maximum work developed per kg of steam or for maximum efficiency. For the other values of blade speed the absolute velocity at outlet from the blade will increase, consequently, more energy will be carried away by the steam and efficiency will decrease.

For equiangular blades with no friction losses, optimum value of $\frac{C_{W}}{C_{1}}$ corresponds to the case, when the outlet absolute velocity is axial as shown in Fig. 19.8.

Since the discharge is axial

$$
\beta=90^{\circ}, \quad \therefore C_{0}=C_{f} \text { and } C_{i e_{0}}=0 .
$$

The variations of $\eta_{b l}$ or work developed per kg of steam with $\frac{C_{M}}{C_{1}}$ is shown in Fig. 19.9. This figure shows that :
(i) When $\frac{C_{K}}{C_{3}}=0$, the work done becomes zero as the distance travelled by the blade $\left(C_{k}\right)$ is zero, even though the torque on the blade is maximum.

Fig. 19.9
(ii) The maximum efficiency is $\operatorname{coc}^{2} \alpha$ and maximum work done per kg of steam is $2 C^{2} \mathrm{H}$ when $\frac{C_{N}}{C_{1}}=\cos \alpha / 2$.
(iii) When $\frac{C_{\mathrm{OL}}}{C_{1}}=1$, the work done is zaro as the torque acting on the blade becomes zero even though the distance travelled by the blade is maximurn.

When the high pressure steam is expanded rrom the boiler pressure to condenser pressure in a single stage of nozzle, the absolute velocity of steam becomes maximum and blade velocity also becomes tremendously high. In such a case, a velocity compounded stage is used to give lower blade speed ratio and better utilization of the kinetic energy of the steam. The arrangement of velocity compounding has already been dealt with.

Fig. 19.10
Fig. 19.10 shows the velocity dingrams for the firat and second row of moving blades of velocity compounded unit. The speed and angles are such that the final absolute velocity of the steam leaving the second row is axial. With this arrangement, the K.E. carried by the steam is minimum, therefore, the efficiency becomet maximum.

The velocity of blades $\left(C_{w}\right)$ is same for both the rows since they are mounted on the same shaft.

Consider first row of moving blades :
Work done per kg of steam, $\quad W_{1}=C_{B}\left(C_{w_{q}}+C_{u_{2}}\right)$

$$
=C_{k}\left[C_{n} \cos \theta+C_{n_{6}} \cos \phi\right]
$$

If there is no friction loss and symmetrical blading is used, then

$$
\begin{array}{ll}
& C_{n_{1}}=C_{r_{0}} \text { and } \theta=\theta \\
W_{1} & =C_{\mathrm{B}} \times 2 C_{n} \cos \theta=2 C_{\mathrm{b}}\left(C_{1} \cos \alpha-C_{\mathrm{B}}\right) \tag{19.12}
\end{array}
$$

The magnitude of absolute velocity of ateam leaving the first row and entering into the second row of moving tlades is same and its direction only is changed.

$$
\therefore \quad C_{1}{ }^{\prime}=C_{0}
$$

Consider second row of moving blades :
Work done per kg. $\quad W_{2}=C_{u} \cdot C_{w_{1}}^{\prime}$ as $C_{w w_{2}}^{\prime}=0$ because discharge is axial and $\beta^{\circ}=90^{\circ}$
Alternately, $\quad W_{2}^{\prime}=C_{b}\left[C_{n}^{\prime} \cos \theta^{\prime}+C_{r_{\mathrm{g}}}^{\prime} \cos \phi^{\prime}\right]$
For symmetrical blades $\sigma^{\prime}=\phi^{\prime}$
and, if there is no friction loss, then $C_{n}^{\prime}=C_{n}^{\prime}$

$$
\begin{align*}
\therefore & W_{2} & =2 C_{b} C_{n}^{\prime} \cos \theta^{\prime} \\
\therefore & & =2 C_{\mathrm{bt}}\left(C_{1}^{\prime} \cos \alpha^{\prime}-C_{\mathrm{b}}\right) \tag{19.13}
\end{align*}
$$

Now α may be equal to β.

$$
\therefore \quad \begin{aligned}
C_{1}^{\prime} \cos \alpha^{\prime} & =C_{0} \cos \beta=C_{n} \cos \phi-C_{b} \\
& =C_{n} \cos \theta-C_{B}=\left(C_{1} \cos \alpha-C_{B}\right)-C_{u} \\
& =C_{1} \cos \alpha-2 C_{B}
\end{aligned}
$$

Substituting the value of $C_{1}^{\prime} \cos \alpha^{\prime}$ in eqn. (19.13), we get

$$
\begin{align*}
W_{2} & =2 C_{b}\left\{\left(C_{1} \cos \alpha-2 C_{\mathrm{b}}\right)-C_{\Delta}\right] \\
& =2 C_{b}\left(C_{1} \cos \alpha-3 C_{B}\right) \tag{19.14}
\end{align*}
$$

Total work done per kg of steam passing through both stages is given by

$$
\begin{align*}
W_{t} & =W_{1}+W_{2} \\
& =2 C_{B}\left[C_{1} \cos \alpha-C_{B}\right]+2 C_{\Delta}\left[C_{1} \cos \alpha-3 C_{B}\right] \\
& =2 C_{W}\left(2 C_{1} \cos \alpha-4 C_{B}\right) \\
& =4 C_{B}\left(C_{1} \cos \alpha-2 C_{B}\right) \tag{19.15}
\end{align*}
$$

The blade efficiency for two stage impulse turbine is given by

$$
\begin{align*}
\eta_{B} & \left.\left.=\frac{W_{t}}{\frac{C_{1}^{2}}{2}}=4 C_{B} \right\rvert\, C_{1} \cos \alpha_{1}-2 C_{B L}\right] \times \frac{2}{C_{1}^{2}} \\
& =\frac{8 C_{N}}{C_{1}^{2}}\left(C_{1} \cos \alpha-2 C_{B}\right)=8 \frac{C_{B}}{C_{1}}\left(\cos \alpha-2 \cdot \frac{C_{W}}{C_{1}}\right) \\
& =8 \rho(\cos \alpha-2 \rho) \tag{19.16}
\end{align*}
$$

where $\rho($ velocity ratio $)=\frac{C_{b L}}{C_{1}}$,
The blade efficiency for two stage turbine will be maximum when $\frac{d \eta_{V /}}{d p}=0$

$$
\therefore \quad \frac{d}{d \rho}\left[8 \rho \cos \alpha-16 \rho^{2}\right]=0
$$

$$
\begin{equation*}
\therefore \quad 8 \cos \alpha-32 \rho=0 \tag{19.17}
\end{equation*}
$$

From which, $p=\frac{\cos \alpha}{4}$
Substituting this value in eqn. (19.16), we get

$$
\begin{equation*}
\left(\eta_{\mathrm{bt}}\right)_{\max }=8 \cdot \frac{\cos \alpha}{4}\left[\cos \alpha-2 \cdot \frac{\cos \alpha}{4}\right]=\cos ^{2} \alpha \tag{19.18}
\end{equation*}
$$

The maximum work done per kg of steam is obtained by substituting the value of

$$
\begin{align*}
\rho & =\frac{C_{B}}{C_{1}}=\frac{\cos \alpha}{4} \\
C_{1} & =\frac{4 C_{M}}{\cos \alpha} \text { in the eqn. (19.15). } \\
\therefore \quad\left(W_{b}\right)_{\max } & =4 C_{G}\left(\frac{4 C_{b}}{\cos \alpha}, \cos \alpha-2 C_{B}\right) \\
& =8 C_{B}^{2} \tag{19.19}
\end{align*}
$$

The present analysis is done for two stages only. The similar procedure is adopted for analysing the problem with three or four stages.

In general, optimum blade speed ratio for maximum blade efficiency or maximum work the is given by

$$
\begin{equation*}
\rho=\frac{\cos \alpha}{2 \cdot n} \tag{19.20}
\end{equation*}
$$

and work done in the last row $=\frac{1}{2^{n}}$ of total work
where n is the number of moving/rotating blade rows in series.
As the number of rows increases, the utility of last row decreases. In practice, more than two rows are hardly preferred.

19.7.5. Advantages of Velocity Compounded impulse Turbine

1. Owing to relatively large heat drop, a velocity-compounded impulse turbine requires a comparatively small number of stages.
2. Due to number of stages being small, its cost is less.
3. As the number of moving blades' rows in a wheel increases, the maximum stage efficiency and optimum value of ρ decreases.
4. Since the steam temperature is sufficiently low in a two or three row wheel, therefore, cast iron cylinder may be used. This will cause saving in material cost.

Disudvantages of velocity-compounded impulse turbine :

1. It has high stearn consumption and low efficiency (Fig. $\mathbf{i 9 . 1 1}$ on next page).
2. In a single row wheel, the steam temperature is high so cast iron cylinder cannot be used due to phenomenon of growth ; cast steel cylinder is used which is costlier than cost iron.
Example 19.1. A stage of a steam turbine is supplied with steam at a pressure of 50 bar and $350^{\circ} \mathrm{C}$, and exhausts at a pressure of 5 bas. The isentropic efficie:cy of the stage is 0.82 and the steam consumption is $2270 \mathrm{~kg} / \mathrm{min}$. Determine the power output of the stage.

Fig. 19.11

Solution. Steam supply pressure,
Exhaust pressure
Isentropic efficiency of the stage,
Steam consumption,
Power output of the stage, P :
Refer Fig. 19.12.

$$
\begin{aligned}
p_{1} & =50 \mathrm{bar}, 350^{\circ} \mathrm{C} \\
p_{2} & =5 \mathrm{bar} \\
\eta_{\text {renee }} & =0.82 \\
m_{n} & =2270 \mathrm{~kg} / \mathrm{min}
\end{aligned}
$$

Fig. 19.12

From Mollier chart :

Isentropic heat drop
Actual heat drop

$$
\begin{aligned}
h_{1} & =3130.7 \mathrm{~kJ} / \mathrm{kg} \text { of steam } \\
h_{2} & =2640 \mathrm{~kJ} / \mathrm{kg} \text { of steam } \\
& =h_{1}-h_{2}=3130.7-2640=490.7 \mathrm{~kJ} / \mathrm{kg} \\
& =h_{1}-h_{2}^{\prime} \\
\eta_{\text {iema (atage) }} & =\frac{h_{1}-h_{2}^{\prime}}{h_{1}-h_{2}} \\
0.82 & =\frac{h_{1}-h_{2}^{\prime}}{490.7}=\text { or } h_{1}-h_{2}^{\prime}=0.82 \times 490.7=402.4 \mathrm{~kJ} / \mathrm{kg} \\
& =m_{\varepsilon}\left(h_{1}-h_{2}^{\prime}\right) \\
& =\frac{2270}{60} \times 402.4 \mathrm{~kW}=15224 \mathrm{~kW} . \text { (Ans.) }
\end{aligned}
$$

But,

Example 19.2. In a De Laval turbine steam issues from the nozzle with a velocity of $1200 \mathrm{~m} / \mathrm{s}$. The nozzle angle is 20°, the mean blade velocity is $400 \mathrm{~m} / \mathrm{s}$, and the inlet and outlet angles of blades are equal. The mases of ateam flowing through the turbine per hour is 1000 kg . Calculate:
(i) Blade angles.
(ii) Relative velocity of steam entering the blades.
(iii) Tangential force on the blades.
(iv) Power developed.
(v) Blade efficiency.

Take blarle velocity co-efficient as 0.8 .
Solution. Absolute velocity of steam entering the blade, $C_{1}=1200 \mathrm{~m} / \mathrm{s}$
Nozzle blade,

$$
\begin{aligned}
\alpha & =20^{\circ} \\
C_{\mathrm{st}} & =400 \mathrm{~m} / \mathrm{s} \\
\theta & =\text { Outlet blade angle, } \phi \\
K & =0.8
\end{aligned}
$$

Mean blade velocity,
Inlet blade angle,
Blade velocity co-efficient,
Mass of steam flowing through the turbine, $m_{s}=1000 \mathrm{~kg} / \mathrm{h}$.
Refer Fig. 19.13. Procedure of drawing the inlet and outlet triangles (LMS and LMN) respectively is as follows :

Fig. 19.13

- Select a suitable scale and draw line $L M$ to represent $C_{b l}(=400 \mathrm{~m} / \mathrm{s})$.
- At point L make angle of $20^{\circ}(\alpha)$ and cut length $L S$ to represent velocity $C_{1}(=1200 \mathrm{~m} / \mathrm{s})$. Join MS. Produce M to meet the perpendicular drawn from S at P. Thus intet triangle is completed.
By measurement :

$$
\begin{aligned}
& 0=30^{\prime \prime}, C_{n}=M S=830 \mathrm{~m} / \mathrm{s} \\
& 0=\phi=30^{\circ}
\end{aligned}
$$

Now,

$$
C_{r_{2}}=K C_{r_{1}}=0.8 \times 830=664 \mathrm{~m} / \mathrm{s}
$$

- At point M make an angle of $30^{\circ}(\phi)$ and cut the length $M N$ to represent $C_{n}(=664 \mathrm{~m} / \mathrm{s})$. Join $L N$. Produce L to meet the perpendicular drawn from N at Q. Thus outlet triangle is completed.
(a) Blade angles θ, \circ :

As the blades are symmetrical (given)

$$
\therefore \quad \theta=0=\mathbf{3 0}^{\circ} \text {. (Ans.) }
$$

(ii) Relative velocity of steam entering the blades, $\mathbf{C}_{r_{7}}$:

$$
C_{r_{3}}=M S=830 \mathrm{~m} / \mathrm{s} . \quad \text { (Ans.) }
$$

(iii) Tangential force on the blades :

Tangential force $=m_{s}\left(C_{w_{1}}+C_{w_{0}}\right)=\frac{1000}{60 \times 60}(1310)=363.8 \mathrm{~N}$. (Ans.)
(iv) Power developed, P :

$$
P=\dot{m}_{k}\left(C_{\omega_{1}}+C_{\omega_{0}}\right) C_{\Delta t}=\frac{1000}{60 \times 60} \times \frac{1310 \times 400}{1000} \mathrm{~kW}=145.5 \mathrm{~kW} . \quad \text { (Ans.) }
$$

(v) Blade efficiency, $\eta_{b t}$:

$$
\eta_{b i}=\frac{2 C_{b l}\left(C_{t_{1}}+C_{w_{0}}\right)}{C_{1}^{2}}=\frac{2 \times 400 \times 1310}{1200^{2}}=72.8 \% . \quad(\text { Ans. })
$$

Example 19.3. The velocity of steam exiting the nozzle of the impulse stage of a turbine is $400 \mathrm{~m} / \mathrm{s}$. The blades operate close to the maximum blading efficicacy. The nozzle angle is 20°. Considering equiangular blades and neglecting blade friction, calculate for a steam flow of $0.6 . \mathrm{kg} / \mathrm{s}$, the diagram power and the diagram efficiency.
(GATE)
Solution. Given : $\quad C_{1}=400 \mathrm{~m} / \mathrm{s}, \alpha=20^{\circ}, \theta=0 ; \dot{m}_{3}=0.6 \mathrm{~kg} / \mathrm{s}$.
For maximum blade efficiency, $\rho=\frac{C_{k}}{C_{1}}=\frac{\cos \alpha}{2}$

$$
\begin{array}{ll}
\therefore \quad \begin{array}{l}
\frac{C_{b}}{400}
\end{array}=\frac{\cos 20^{\circ}}{2} \quad \text { or } C_{N}=187.9 \mathrm{~m} / \mathrm{s} \\
C_{w} & =C_{1} \cos \alpha=400 \cos 20^{\circ}=375.9 \mathrm{~m} / \mathrm{s} \\
C_{h} & =C_{1} \sin \alpha=400 \sin 20^{\circ}=136.8 \mathrm{~m} / \mathrm{s} \\
\therefore \quad \tan \theta & =\frac{C_{f_{1}}}{C_{w_{1}}-C_{H}}=\frac{136.8}{375.9-187.9}=0.727 \\
\therefore \quad \theta & =\tan ^{-1}(0.727)=36^{\circ}
\end{array}
$$

Fig. 19.14

Now,

$$
C_{r_{1}} \sin \theta=C_{f_{1}} \quad \text { or } C_{r_{1}}=\frac{C_{f_{1}}}{\sin \theta}, \quad \therefore \quad C_{r_{1}}=\frac{136.8}{\sin 36^{a}}=232.7 \mathrm{~m} / \mathrm{s}
$$

Now neglecting friction,

$$
C_{r_{0}}=C_{r_{1}}=232.7 \mathrm{~m} / \mathrm{s}
$$

Since the blades are equiangular, therefore,

$$
\begin{aligned}
& \theta=0=36^{\circ} \\
& C_{u_{\mathrm{j}}}=C_{r_{0}} \cos 36^{\circ}-C_{b t} \\
& =237.7 \cos 36^{\circ}-187.9=0.36 \mathrm{~m} / \mathrm{s} \\
& \therefore \quad C_{w}=C_{w_{1}}+C_{w_{0}}=375.9+0.36=376.26 \mathrm{~m} / \mathrm{s} \\
& \text { Diagram power, } \\
& P=\dot{m}_{n}\left(C_{w_{2}}+C_{\omega_{\mathrm{a}}}\right) \times C_{b 4} \times 10^{-3} \mathrm{~kW} \\
& =0.6 \times 376.26 \times 187.9 \times 10^{-3}=\mathbf{4 2 . 4} \mathbf{k W} \text {. (Ans.) } \\
& \text { Blade or diagram efficiency, } \eta_{b l}=\frac{2 C_{b i}\left(C_{u_{j}}+C_{w_{0}}\right)}{C_{1}^{2}} \\
& =\frac{2 \times 187.9 \times 376.26}{(400)^{2}}=0.884 \text { or } \mathbf{8 8 . 4 \%} \text { (Ans.) }
\end{aligned}
$$

Example 19.4. A single stage steam turbine is supplied with steam at 5 bar, $200^{\circ} \mathrm{C}$ at the rate of $50 \mathrm{~kg} / \mathrm{min}$. It expands into a condenser at a pressure of 0.2 bar. The blade spowd is 400 ms . The nozzles are inclined at an angle of 20° to the plane of the wheel and the outlet blade angle is 30°. Neglecting friction losses, determine the power developed, blade efficiency, and stage efficiency.

Solution. Given : $p_{1}=5$ bar, $200^{\circ} \mathrm{C}$; $p_{2}=0.2$ (U.P.S.C., 1994) $\phi=30^{\circ} ; C_{r_{1}}=C$, (because friction lossea are neglected) $m_{j}=50 \mathrm{~kg} / \mathrm{min}, C_{b l}=400 \mathrm{~m} / \mathrm{s} ; \alpha=20^{\circ}$,

Refer Fig. 19.15
From steam tables : At 5 bar, $200^{\circ} \mathrm{C}$: $\quad h_{1}=2855.4 \mathrm{~kJ} / \mathrm{kg}: \quad s_{1}=7.0592 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
At 0.2 bar: $\quad h_{f_{2}}=251.5 \mathrm{~kJ} / \mathrm{kg}, \quad h_{f s_{3}}=2358.4 \mathrm{~kJ} / \mathrm{kg}$

$$
{ }^{s} f_{t}=0.832 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K} ; s_{f t}=7.0773 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
$$

Since the steam expansion takes place isentropically,

$$
\therefore
$$

$$
\begin{aligned}
s_{1} & =x_{2} \\
7.0592 & =0.8321+x_{2} \times 7.0773 \\
x_{2} & =\frac{7.0592-0.8321}{7.0773}=0.88
\end{aligned}
$$

\therefore Enthalpy of steam at 0.2 bar,

$$
\begin{aligned}
& h_{2}=h_{f_{1}}+x_{2} h_{f \mathrm{f}_{2}} \\
&=251.5+0.88 \times 2358.4=2326.9 \mathrm{~kJ} / \mathrm{kg} \\
&=h_{1}-h_{2}=2855.4-2326.9=528.5 \mathrm{~kJ} / \mathrm{kg} \\
& \text { Enthalpy drop } \\
& \text { Velocity of steam entering the blades, }
\end{aligned} \quad \begin{aligned}
C_{1} & =44.7 \sqrt{h_{1}-h_{2}}=44.7 \sqrt{528.5} \simeq 1028 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The velocity diagram is shown in Fig. 19.15
Now,

$$
\begin{aligned}
C_{w_{1}} & =1028 \cos 20^{\circ}=966 \mathrm{~m} / \mathrm{s} \\
C_{f_{1}} & =1028 \sin 20^{\circ}=351.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\tan \theta=\frac{C_{f_{5}}}{C_{1} \cos 20^{\circ}-C_{b l}}=\frac{351.6}{1028 \cos 20^{\circ}-400}=0.6212
$$

$$
\therefore \quad \theta=\tan ^{-1}(0.6212)=31.85^{\circ}
$$

Fig. 19.15
Now,

$$
\begin{array}{rlrl}
\therefore & C_{n} & =\frac{351.6}{\sin 31.85^{\circ}}=666 \mathrm{~m} / \mathrm{s} \\
\therefore \quad C_{\omega_{0}} & =C_{r_{i}} \cos 30^{\circ}-C_{t} \\
& =666 \cos 30^{\circ}-400=177 \mathrm{~m} / \mathrm{s} & \left(\because C_{n}=C_{n}\right)
\end{array}
$$

Power developed,

$$
\begin{align*}
P & =\dot{m}_{s}\left(C_{w_{1}}+C_{u_{0}}\right) C_{B} \\
& =\frac{50}{60}(966+177) \times 400 \times 10^{-3} \mathrm{~kW}=381 \mathrm{~kW} . \text { (Ans.) } \tag{Ans.}\\
\eta_{\mathrm{bl}} & =\frac{2 C_{b l}\left(C_{w q}+C_{w e_{0}}\right)}{C_{1}^{2}} \\
& =\frac{2 \times 400 \times(966+177)}{(1028)^{2}}=0.865 \text { or } 86.5 \% . \quad \text { (Ans.) }
\end{align*}
$$

Blade efficiency,

Since there are no losses, therefore,

$$
\text { Stage efficiency } \quad=\text { blade efficiency }=86.5 \% . \quad \text { (Ana. })
$$

Example 19.5. The following data relate to a single stage impulse turbine :
Steam velocity $=600 \mathrm{~m} / \mathrm{s} ; \quad$ Blade speed $\quad=250 \mathrm{~m} / \mathrm{s}$
Nozzle angle $=20^{\circ}$ Blade outlet angle $=25^{\circ}$.
Neglecting the effect of friction, calculate the work developed by the turbine for the steam flow rate of $20 \mathrm{~kg} / \mathrm{s}$. Also calculate the axial thrust on the bearings.

Solution. Absolute velocity of steam entering the blades, $C_{1}=600 \mathrm{~m} / \mathrm{s}$
Blade speed,

$$
C_{\mathrm{s}}=250 \mathrm{~m} / \mathrm{s} ; \text { Nozzle angle, } \alpha=20^{\circ}
$$

Blade outlet angle,
$\phi=25^{\circ}$; Steam flow rate, $m_{s}=20 \mathrm{~kg} / \mathrm{s}$
Refer Fig. 19.16.

- Triangle LMS is drawn with the above data.
- Then angle LMN i.e., $\phi=25^{\circ}$ is drawn such that $N M=M S$ (because effect of friction is to be neglected i.e., $K=1$).
- Join $L N$ by vector C_{0} which represents the velocity of steam at outlet from the wheel, This completes both inlet and outlet triangles.

Fig. 19.16
By measurement :

$$
C_{w}=C_{w_{1}}+C_{w_{0}}=655 \mathrm{~m} / \mathrm{s} ; C_{f_{1}}=200 \mathrm{~m} / \mathrm{s} ; C_{f_{0}}=160 \mathrm{~m} / \mathrm{s} .
$$

Work developed, W :

$$
\begin{aligned}
W & =\dot{m}_{s}\left(C_{w_{1}}+C_{w_{s}}\right) C_{d}=20 \times 655 \times 250 \\
& =3275000 \mathrm{Nm} / \mathrm{s} . \quad \text { (Ans.) }
\end{aligned}
$$

Axial Thrust :

Axial thrust

$$
=\dot{m}_{s}\left(C_{f_{1}}-C_{f_{0}}\right)=20(200-160)=800 \mathrm{~N} . \quad \text { (Ans.) }
$$

Example 19.6. A single row impulse turbine develops 132.4 kW at a blade speed of $175 \mathrm{~m} / \mathrm{s}$, using 2 kg of steam per sec. Steam leaves the nozzle at $400 \mathrm{~m} / \mathrm{s}$. Velocity coefficient of the blades is 0.9. Steam leaves the turbine blades axially.

Determine nozzle angle, blade angles at entry and exit, assuming no shock.
Solution. Power developed, $P=132.4 \mathrm{~kW}$
Blade speed,

$$
C_{S d}=175 \mathrm{~m} / \mathrm{s}
$$

Steam used,

$$
\dot{m}_{z}=2 \mathrm{~kg} / \mathrm{s}
$$

Velocity of steam leaving the nozzle, $C_{1}=400 \mathrm{~m} / \mathrm{s}$
Blade velocity co-efficient, $K=0.9$
Power developed,

$$
P=\dot{m_{z}}, \frac{\left(C_{m}+C_{\omega_{0}}\right) \times C_{b l}}{1000} \mathrm{~kW}
$$

$$
132.4=\frac{2\left(C_{w_{1}}+C_{w_{0}}\right) \times 175}{1000} \text { or }\left(C_{w_{1}}+C_{w_{0}}\right)=\frac{1324 \times 1000}{2 \times 175}=378 \mathrm{~m} / \mathrm{s}
$$

$$
C_{\omega_{5}}=0 \text {, since the discharge is axial. }
$$

Construct the velocity diagram as shown in Fig. 19.17.
In this diagram $\frac{C_{r_{0}}}{C_{n}}=0.9, \beta=90^{\circ}$, since the discharge is axial ; and

Fig. 19.17
From the diagram (by measurement) :
Nozzle angle,

$$
\begin{array}{ll}
\alpha=21^{\circ} . & \text { (Ans.) } \\
0=36^{\circ} . & \text { (Ans.) } \\
0=32^{\circ} . & \text { (Ans.) }
\end{array}
$$

Blade outlet angle,
Example 19.7. A simple impulse turbine has a mean blade speed of $200 \mathrm{~m} / \mathrm{s}$. The nozzles are inclined at 20° to the plane of rotation of the blades. The steam velocity from nozzles is $600 \mathrm{~m} / \mathrm{s}$. The turbine uses $3500 \mathrm{~kg} / \mathrm{h}$ of steam. The absolute velocity at exit is along the axits of the turbine. Determine :
(iii) The diagram efficiency.
(iv) The axial thrust (per kg ateam per second).

Assume inlet and outlet angles to be equal.
(U.P.S.C., 1998)

Solution. Given : $C_{\Delta l}=200 \mathrm{~m} / \mathrm{s} ; \alpha=20^{\circ} ; C_{1}=600 \mathrm{~m} / \mathrm{s} ; m_{d}=3500 \mathrm{~kg} / \mathrm{H} ; \beta=90^{\circ} ; \theta=9$.
(i) Inlet and exit angles of the blades, $0, \phi$:

Refer Fig. 19.18

Fig. 1918.

$$
\begin{array}{lrl}
& C_{f_{1}} & =C_{1} \sin 20^{\circ}=600 \sin 20^{\circ}=205.2 \mathrm{~m} / \mathrm{s} \\
& \tan \theta & =\frac{S P}{P M}=\frac{C_{h}}{C_{1} \cos 20^{\circ}-C_{b t}}=\frac{205.2}{600 \cos 20^{\circ}-200}=0.564 \\
\therefore & \theta & =\tan ^{-1}(0.564)=29.4^{\circ} . \quad \text { (Ans.) } \\
\text { Also } & \theta & =\phi \quad \ldots \text { (Given) } \\
\therefore & \phi & =29 . .^{\circ} . \text { (Ans.) }
\end{array}
$$

(ii) The power output of the turbine, P :

$$
\begin{aligned}
P & =\dot{m}_{s}\left(C_{w_{s}}+C_{w_{0}}\right) C_{\mathrm{s}} \\
& =\frac{3500}{3600}\left(600 \cos 20^{*}+0\right) \times 200 \times 10^{3} \mathrm{~kW}=109.6 \mathrm{~kW} . \quad \text { (Ans.) }
\end{aligned}
$$

$$
\left(C_{w e}=0\right. \text {, since the discharge is axinl) }
$$

(iii) Tha blade or diagram efficiency, η_{10} :

$$
\begin{aligned}
\eta_{U t} & =\frac{2 C_{U}\left(C_{w_{1}}+C_{w_{v}}\right)}{C_{1}^{2}} \\
& =\frac{2 \times 200\left(600 \cos 20^{\circ}+0\right)}{600^{2}}=0.626 \text { or } 62.6 \% . \quad \text { (Ans.) }
\end{aligned}
$$

(iv) The axial thrust (per $\mathbf{k g}$ ateam per second) :

The axial thrust per kg per second

$$
=1 \times\left(C_{f_{1}}-C_{f_{0}}\right) N
$$

where

$$
C_{h}=C_{1} \sin 20^{\circ}=600 \sin 20^{\circ}=205.2 \mathrm{~m} / \mathrm{s}
$$

where

$$
C_{f_{1}}=C_{1} \sin 20^{\circ}=600 \sin 20^{\circ}=205.2 \mathrm{~m} / \mathrm{s} .
$$

Now,

$$
\frac{C_{f}}{C_{b t}}=\tan 29.4^{2}
$$

$$
\therefore \quad C_{f_{0}}=200 \times \tan 29.4^{\circ}=112.69 \mathrm{~m} / \mathrm{s}
$$

Substituting the values, we get
Axial thrust (per kg steam per second)

$$
=1 \times(205.2-112.69)=92.51 \mathrm{~N} . \text { (Ans.) }
$$

${ }^{50}$ Example 19.8. Steam with absolute velocity of $300 \mathrm{~m} / \mathrm{s}$ is supplied through a nozzle to a single stage impulse turbine. The nozzle angle is 25°. The mean diameter of the blade rotor is 1 metre and it has a speed of 2000 r.p.m. Find suitable blade angles for zero axial thrust. If the blade velocity co-efficient is 0.9 and the steam flow rate is $10 \mathrm{~kg} / \mathrm{s}$, calculate the power developed.

Solution. Absolute velocity of steam entering the blade, $C_{1}=300 \mathrm{~m} / \mathrm{s}$
Nozzle angle,
Mean diameter of the rotor blade,

$$
\begin{aligned}
\alpha & =25^{\circ} \\
D & =1 \mathrm{~m} \\
N & =2000 \mathrm{r} . \mathrm{p} . \mathrm{m} . \\
K & =0.9 \\
\dot{m}_{\mu} & =10 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Speed of the rotor,
Blade velocity co-efficient,
Steam flow rate,

Blade angles :

Blade speed,

$$
C_{H}=\frac{\pi D N}{60}=\frac{\pi \times 1 \times 2000}{60}=105 \mathrm{~m} / \mathrm{s} .
$$

Fig. 19.19

- With the above data (ie., $C_{1}=300 \mathrm{~m} / \mathrm{s}, C_{\mathrm{B}}=105 \mathrm{~m} / \mathrm{s}$ and $\alpha=25^{\circ}$) draw triangle LMS (Fig. 19.19). From S draw perpendicular $S P$ on $L M$ produced. Measure C_{η}.
- From S draw a line parallel to $L P\left(\because C_{f_{1}}=C_{f_{0}}\right)$ and from point M draw an are equal to $C_{r_{0}}\left(=0.9 C_{n}\right)$ to get the point of intersection N. Complete the triangle LMN. From N draw perpendicular $N Q$ on $P L$ produced to get $C_{f_{0}}$.
Measure θ and ϕ (the blade angles) from the velocity diagram.

$$
\theta=37^{\circ} \text { and } \theta=42^{\circ} . \text { (Ans.) }
$$

Power developed, P :

$$
P=\frac{\dot{m}_{s}\left(C_{w n}+C_{w v_{0}}\right) \times C_{b l}}{100}=\frac{10 \times 306 \times 105}{1000}=321.3 \mathrm{~kW} . \quad \text { (Ans.) }
$$

${ }^{* 7}$ Example 19.9. In an impulse turbine (with a single row wheel) the mean diameter of the blades is 1.05 m and the speed is $3000 \mathrm{rp.m}$. The nozzle angle is 18°, the ratio of blade speed to steam speed is 0.42 and the ratio of the relative velocity at outlet from the blades to that at inlet is 0.84 . The outlet angle of the blade is to be made 3° less than the inlet angle. The steam flow is $10 \mathrm{~kg} / \mathrm{s}$. Draw the velocity diagram for the blades and derive the following:
$\begin{array}{ll}\text { (i) Tangential thrust on the blades } & \text { (ii) Axial thrust on the blades } \\ \text { (iii) Resultant thrust on the blades } & \text { (iv) Power developed in the blades }\end{array}$
(v) Blading efficiency.

Solution. Mean diameter of the blades, $D=1.05 \mathrm{~m}$
Speed of the turbine,

$$
\begin{equation*}
N=3000 \text { r.p.m. } \tag{P.U.}
\end{equation*}
$$

Nozzle angle,

$$
\alpha=18^{\circ}
$$

Ratio of blade speed to steam speed,

$$
\rho=0.42
$$

Ratio,

$$
\frac{C_{n_{n}}}{C_{n_{1}}}=0.84
$$

Outlet blade angle,

$$
\phi=\theta-3^{\circ}
$$

Steam flow rate

$$
\dot{m}_{s}=10 \mathrm{~kg} / \mathrm{s}
$$

Blade speed,

$$
C_{d}=\frac{\pi D N}{60}=\frac{\pi \times 1.05 \times 3000}{60}=164.5 \mathrm{~m} / \mathrm{s}
$$

But

$$
\rho=\frac{C_{B L}}{C_{1}}=0.42 \text { (given) }
$$

$$
\therefore \quad C_{1}=\frac{C_{Q}}{0.42}=\frac{164.5}{0.42}=392 \mathrm{~m} / \mathrm{s}
$$

With the data,

$$
C_{1}=392 \mathrm{~m} / \mathrm{s}
$$

$$
\alpha=18^{\circ}, \text { complete } \Delta L M S
$$

$$
\left.\theta=30^{\circ} \text { (on measurement }\right)
$$

$\therefore \quad \theta=30^{\circ}-3=27^{\circ}$.
Now complete the $\triangle L M N$ by taking $\phi=27^{\circ}$ and $C_{r_{0}}=0.84 C_{n}$.
Finally complete the whole diagram as shown in Fig. 19.20.
(i) Tangential thrust on the blades :

Tangential thrust

$$
\begin{equation*}
=\dot{m}_{3}\left(C_{w_{1}}+C_{w_{9}}\right)=10 \times 390=3900 \mathrm{~N} \tag{Ans.}
\end{equation*}
$$

Fig 19.20
(ii) Axial thrust :

Axial thrust

$$
=\dot{m}_{s}\left(C_{f_{1}}-C_{f_{0}}\right)=10(120-95)=250 \mathrm{~N} . \text { (Ans.) }
$$

(iii) Resultant thrust :

Resultant thrust

$$
=\sqrt{(3900)^{2}+(250)^{2}}=3908 \mathrm{~N} . \text { (Ans.) }
$$

(iv) Power developed, P :

$$
P=\frac{m_{2}\left(C_{i n}+C_{k C_{0}}\right) \times C_{k}}{1000}=\frac{10 \times 390 \times 164.5}{1000}=641.55 \mathrm{~kW} . \quad \text { (Ans.) }
$$

(v) Blading efficiency, η_{k} :

$$
\eta_{b i}=\frac{2 C_{b i}\left(C_{\mathrm{re}_{1}}+C_{i \sigma_{0} i}\right)}{C_{1}^{2}}=\frac{2 \times 164.5 \times 390}{392^{2}}=83.5 \% \text {. (Ans.) }
$$

Example 19.10. In a stage of impulse roaction turbine provided with single row wheel, the mean diameter of the blades in 1 m . It runs at 3000 r.p.m. The steam issues from the nozzle at a velocity of $350 \mathrm{~m} / \mathrm{s}$ and the nozzle angle is 20°. The rotor blades are equiangular. The blade friction factor is 0.86. Determine the power developed if the axial thrust on the end bearing of a rotor is 118 N .

Solution. Mean diameter of the blades, $D=1 \mathrm{~m}$
Speed of the turbine,

$$
N=3000 \text { r.p.m. }
$$

Velocity of steam issuing from the nozzle, $C_{1}=350 \mathrm{~m} / \mathrm{s}$
Nozzle angle,
$\alpha=20^{\circ}$
Blade angles,
$\theta=\phi$
Blade friction factor,

$$
K=0,86
$$

Axial thrust

$$
=118 \mathrm{~N}
$$

$=118 \mathrm{~N}$
Power developed, P :
Blade, velocity,

$$
C_{U}=\frac{\pi D N}{60}=\frac{\pi \times 1 \times 3000}{60}=157 \mathrm{~m} / \mathrm{s}
$$

Fig. 19.21

- With the data, $C_{b t}=157 \mathrm{~m} / \mathrm{s}, C_{1}=350 \mathrm{~m} / \mathrm{s}, \alpha=20^{\circ}$, draw the $\Delta L M S$ (Fig. 19.21).

By measurement,
$\theta=35^{\circ}$
Since the blades are equiangular, $\theta=\phi=35^{\circ}$

- Now with
$\phi=35^{\circ}$ and $C_{r_{0}}=0.86 C_{r_{1}}$, complete the $\triangle L M N$.
On measurement ; $\quad C_{f_{0}}=120 \mathrm{~m} / \mathrm{s}, C_{f_{0}}=102.5 \mathrm{~m} / \mathrm{s}$
Also, axial thrust $\quad \dot{m}_{n}\left(C_{f_{1}}-C_{f_{6}}\right)=118$
$\therefore \quad \quad \dot{m}_{s}=\frac{118}{C_{f_{i}}-C_{f_{c}}}=\frac{118}{(120-102.5)}=6.74 \mathrm{~kg} / \mathrm{s}$
Further in this case,
$C_{w}=C_{w_{2}}+C_{w_{0}}=C_{\omega_{1}}+{ }^{*}\left(-C_{\omega_{0}}\right)=320 \mathrm{~m} / \mathrm{s} \quad\left({ }^{*} \beta>90^{\circ}\right)$
Now, power developed,

$$
\begin{aligned}
P & =\frac{\dot{m}_{z}\left(C_{w_{l}}+C_{w_{\mathrm{e}}}\right) \times C_{W}}{1000} \mathrm{~kW} \\
& =\frac{6.74 \times 320 \times 157}{1000}=338.6 \mathrm{~kW} . \text { (Ans.) }
\end{aligned}
$$

Example 19.11. A simple impulse turbine has one ring of moving blades running at $150 \mathrm{~m} / \mathrm{s}$. The absolute velocity of steam at exit from the stage is $85 \mathrm{~m} / \mathrm{s}$ at an angle of 80° from the tangential direction. Blade velocity co-efficient is 0.82 and the rate of steam flowing through the stage is $2.5 \mathrm{~kg} / \mathrm{s}$. If the blades are equiangular, determine :
$\begin{array}{ll}\text { (i) Blade angles ; } & \text { (ii) Nozzle angle ; }\end{array}$
(iii) Absolute velocity of steam issuing from the nozzle ;
(iv) Axial thrust.

Solution. Blade velocity, $C_{B}=150 \mathrm{~m} / \mathrm{s}$
Absolute velocity of steam at exit from the stage, $C_{0}=85 \mathrm{~m} / \mathrm{s}$
Angle,

$$
\beta=80^{\circ}
$$

Blade velocity co-efficient, $K=\frac{C_{r_{5}}}{C_{r_{1}}}=0.82$
Rate of steam flowing through the stage, $m_{s}=2.5 \mathrm{~kg} / \mathrm{s}$
Blades are equiangular, i.e., $\theta=\phi$.

- With the above given data velocity triangle for exit can be drawn to a suitable scale. From that, value $\theta=\theta$ can be obtained. Also the value of C_{n}, can be obtained which helps to get the value of C_{r}, with the help of given value of ' K '. With these values having being known the inlet velocity triangle of the velocity diagram can be completed to get the value of C_{1}, the absolute velocity of steam issuing from the nozzle and value of axial thrust can also be calculated. The Fig. 19.22 gives the velocity diagram of the turbine stage to a suitable scale.
- From the outlet velocity $\Delta L M N$

Fig. 1922
By measurement,
$C_{r_{0}}=186 \mathrm{~m} / \mathrm{s}$
$\therefore \quad C_{n}=\frac{C_{\text {仡 }}}{K}=\frac{186}{0.82}=226.8 \mathrm{~m} / \mathrm{s}$
(i) Blades angles $\theta, 0$:

By measurement $\quad \theta=\phi=$ blade angles $=27^{\circ}$. (Ans.)
(ii) Nozzle angle, α :

By measurement ; nozzle angle, $\alpha=16^{\circ}$. (Ans.)
(iii) Absolute velocity, C_{1} :

Absolute velocity of steam issuing from the nozzle,

$$
C_{1}=366 \mathrm{~m} / \mathrm{s} \text { (by measurement). (Ans.) }
$$

(iv) Axial thrust :

Also,

$$
\left.\begin{array}{l}
C_{f_{0}}=84 \mathrm{~m} / \mathrm{s} \\
C_{f_{1}}=102 \mathrm{~m} / \mathrm{s}
\end{array}\right] \text { By measurement. }
$$

\therefore Axial thrust

$$
\begin{aligned}
& =\dot{m}_{n}\left(C_{f_{1}}-C_{f_{6}}\right) \\
& =2.5 \cdot(102-84)=45 \mathrm{~N} . \quad \text { (Ans.) }
\end{aligned}
$$

Example 19.12. One stage of an impulse turbine consists of a converging nozzle ring and one ring of moving blades. The nozzles are inclined at 22° to the blades whose tip angles are both 35°. If the velocity of cteam at exit from nozzle is $660 \mathrm{~m} / \mathrm{s}$, find the blade speed so that the steam passes on without shock. Find the diagram efficiency neglecting losses if the blades are run at this speed.
(U.P.S.C.)

Solution. Given : $\alpha=22^{\circ} ; \theta=\phi=35^{\circ} ; C_{1}=660 \mathrm{~m} / \mathrm{s}$.

Fie. 19.23
In case of impulse turbine, maximum blade efficiency,

$$
\begin{equation*}
\left(\eta_{W S}\right)_{\max }=\frac{\cos ^{2} \alpha}{2}(1+K Z) \tag{19.19}
\end{equation*}
$$

where $K(=$ blade velocity co-efficient $)=1$,

$$
\begin{aligned}
& Z=\frac{\cos \phi}{\cos \theta}=1 \quad(\because \text { Blades are equiangular) } \\
& \therefore \quad \eta_{b d}=\frac{\cos ^{2} \alpha}{2}(1+1)=\cos ^{2} \alpha=\left(\cos 22^{\circ}\right)^{2}=0.86 \text { or } 86 \% \text { (Ans.) }
\end{aligned}
$$

Also,

$$
\begin{equation*}
\rho_{\text {opt }}=\frac{\cos \alpha}{2} \tag{19.8}
\end{equation*}
$$

or

$$
\begin{array}{ll}
& \frac{C_{B L}}{C_{1}}=\frac{\cos 22^{\circ}}{2}=0.4636 \\
\therefore & C_{S}
\end{array}
$$

E\$Example 19.13. In a single stage impulse turbine the mean diameter of the blade ring is 1 metre and the rotational speed is 3000 r.p.m. The steam is issued from the noszle at $300 \mathrm{~m} / \mathrm{s}$ and nozzle angle is 20°. The blades are equiangular. If the friction loss in the blade channel is 19% of the kinetic energy corresponding to the relative velocity at the inlet to the blades, what is the power developed in the blading when the axial thrust on the blades is 98 N ?

Solution. Mean diameter of the blade ring, D
Speed of the turbine,

$$
=1 \mathrm{~m}
$$

$$
N=3000 \text { r.p.m. }
$$

Absolute velocity of steam issuing from the nozzle, $C_{1}=300 \mathrm{~m} / \mathrm{s}$
Nozzle angle;
Blade angles are equiangular,
i.e.,

$$
\begin{aligned}
\alpha & =20^{\circ} \\
\theta & =\emptyset \\
& =19 \% \\
C_{n_{n}} & =(1-0.19) C_{r_{3}}=0.81 C_{n_{1}} \\
& =98 \mathrm{~N}
\end{aligned}
$$

Axial thrust on the blades

Power developed, P :

Blade speed,

$$
C_{N}=\frac{\pi D N}{60}=\frac{\pi \times 1 \times 3000}{60}=157.1 \mathrm{~m} / \mathrm{m}
$$

Also

$$
\theta=\phi(\text { given })
$$

Now, velocity diasram is drawn to a suitable senle as shown in Fig. 19.24.

By measurement (from diagram) ;

$$
\begin{aligned}
C_{u_{1}} & =283.5 \mathrm{~m} / \mathrm{s} ; C_{u}=54 \mathrm{~m} / \mathrm{s} \\
C_{6} & =100.5 \mathrm{~m} / \mathrm{s} \\
C_{F} & =81 \mathrm{~m} / \mathrm{s} \\
& =m_{1}\left(C_{f}-C_{f}\right)
\end{aligned}
$$

Axial thrust

$$
98=m_{n}(100.5-81) \text { or } m_{s}=\frac{98}{100.5-81}=5.025 \mathrm{~kg}
$$

Power developed,

$$
\begin{aligned}
P & =\frac{\left.m_{,} \mid C_{2}+{ }^{*}\left(-C_{\mathrm{up}}\right)\right]}{1000} C_{\mathrm{N}} \quad(* \beta>90 \\
& =\frac{5.025(283.5-54) \times 157.1}{1000}=181.2 \mathrm{~kW} .
\end{aligned}
$$

Example 19.14. Show that the maximum passible cfficiency of a De Lacal steam turbine is 88.3\% when nozzle angle in 20 . Dovtuce the formula used.

Solution. Maximum possible efficiency, $\eta_{\text {aas }}=88.39$
Nozzle angle, $\alpha=20^{\circ}$
Maximum possible efficiency of a De-Laval turbine (impulse turbine) $=\cos ^{2} \alpha$ where α is the nozzle angle.
$\therefore \quad \eta_{\text {max }}=\cos ^{2} 20^{\circ}=(0.9396)^{2}=0.883=88.3 \%$. (Proved).
For derivation of the formula used refer Article 19.7.

In a simple impulsc turbine the nozzles are inclined at 20° to the direction of motion of the moving blades. The steam leaves the nozzle at $375 \mathrm{~m} / \mathrm{s}$. The blade velocity is $165 \mathrm{~m} / \mathrm{s}$. Calculate suitable inlet and outlet angles for the blades in order that the axial thrust is zcro. The relative velocity of steam as it flows over the blades is reduced by 15% by friction. Also, determine the pouer deceloped for a flow rate of $10 \mathrm{~kg} / \mathrm{s}$.

Solution. Nozzles,

$$
\alpha=20^{\circ}
$$

Velocity of steam issuing from the nozzles, $C_{1}=375 \mathrm{~m} / \mathrm{s}$
Blade speed

$$
\begin{aligned}
C_{B} & =165 \mathrm{~m} / \mathrm{s} \\
& =\text { zero i.e., } C_{f_{1}}=C_{f_{0}}
\end{aligned}
$$

$\frac{C_{r_{0}}}{C_{n}}=(1-0.15)=0.85$, i.e., 15% loss due to friction, steam flow rate, $\dot{m}_{n}=10 \mathrm{~kg} / \mathrm{s}$.

Inlet and outlet angles:

With the above given data, draw velocity diagram to a suitable scale as shown in Fig. 19.25.

Fig. 19.25
By measurement (from velocity diagram),

$$
\left.\begin{array}{l}
\theta=35^{\circ} \\
\theta=42^{\circ} \\
\beta=100^{\circ}
\end{array}\right\} \cdot \text { (Ans.) }
$$

Power developed, \mathbf{P} :
Also.

$$
C_{w_{1}}=354 \mathrm{~m} / \mathrm{s} ; C_{w_{0}}=24 \mathrm{~m} / \mathrm{s}
$$

(By measurement)
\therefore Power developed,

$$
P=\frac{m_{1}\left[C_{w_{1}}+C_{\omega_{1}} \mid \times C_{B}\right.}{1000}
$$

$$
=\frac{\dot{m}_{2}\left(C_{w_{1}}+\left(-C_{w_{2}}\right) H \times C_{b t}\right.}{1000}=\frac{10[354+(-24)] \times 165}{1000}=544.5 \mathrm{~kW}
$$

(Ans.)

Example 19.16. In a single stage impulse turbine nozzle angle is 20° and blade angles are equal. The velocity coefficient for blade is 0.85 . Find maximum blade efficiency ponsible. If the actual blade efficiency is 92% of the moximum blade efficiency. find the possible ratio of blade speed to steam specd.

Solution. Nozzle angle,

$$
\begin{aligned}
\alpha & =20^{-} \\
\theta & =0
\end{aligned}
$$

Blade angles are equal i.e.,
Blade velocity co-efficient, $K=0.85\left(=\frac{C_{2}}{C_{r_{1}}}\right)$
Actual blade efficiency

$$
=92 \% \text { of maximum blade efficiency }
$$

Ratio of blade speed to steam speed, $\rho=\frac{C_{W}}{C_{1}}$

Maximum blade efficiency is given by :

$$
\begin{align*}
\left(\eta_{6,}\right)_{\max } & =\frac{\cos ^{2} \alpha}{2}(1+K Z) \tag{19.19}\\
& =\frac{\cos ^{2} \alpha}{2}(1+K) \text { ns } Z=\frac{\cos \theta}{\cos \theta}=1 \\
\left(\eta_{\left(k^{2}\right)}\right)_{\max } & =\frac{\cos ^{2} 20^{\circ}}{2}(1+0.85)=0.816 \text { or } 81.6 \%
\end{align*}
$$

The actual efliciency of the turbine

$$
=0.92 \times 0.816=0.75
$$

The blade efficiency of a single stage impulse turbine is given by be relation,

$$
\begin{aligned}
\eta_{b j} & =2\left(1+K \times p \times \cos \alpha-\rho^{2}\right) \\
0.75 & \left.=2(1+0.85) / \rho \times \cos 20-p^{2}\right) \\
0.75 & =2 \times 1.85\left(0.94 \rho-\rho^{2}\right) \\
0.203 & =0.94 \rho-p^{2} \\
\rho^{2}-0.94 \rho+0.203 & =0 \\
\therefore \quad \rho & =\frac{0.94 \pm \sqrt{(0.94)^{2}-4 \times 0.203}}{2}=\frac{0.94 \pm 0.267}{2} \text { or } \rho=0.603 \text { or } 0.336
\end{aligned}
$$

Hence persible rution, $p=0.603$ or 0.336 . (Ans.)
Ex Example 19.17. The following data refer to a single stage impulse turbine :
Isentropic nazzle heat drop $=251 \mathrm{kd} / \mathrm{kg} ;$ nozzle efficiency $=90 \mathrm{C} ;$ nozzle angle $=20^{\circ}$; ratio of blade speed to whirl component of steam speed $=0.5$; blade velocity co-efficient $=0.9$; the velocity of steam entering the nozzle $=20 \mathrm{~m} / \mathrm{s}$.

Determine : (i) The blade angles at inlet and outlet if the steam enters into the blades without shock and leaves the blades in an axial dirvetion.
(ii) Blade efficiency.
(iii) Power developed and axial thrust if the steam flow is $8 \mathrm{~kg} / \mathrm{s}$.
Solution. Isentropic heat drop
$=251 \mathrm{ko} / \mathrm{kg}$
Nozzle efficiency,
$\eta_{\text {trause }}=90 \%$
Nozzle angle,
$\alpha=20^{\circ}$

Ratio of blade speed to whirl component of steam speed $=0.5$

Blade velocity coefficient.

$$
K=0.9
$$

Velocity of steam entering the nozzle $=20 \mathrm{~m} / \mathrm{A}$

(i) Blade angles :

$$
\begin{aligned}
\eta_{\text {tale }} & =\frac{\text { Useful heat drop }}{\text { Isentropic heat drop }} \\
0.9 & =\frac{\text { Useful heat drop }}{251}
\end{aligned}
$$

Nozzle efficiency is given by : $\quad \eta_{\text {maze }}=\frac{\text { Isentropic heat drop }}{\text { Is }}$
or
\therefore Useful heat drop

$$
=0.9 \times 251=225.9 \mathrm{~kJ} / \mathrm{kg}
$$

Applying the energy equation to the nozzle, we get
8.e.,

Other data given :
and

$$
\begin{aligned}
\frac{C_{1}^{2}-20^{2}}{2} & =225.9 \times 1000 \\
\therefore \quad C_{1}^{2} & =2 \times 225.9 \times 1000+400=452200 \\
C_{1} & =672.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\alpha=20^{,}, \frac{C_{n}}{C_{s}}=0,5, K=\frac{C_{R_{0}}}{C_{n}}=0,9
$$

$C_{\omega_{0}}=0$, as the steam leaves the blades axially.
$\therefore \quad C_{0}=C_{f_{0}}$

Pic 15:36
With the above data construct the velocity triangles as follows :

- Select a mutable scale, say $1 \mathrm{~cm}=50 \mathrm{~m} / \mathrm{s}$.
- Draw a honzontal line through a point L. and angle $\alpha=20^{\circ}$. Mark the point along $L S$ as

$$
L . S=C_{3}=672.4 \mathrm{~m}=\frac{672.4}{50}-13,5 \mathrm{~cm}
$$

- Draw a line through S which is perpendicular to the horizontal line through L and it cuts at the point P. Measure the distance $L P=12.7 \mathrm{~cm}$.
and

$$
\begin{aligned}
C_{w} & =C_{\omega}=12.7 \mathrm{~cm} . \\
C_{w} & =0.5 C_{w}=0.5 \times 12.7=6.35 \mathrm{~cm} .
\end{aligned}
$$

- Mark the point M as $L M=C_{B C}=6.35 \mathrm{~cm}$
- Join point MS and complete the inlet velocity triangle LMS.
- Measure MS $\left(C_{r_{2}}\right)=7.7 \mathrm{~cm}$.

$$
C_{r_{0}}=0.9 \times 7.7=6.93 \mathrm{~cm}
$$

- Draw a perpendicular line through point L to the line $L M$. From M cut an are of radius 6.93 cm to cut the vertical line through L and mark the point N and join $M N$ which completes the outlet triangle $L M N$.
Now find out velocities converting lengths into velocities :

$$
\begin{aligned}
C_{1} & =672.4 \mathrm{~m} / \mathrm{s} \\
C_{\mathrm{w}} & =12.7 \times 50=635 \mathrm{~m} / \mathrm{s} \\
C_{b} & =0.5 C_{\mathrm{w}}=0.5 \times 635=317.5 \mathrm{~m} / \mathrm{s} \\
C_{r_{1}} & =7.7 \mathrm{~cm}=7.7 \times 50=385 \mathrm{~m} / \mathrm{s} \\
C_{h_{6}} & =0.9 C_{r_{1}}=0.9 \times 385=346.5 \mathrm{~m} / \mathrm{s} \\
C_{h_{1}} & =4.45 \mathrm{~cm}=4.45 \times 50=222.5 \mathrm{~m} / \mathrm{s} \\
C_{6} & =2.6 \mathrm{~cm}=2.6 \times 50=130 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Blade angles measured from the diagram :

$$
\theta=35^{\circ}, \phi=22^{\circ} . \quad \text { (Ans.) }
$$

(ii) Blade efficiency, η_{N} :

$$
\eta_{w}=\frac{2 C_{b} C_{w}}{C_{1}^{2}}=\frac{2 \times 317.5 \times 635}{(672.4)^{2}}=0.89 \text { or } 89 \% \text {. (Ans.) }
$$

(iii) Power developed, \mathbf{P} and axial thrust :

$$
\begin{aligned}
P & =\frac{\dot{m}_{s}\left(C_{\mathrm{w}_{\mathrm{g}}}+C_{\mathrm{w}_{0}}\right) \times C_{B}}{1000}=\frac{8 \times(635+0) \times 317.5}{1000}=1612.9 \mathrm{~kW} . \cdot \text { (Ans.) } \\
\text { Axial thrust } \quad & =\dot{m}_{\Omega}\left(C_{f_{1}}-C_{f_{s}}\right)=8(222.5-130)=740 \mathrm{~N} . \quad \text { (Ans.) }
\end{aligned}
$$

E* Example 19.18. In a single stage steam turbine saturated steam at 10 bar abs, is supplied through a convergent-divergent steam nozzle. The nozzle angle is 20° and the mean blade speed is $400 \mathrm{~m} / \mathrm{s}$. The steam pressure leaving the nozzle is 1 bar abs. Find :
(i) The best blade angles if blades are equiangular.
(ii) The maximum power developed by the turbine if a number of nozzles used are 5 and area at the throat of each nozzle is $0.6 \mathrm{~cm}^{2}$.

Assume nozzle efficiency 88% and blade friction co-efficient of 0.87 .
Solution. Supply steam pressure (to nozzles) $=10$ bar abs.

Nozzle angle,
Mean blade speed,

$$
\begin{aligned}
\alpha & =20^{\circ} \\
C_{\mathrm{N}} & =400 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Steam pressure leaving the nozzle= 1 bar abs.
Number of nozzles used $=5$
Area of throat at each nozzle $\quad=0.6 \mathrm{~cm}^{2}$
Nozzle efficiency,

$$
\eta_{\text {pocale }}=88 \%
$$

Blade friction co-efficient,

$$
K=\frac{C_{r_{0}}}{C_{r_{0}}}=0.87
$$

The velocity of steam at the outlet of nozzie is found representing the expansion through nozzle on h-s chart as shown in Fig. 19.27.

Fig. 19.27
From h-s chart,

$$
\begin{aligned}
h_{1}-h_{3} & =402 \mathrm{ka} / \mathrm{kg} \\
\eta_{\text {maslo }} & =\frac{h_{1}-h_{3}^{\prime}}{h_{1}-h_{3}}=0.88 \\
\therefore \quad h_{1}-h_{3}^{\prime} & =0.88 \times 402=353.76 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Also

$$
\frac{c_{3}^{\prime 2}}{2}=h_{1}-h_{3}^{\prime}
$$

or

$$
C_{3}^{\prime}=\sqrt{2\left(h_{1}-h_{3}{ }^{\prime}\right)}=\sqrt{2 \times 353.76 \times 1000}=841.14 \mathrm{~m} / \mathrm{s}
$$

(i) Blade angles :

Construct the velocity triangles as per data given as shown in Fig. 19.27.
By measurement, $\theta(=0)=35.5^{\circ}$. (Ans.)
(ii) Maximum power developed, P :

For finding out the maximum power developed by the turbine let us first find out the maximum mass of steam passing through the nozzle.

The required condition for the maximum mass flow through the nozzle is given by

$$
\frac{p_{2}}{p_{1}}=\left(\frac{2}{n+1}\right)^{\frac{n}{n-1}}
$$

where, $\quad p_{1}=$ Pressure of steam at inlet of the nozzle,
$p_{2}=$ Pressure of steam at the throat of the nozzle, and n (index of expansion) $=1.135$ as steam is saturated.

Fig. 19.28

$$
\begin{array}{ll}
\therefore & \frac{p_{2}}{p_{1}}=\left(\frac{2}{1.135+1}\right)^{\frac{1.135}{0.135}}=0.58 \\
\therefore & p_{2}=10 \times 0.58=5.8 \mathrm{bar}
\end{array}
$$

From h-s chart (Fig. 19.27)
and

$$
\begin{aligned}
& h_{1}-h_{2}=105 \mathrm{~kJ} / / \mathrm{kg} \\
& h_{1}-h_{2}^{\prime}=0.88 \times 105=92.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$v_{a}^{\prime}\left(\right.$ specific volume at point $\left.2^{\prime}\right)=0.32 \mathrm{~m}^{3} / \mathrm{kg}$
The maximum velocity of steam at the throat of the nozzle is given by

$$
C=\sqrt{2\left(h_{1}-h_{2}^{\prime}\right)}=\sqrt{2 \times 92.4 \times 1000}=429.88 \mathrm{~m} / \mathrm{s}
$$

Using the continuity equation at the throat of the nozzle, we can write

$$
\begin{array}{lrl}
& m, v_{2}^{\prime} & =A \times C \text { where } A \text { is the area of the nozzle. } \\
\therefore & m \times 0.32 & =0.6 \times 10^{-4} \times 429.88 \\
\therefore & m & =\frac{0.6 \times 10^{-4} \times 429.88}{0.32}=0.0806 \mathrm{~kg} / \mathrm{s} .
\end{array}
$$

Total mass of ateam passing through 5 nozzles per second is given by

$$
m_{g}=0.0806 \times 5=0.403 \mathrm{~kg} / \mathrm{s}
$$

\therefore Power developed by the turbine $=\frac{m_{1} \times C_{W} C_{K}}{1000} \mathrm{~kW}$
From velocity diagram, $C_{m}=750 \mathrm{~m} / \mathrm{s}$ (by measurement)
\therefore Power developed $=\frac{0.403 \times 750 \times 400}{1000}=120.9 \mathrm{~kW}$. (Ans.)
ETV Example 19.19. The first atage of an impulse turbine is compounded for velocity and has two rows of moving blades and one ring of fixed blades. The nozzle angle is 15° and the leaving angles of blades are respectively, first-moving 30°, fixed 20°; second-moving 30°. The
velocity of steam leaving the nozzle in $540 \mathrm{~m} / \mathrm{s}$. The friction lons in cach blade row is 10% of the relative velocity. Steam leaves the second row of movin! blades axially.

Find: (i) Blade velocity : (ii) Blade efficiency :
(iii) Specific steam consumption.

Solucion. Refor Fig. 19:29.
Nozzle angle.

$$
\begin{aligned}
& \alpha=15^{\circ} ; \alpha^{\prime}=20^{\circ} \\
& \beta=90^{\circ} \\
& 0=\theta^{\prime}=30^{-}
\end{aligned}
$$

[since the steam lenves the blades axially]
Velocity of steam leaving the nozzle, $C_{1}=540 \mathrm{~m} / \mathrm{s}$ and $\frac{C_{r_{1}}}{C_{n_{0}}}=0.9$

$$
\frac{C_{1}^{\prime}}{C_{0}^{\prime}}=0.9 \text { and } \frac{C_{n}^{\prime}}{C_{n}^{\prime}}=0.9 .
$$

Second row of moving blades

Fif 1429

Second row of moving blades :

The velocity triangles should be drawn starting from the sccond now of moving blades.
The procedure is as follows : Refer Fig. 19.29.

- Draw $L M$ to any convenient scale (say 3 cm) as $C_{\text {Al }}$ is nof known.
- Draw $\theta^{\prime}=30^{\circ}$ and draw perpendicular through the point L. (or Q^{\prime}) to $L M$ as $\beta^{\prime}=90^{\circ}$. This meets the line $A I N^{\prime}$ at N^{\prime}. This completes the outlet triangle $L M N^{\prime \prime}$.
- Measure $C_{r_{0}}{ }^{\circ}=M N^{\prime}=3.5 \mathrm{~cm}$

$$
C_{r_{i}}^{\prime}=\frac{C_{r_{i}}^{\prime}}{0.9}=\frac{3.5}{0.9}=3.9 \mathrm{~cm}
$$

- Draw an $\angle \alpha^{*}=20^{\circ}$ and draw an are of radiun 3.9 cm with centre at M to cut the line $L S^{\prime}$ at S^{\prime}. Join $M S^{\prime}$. This completes the inlet velocity $A L M S^{\prime}$. Measure $L S^{\prime}=C_{1}^{\prime}=6.5 \mathrm{~cm}$.

First row of moving blades :

The following steps are involved in drawing velocity tringgle for firnt row of moving blades.

- Draw

$$
\begin{aligned}
L M & =C_{H}(=3 \mathrm{~cm}) \\
C_{0} & =\frac{C_{1}^{\prime}}{0.9}=\frac{6.5}{0.9}=7.22 \mathrm{~cm} .
\end{aligned}
$$

e Draw $\angle \theta=30^{\circ}$, through the point M to the line $L M$.

- Draw an arc of radius 7.22 cm with centre L. This arc cuts the line $L N$ at point N. Join $M N$. This completes the outlet $\Delta L M N$.
e Measure

$$
\begin{aligned}
& C_{r_{0}}=M N=9.7 \mathrm{~cm} \\
& M S=C_{n}=\frac{C_{r_{0}}}{0.9}=\frac{9.7}{0.9}=10.8 \mathrm{~cm}
\end{aligned}
$$

- Draw an $\alpha \alpha=15^{\circ}$, through a point L. Draw an are of radius of 10.8 cm with centre at M. This arc cuts the line $L S$ at S. Join $M S$. This completes the inlet velocity triangle. Measure $L S$ from the velocity triangle

$$
L S=13.8 \mathrm{~cm}=C_{1}=540 \mathrm{~m} / \mathrm{s}
$$

The scale is now calcalated from the above.

$$
\therefore \quad \text { Scale } 1 \mathrm{~cm}=\frac{540}{13.8}=39.1 \mathrm{~m} / \mathrm{s}
$$

(i) Blade velocity, $\mathrm{C}_{\mathrm{b}, \mathrm{t}}$:

Measure the following distances from the velocity diagram und convert into velocities :

$$
C_{k}=L M=3 \mathrm{~cm}=3 \times 39.1=117.3 \mathrm{~m} / \mathrm{s} \text {. (Ans.) }
$$

(ii) Blade efficiency, 1_{w}

$$
\begin{aligned}
C_{m} & =P^{\prime} Q=18.8 \mathrm{~cm}=18.8 \times 39.1=735.1 \mathrm{~m} / \mathrm{s} \\
C_{m}^{\prime} & =P^{\prime} Q^{\prime}=6.2 \mathrm{~cm}=6.2 \times 39.1=242.4 \mathrm{~m} / \mathrm{s} \\
& =\frac{2 C_{b i}\left(C_{i}+C_{w^{\prime}}\right)}{C_{1}^{2}} \\
& =\frac{2 \times 117.3(735.1+242.4)}{(540)^{2}}=0.786 \text { or } 78.6^{\circ} \mathrm{c} . \text { (Ans.) }
\end{aligned}
$$

(iii) Specific steam consumption, m_{n} :

$$
\begin{aligned}
1 & =\frac{m_{s}\left(C_{v}+C_{v}^{\prime}{ }^{\prime} C_{W)}\right.}{3600 \times 1000}=\frac{m_{2}(735.1+242.4) \times 117.3}{3600 \times 1000} \\
m_{s} & =\frac{3600 \times 1000}{(735.1+242.4) \times 117.3}=31.39 \mathrm{~kg} \mathbf{k W h} . \text { (Ans.) }
\end{aligned}
$$

Example 19.20. Thie following particalars relate to a two-roe velocity compounded impulse wheel :

$$
\begin{array}{ll}
\text { Steam velocity at nozale outlet } & =650 \mathrm{mis} \\
\text { Mean blade velocity } & =125 \mathrm{~m} / \mathrm{s} \\
\text { Nozzle outlet angle: } & =16^{\circ} \\
\text { Outlet angle, first row of moving blades } & =18
\end{array}
$$

$$
\begin{aligned}
\therefore \text { Outlet angle, fixed guide blades } & =22^{\circ} \\
\text { Outlet angle, second row of moving blades } & =36^{\circ} \\
\text { Steam flow } & =2.5 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

The ratio of the relative velocity at outlet to that at inlet is 0.84 for all blades.
Determine the following :
(i) The axial thrust on the blades ; (ii) The power developed,
(AMIE Winter, 2001)
(iii) The efficiency of the wheel.
$C_{B}=125 \mathrm{~m} / \mathrm{s}, C_{1}=650 \mathrm{~m} / \mathrm{s}, \alpha=16^{\circ}$,
Solution. With given data,
first row inlet velocity diagram is drawn.

Fig. 19.30
Now with given,

$$
C_{n_{3}}=0.84 C_{n}, \phi=18^{\circ},
$$

first row exit diagram is drawn.
With

$$
C_{1}^{\prime}=C_{0} ; \alpha^{\prime}=22^{\circ}
$$

second row inlet velocity diagram is drawn
With

$$
C_{n^{\prime}}^{\prime}=0.84 C_{n}^{\prime} ; \varphi^{\prime}=36^{\circ},
$$

second row exit diagram is drawn.
The values read form the diagram are as follows :

$$
\begin{aligned}
C_{f_{1}} & =180 \mathrm{~m} / \mathrm{s}, & C_{f_{0}} & =138 \mathrm{~m} / \mathrm{s}, \\
C_{f_{1}^{\prime}}^{\prime} & =122 \mathrm{~m} / \mathrm{s}, & C_{f_{0}^{\prime}} & =107 \mathrm{~m} / \mathrm{s}, \\
C_{w_{7}}+C_{w_{0}} & =924 \mathrm{~m} / \mathrm{s}, & C_{w_{3}}{ }^{\prime}+C_{w_{0}}{ }^{\prime} & =324 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

(i) Axial thrust on the blades

$$
\begin{aligned}
& =\dot{m}_{s}\left[\left(C_{f_{1}}-C_{f_{0}}\right)+\left(C_{f_{1}}{ }^{\prime}-C_{f_{0}}\right)\right] \\
& =2.5[(180-138)+(122-107)]=142.5 \mathrm{~N} . \quad \text { (Ans.) } \\
& =\frac{\left.m_{s} l\left(C_{w_{2}}+C_{w_{0}}\right)+\left(C_{w_{1}}{ }^{\prime}+C_{w_{2}}\right)\right] C_{N}}{1000} \\
& =\frac{25(924+324) \times 125}{1000}=390 \mathrm{~kW} . \quad \text { (Ans.) } \\
& =\frac{(924+324) \times 125}{C_{1}^{2} / 2}=\frac{(924+324) \times 125}{650^{2} / 2} \\
& =0.738 \text { or } 73.8 \% \quad \text { (Ans.) }
\end{aligned}
$$

Example 19.21. The first stage of an impulse turbine is compounded for velocity and has two rings of moving blades and one ring of fixed blades. The nozzle angle is 20° and the leaving angles of the blades are respectively as follows :

First moving 20°, fixed 25° and second moving 30°. Velocity of steam leaving the nozzles is $600 \mathrm{~m} / \mathrm{sec}$ and the steam velocity relative to the blade is reduced by 10% during the passage through each ring. Find the diagram efficiency and power developed for a steam flow of 4 kg per second. Blade speed may be taken as $125 \mathrm{~m} / \mathrm{sec}$.
(M.U.)

Solution.

$$
\begin{aligned}
C_{b l} & =125 \mathrm{~m} / \mathrm{s}, C_{1}=600 \mathrm{~m} / \mathrm{s} \\
\alpha & =20^{\circ}, \phi=20^{\circ} \\
\alpha^{\prime} & =25^{\circ}, \phi^{\prime}=30^{\circ} \\
K & =\left(1-\frac{10}{100}\right)=0.9 \\
\dot{m}_{s} & =4 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

With these values velocity triangles can be drawn (Fig. 19.31).

Fig. 1931

From diagram (By measurement) :

Now,

$$
\begin{aligned}
C_{w_{y}} & =565 \mathrm{~m} / \mathrm{s}, \quad C_{w_{q}}=285 \mathrm{~m} / \mathrm{s} \\
C_{w_{1}}^{\prime} & =260 \mathrm{~m} / \mathrm{s}, \quad C_{w_{0}}^{\prime}=20 \mathrm{~m} / \mathrm{s} \\
C_{w} & =C_{w_{1}}+C_{u_{0}}=565+285=850 \mathrm{~m} / \mathrm{s} \\
C_{w}^{\prime} & =C_{w_{1}}^{\prime}+C_{w_{v}}^{\prime}=260+20=280 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Potver developed

Diagram efficiency

$$
\begin{aligned}
& =\frac{\dot{m}_{e}\left(C_{w}+C_{w}{ }^{\prime}\right) C_{w}}{1000} \\
& =\frac{4 \times(850+280) \times 125}{1000}=565 \mathrm{~kW} . \quad \text { (Ans.) } \\
& =\frac{C_{\mathrm{w}}^{\prime}\left(C_{w}+C_{w}^{\prime}\right)}{C_{1}^{2} / 2} \\
& =\frac{2 \times 125(850+280)}{600^{2}}=0.7847 \text { or } 78.47 \% . \quad \text { (Ans.) }
\end{aligned}
$$

Example 19.22. The following data relate to a compound impulse turbine having two rows of moving blades and one row of fixed blades in between them.

The velocity of steam leaving the nozzle $=600 \mathrm{~m} / \mathrm{s}$
Blade speed $\quad=125 \mathrm{~m} / \mathrm{s}$
Nozzle angle

$$
=20^{\circ}
$$

First moving blade discharge angle
$=20^{\circ}$
First fixed blade discharge angle
$=25^{\circ}$
Second moving blade discharge angle
$=30^{\circ}$
Friction loss in each ring

- 10% of relative velocity.

Find : (i) Diagram efficiency :
(ii) Power developed for a steam flow of $6 \mathrm{~kg} / \mathrm{s}$.

Solution. Refer Fig. 19.32.
Flrat row of moving blades :
To draw velocity triangles for first row of moving blades the following procedure may be followed:

Select a suitable scale.

- Draw $L M=$ blade velocity $\left(C_{L}\right)=125 \mathrm{~m} / \mathrm{s}$.
- Make $\angle M L S=$ nozzle angle $\alpha=20^{\circ}$.
- Draw $L S=$ velocity of steam leaving the nozzle $=600 \mathrm{~m} / \mathrm{s}$.
- Join MS to complete the inlet triangle LMS.
- Make $\angle L M N=$ outlet angle of first moving blades $=20^{\circ}$.
and cut $M N=0.9 \mathrm{MS}$, since $K=0.9$.
- Join $L N$ to complete the outlet $\Delta L M N$.

Second rote of moving blades :

The velocity triangles for second row of moving blades may be drawn as follows :

- Draw $L M$ = blade velocity $\left(C_{B N}\right)=125 \mathrm{~m} / \mathrm{s}$.
- Make $\angle M L 5^{\circ}=$ outlet angle of fixed blade $=25^{\circ}$
and cut $L S^{\prime}=0.9 L N$.

$$
(\because K=0.9)
$$

First row of moving blades

Fige 19.32

- Join MS', The inlet velocity trinngle L.MS' is completed.
- Make $\angle I M N^{\prime \prime}=$ outer angle of second moving blades $=30$
and
cut $M N^{*}=0.9 \mathrm{MS}$
$(\because K=0.9)$
- Join $L N^{\prime \prime}$. The outlet velocity triangle is completed.

The following required data may now be scaled off from the diagram :

$$
\begin{aligned}
& C_{\mathrm{H}}=C_{\mathrm{NY}}+C_{15}=P Q=845 \mathrm{~m} / \mathrm{s} \\
& C_{\mathrm{a}}^{\prime}=P Q^{\prime}=280 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

(i) Diagram efficiency, $n_{h}=\frac{\left.2 C_{h i} \backslash C_{N}+C_{N}\right)}{C_{1}^{2}}$

$$
=\frac{2 \times 125845+280)}{(600)^{2}}=0.781 \text { or } 78.1^{\circ} \% \text { (Ans.) }
$$

(ii) Power developed, $\quad P=\frac{\left.m_{2}{ }^{\prime} C_{n}+C_{H}\right)}{1000} C_{B}$

$$
=\frac{6845+2801 \times 125}{1000}=843.75 \mathrm{~kW} . \text { (Ans.) }
$$

Ex Example 19.23. The firat stage of a turbine is a two row velocity compounded impulse wheel. The steam velocity at inlet is $600 \mathrm{~m} / \mathrm{s}$ and the moan blade twtovity is $190 \mathrm{~m} / \mathrm{s}$. The nozzle angle is 16° and the exit angles for the firat row of moving blades, the fixed blades, and the second row of moving blades are $18^{\circ}, 21^{\circ}$ and 35° rospectively.
(i) Calculate the blade inlet angles for cach rowe.
(ii) Calculate aloo for wach row of moving blades, the driving force and the axial thrust on the whed for a mass flow of 1 kg/s.
(iii) Catculate the diagnm efficiency for the wheel and the diagram power per kg/s steam flow.
(it) What twould be the maximum possible diogram rfficiency for the given steam inlet relevity and novele angle ?

Take the Blade idlocity co-efficient as 0.9 for all blades.
Solution. Refer Fig. 19.33.

$$
\begin{aligned}
\kappa & =16^{\circ}, 0=18, C_{1}=600 \mathrm{~m} / \mathrm{s}, C_{B}=120 \mathrm{~m} / \mathrm{s} \\
\alpha^{\prime} & =21^{\prime}, \phi^{\prime}=35^{\circ}, m_{\pi}=1 \mathrm{~kg} \mathrm{~g}^{\prime} \mathrm{s},
\end{aligned}
$$

Blade velocity co-efficient, $K=0.9$
With the above data velocity triangles can be drawn.
From the diagram (by measurement)

$$
\begin{aligned}
& C_{u}=C_{\mathrm{sy}}+C_{1 C_{0}}=875 \mathrm{~m} / \mathrm{s} ; C_{N}^{\prime}=C_{u_{1}}^{\prime}+C_{w_{1}}^{\prime}=294 \mathrm{~m} / \mathrm{s} \\
& C_{f_{1}}=168 \mathrm{~m} / \mathrm{s}, C_{f}=135 \mathrm{~m} / \mathrm{s} ; C_{h}^{\prime}=106 \mathrm{~m} / \mathrm{s}, C_{f}^{\prime}=97 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(4) Blade inlet angles :

First row :

$$
\begin{aligned}
& 0=20^{\circ} \text { (moving blade) } \\
& \beta=24.5^{\circ} \text { (fixed blade) }
\end{aligned}
$$

Scoond row $: \mathbb{\theta}^{\prime}=34.5$ (moving blade),

First row of moving blades

Fige 1938

(ii) Driving force :

First row of mouing blades $=m_{s}\left(C_{n_{1}}+C_{m_{\psi}}\right)=m_{+} C_{m}=1 \times 875=875 \mathrm{~N}$. (Ans.)
Second roae of movink blades $=m_{i}\left(C_{i_{i}}{ }^{\prime}+C_{\omega_{i}}{ }^{\prime}\right)=m_{j} C_{i w}{ }^{\prime}=1 \times 294=294 \mathrm{~N}$. (Ans.)

Axial thrust :

First nos of moring blades $=m_{e}\left(C_{f_{1}}{ }^{\circ}+C_{f_{0}}{ }^{\prime}\right)=1 \times(168-135)=33 \mathrm{~N}$
Sovond mac of mouing blades $=m_{s}\left(C_{f_{t}}{ }^{\prime}-C_{f_{f}}{ }^{\prime}\right)=1 \times(106-97)=9 \mathrm{~N}$
Totel asial thrust

$$
=33+9=42 \mathrm{~N} \text { per } \mathrm{kg} / \mathrm{s} . \quad \text { (Ans.) }
$$

(iii) Power developed

Diagram efficiency

$$
\begin{aligned}
& =\frac{m_{1}\left(C_{u}+C_{u}\right) C_{w}}{1000} \\
& =\frac{1 \times(875+294) \times 120}{1000}=140.28 \mathrm{~kW} \text { per kg/s. (Ans.) } \\
& =\frac{2 C_{b}\left(C_{w}+C_{N}{ }^{\prime}\right)}{C_{1}^{2}}=\frac{2 \times 120(875+294)}{(600)^{2}} \\
& =0.7793 \text { or } 77.93 \% . \text { (Ans.) }
\end{aligned}
$$

(iv) Maximum diagram efficiency

$$
=\cos ^{2} u=\cos ^{2} 16^{\circ}=0.924 \text { or } 92.4^{\circ} \% \text {. (Ans.) }
$$

Example 19.24. An impulse stage of a turbine has two rows of moving blades separated by fixed blades. The steam leaves the nozzles at an angle of 20 with the clirection of motion of the blades. The blade exit angles are ; Ist moving 30°; $\sqrt{\text { tued }} 22^{\circ}$; 2nd moving 30°.

If the adiabatic heat drop for the nozzle is 186.2 kJlkg and the nozzle efficiency 90%, find the blade speed necessary if the final velocity of the steam in to be axial. Assume a loss of 15% in relative velocity for all blade passages. Final also the blade efficiency and the stage efficiency.
(P.U.)

Solution. Steam velocity, $C_{1}=44.72 \sqrt{ } 14, h_{y l}=44.72 \sqrt{0.9 \times 186.2}=579 \mathrm{~m} / \mathrm{s}$.
The velocity diagram for axial discharge turbine is drawn in reverse direction (see Fig. 19.34).

- The blade velocity $\left(C_{H}\right) / . M$ is drawn to any convenient scale.
- As discharge is axial $L N^{\prime}$ is drawn perpendicular to LM.
- Knowing the outlet angle of the second moving ring $\left(0^{\prime}=30^{\circ}\right), N^{\prime \prime}$ is located.

SIN represents relative velocity at outlet (C_{n}^{\prime} ').

- Relative velocity at inlet to the second moving blade is

$$
C_{S}^{\prime}=M S^{\prime}=\frac{M N^{\prime}}{0.85}\left(=\frac{C_{n}^{\prime}}{K}\right)
$$

- The triangle at inlet to the second moving blades ring $L M S$ ' is obtained by drawing the discharge angle $\angle M L S^{\prime}\left(\sigma^{\prime}=22^{\prime}\right)$, where $l S^{\prime}\left(C_{1}\right)$ is the exit velocity of the second blade ring.
- Now, $C_{0}=L N=\frac{C_{1}^{\prime}}{0.85}=\frac{L . S^{\prime}}{0.85}$ assuming a loss of 15% (given).
- With compass at centre L and radius $L N$ are is drawn and the velocity triangle at the exit of the first moving blade ring LMN is completed, knowing the exit angle of the first moving blado ring $\left(\varphi=30^{\circ}\right)$.

First row of moving blades

Fig. 19.34

- With $\alpha=20^{\circ}$ and $C_{n}=M S=\frac{C_{r}}{0.85}=\frac{M N}{0.85}$ the inlet velocity triangle is completed.

Now LS is the absolute velocity from the nozzle. Since this velocity is known, scale can be calculated. It is

$$
=\frac{\text { Absolute velocity at exit from the nozzle }}{\text { Length } L S}
$$

and then the blade velocity, etc. can be calculated.
From the diagram :

$$
\begin{aligned}
& C_{U}(=L M)=117 \mathrm{~m} / \mathrm{a} \\
& C_{u_{1}}+C_{w_{0}}=762 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
C_{w_{1}}^{\prime}+C_{w_{1}}^{\prime}=C_{w_{1}}^{\prime}=234 \mathrm{~m} / \mathrm{s}
$$

$$
\left(\because C_{w_{g}}{ }^{\prime}=0\right)
$$

Blade efficiency, $\quad \eta_{B C}=\frac{\left(C_{0}+C_{y \prime}{ }^{\prime}\right) \times C_{K}=\frac{(762+234) \times 117}{C_{1}^{2} / 2}}{579^{2} / 2}$
$=0.6952$ or 69.52% (Ans.)

Stage efficiency,

$$
\begin{aligned}
\eta_{\text {stage }} & =\frac{\left(C_{w}+C_{w}{ }^{\prime}\right) \times C_{b t}}{h_{d}}=\frac{(762+234) \times 117}{186.2 \times 1000} \\
& =0.626 \text { or } 62.6 \% . \quad \text { (Ans.) }
\end{aligned}
$$

19.8. REACTION TURBINES

The reaction turbines which are used these days are really impulse-reaction turbine. Pure reaction turbines are not in general use. The expansion of steam and heat drop occur both in fixed and moving blades.

19.8.1. Velocity Diagram for Reaction Turbine Blade

Fig. 19.35 shows the velocity diagram for reaction turbine blade. In case of an impulse turbine blade the relative velocity of steam either remains constant as the steam glides over the blades or is reduced slightly due to friction. In reaction turbine blades, the steam continuously expands at it flows over the blades. The effect of the continuous expansion of steam during the flow over the blade is to increase the relative velocity of steam.

Fig. 19.35. Velocity diagram for reaction turbine blade.
$\therefore \quad C_{n}>C_{n}$ for reaction turbine blade.
($C_{n} \leq C_{n}$ for impulse turbine blade).

19.8.2. Degree of Reaction (\mathbf{R}_{d})

The degree of reaction of reaction turbine stage is defined as the ratio of heat drop over moving blades to the total heat drop in the stage.

Thus the degree of reaction of reaction turbine is given by,

$$
\begin{aligned}
R_{d} & =\frac{\text { Heat drop in moving blades }}{\text { Heat drop in the stage }} \\
& =\frac{\Delta h_{m}}{\Delta h_{f}+\Delta h_{m}} \text { as shown in Fig. 19.35. }
\end{aligned}
$$

The heat drop in moving blades is equal to increase in relative velocity of steam passing through the blade.

$$
\therefore \quad \Delta h_{m}=\frac{C_{r_{0}}{ }^{2}-C_{n}{ }^{2}}{2}
$$

(a)

(b)

Fig. 19.36
The total heat drop in the stage $\left(\Delta h_{f}+\Delta h_{m}\right)$ is equal to the work done by the steam in the stage and it is given by

$$
\begin{align*}
& \Delta h_{f}+\Delta h_{m} & =C_{b l}\left(C_{w_{j}}+C_{w_{0}}\right) \\
\therefore & R_{d} & =\frac{C_{n_{n}}^{2}-C_{n}^{2}}{2 C_{b l}\left(C_{w_{j}}+C_{w_{0}}\right)} \tag{19.22}
\end{align*}
$$

Referring to Fig. 19.36,

$$
C_{r_{0}}=C_{f_{0}} \operatorname{cosec} \phi \text { and } C_{n}=C_{f_{1}} \operatorname{cosec} \theta
$$

and

$$
\left(C_{w_{\mathrm{y}}}+C_{w_{0}}\right)=C_{f_{1}} \cot \theta+C_{f_{6}} \cot \theta
$$

The velocity of flow generally remains constant through the blades.

$$
\therefore \quad C_{f_{1}}=C_{f_{0}}=C_{f}
$$

Substituting the values of $C_{r_{1}}, C_{r_{0}}$ and $\left(C_{w_{1}}+C_{w v_{0}}\right)$ in eqn. (19.22), we get

$$
\begin{align*}
R_{d} & =\frac{C_{f}^{2}\left(\operatorname{cosec}^{2} \phi-\operatorname{cosec}^{2} \theta\right)}{2 C_{b l} C_{f}(\cot \theta+\cot \phi)}=\frac{C_{f}}{2 C_{b L}}\left[\frac{\left(\cot ^{2} \phi+1\right)-\left(\cot ^{2} \theta+1\right)}{\cot \theta+\cot \phi}\right] \\
& =\frac{C_{f}}{2 C_{b t}}\left[\frac{\cot ^{2} \phi-\cot ^{2} \theta}{\cot \phi+\cot \theta}\right] \\
& =\frac{C_{f}}{2 C_{b t}}(\cot \phi-\cot \theta) \tag{19.23}
\end{align*}
$$

If the turbine is designed for 50% reaction ($\Delta h_{f}=\Delta h_{m}$), then the eqn. (19.23) can be written as

$$
\frac{1}{2}=\frac{C_{f}}{2 C_{M}}(\cot \theta-\cot \theta)
$$

$$
\begin{equation*}
\therefore \quad C_{U}=C_{f}(\cot \theta-\cot \theta) \tag{19.24}
\end{equation*}
$$

Also C_{M} can be written as
and

$$
\begin{align*}
& C_{\Delta}=C_{f}(\cot \phi-\cot \beta) \tag{19.25}\\
& C_{b}=C_{f}(\cot \alpha-\cot \theta) \tag{19.26}\\
& C_{f_{3}}=C_{f}=C_{f} \text { is assumed in writing the above equations. }
\end{align*}
$$

Comparing the eqns. (19.24), (19.25), (19.26)

$$
\theta=\beta \text { and } \phi=\alpha
$$

which means that moving blade and fixed blade must have the same shape if the degree of reaction is 50%. This condition gives symmetrical velocity diagrams. This type of turbine is known as "Parson's reaction turbine". Velocity diagram for the blades of this turbine is given in Fig. 19.37.

Fig. 19.37
Example 19.25. Define the term 'degree of reaction' as applied to a steam turbine. Show that for Parson's reaction turbine the degree of reaction is 50%.
(AMIE Summer, 1998)
Solution. Refer Fig. 19.38.

Fig. 19.38

The pressure drop in reaction turbines takes place in both fixed and moving blades. The division generally is given in terms of enthalpy drops. The criterion used is the degree of reaction. It is defined as

$$
\begin{equation*}
\frac{\text { Enthalpy drop in rotor blades }}{\text { Total enthalpy drop in stage }}=\frac{\Delta h_{m}}{\Delta h_{f}+\Delta h_{m}} \tag{ReferFig.19.36}
\end{equation*}
$$

A special case is when the degree of reaction is zero; it means no heat drop in the moving blades. This becomes a case of impulse stage. Other common case is of Parson's turbine which has the same reason for both the fixed and moving blades. The blades are symmetrical, i.e., the exit angle of moving blade is equal to the exit angle of the fixed blade and the inlet angle of the moving blade is equal to the inlet angle of the fixed blade. Since the blades are symmetrical the velocity diagram is also symmetrical. In such a case the degree of reaction is 50%.

Applying the steady flow energy equation to the fixed blades and assuming that the velocity of steam entering the fixed blade is equal to the absolute velocity of steam leaving the previous moving row, we have

$$
\Delta h_{f}=\frac{C_{1}^{2}-C_{0}^{2}}{2}
$$

Similarly, for the moving blades

$$
\Delta h_{m}=\frac{C_{n}^{2}-C_{n}^{2}}{2}
$$

But

$$
C_{1}=C_{r_{0}} \text { and } C_{0}=C_{n}
$$

$\therefore \quad \Delta h_{f}=\Delta h_{m}$
Hence degree of reaction $=\frac{\Delta h_{m}}{\Delta h_{m}+\Delta h_{m}}=\frac{1}{2}$
This is a proof that Parson's reaction turbine is a $\mathbf{5 0 \%}$ reaction turbine.
Example 19.26. (a) Explain the functions of the blading of a reaction turbine.
(b) A certain stage of a Parson's turbine consists of one row of fixed blades and one row of moving blades. The details of the turbine are as below :

The mean diameter of the blades $\quad=68 \mathrm{~cm}$
R.P.M. of the turbine

$$
=3,000
$$

The mass of steam passing per sec $\quad=13.5 \mathrm{~kg}$
Steam velocity at exit from fixed blades $=143.7 \mathrm{~m} / \mathrm{s}$
The blade outlet angle $=20^{\circ}$
Calculate the power developed in the stage and gross efficiency, assuming carry over coefficient as 0.74 and the efficiency of conversion of heat energy into kinetic energy in the blade channel as 0.92.
(M.U.)

Solution. (a) The blades of reaction turbine has to perform two functions :

1. They change the direction of motion of steam causing change of momentum, responsible for motive force.
2. The blades also act as nozzles causing pressure drop as steam moves in the blade passage.

$$
\begin{align*}
D & =0.68 \mathrm{~m}, N=3000 \text { r.p.m., } m=13.5 \mathrm{~kg} / \mathrm{s} \tag{b}\\
C_{n} & =143.7 \mathrm{~m} / \mathrm{s}, \phi=20^{\circ}, v=0.74, \eta=0.92
\end{align*}
$$

Blade velocity,

$$
C_{\mathrm{Bt}}=\frac{\pi D N}{60}=\frac{\pi \times 0.68 \times 3000}{60}=106.8 \mathrm{~m} / \mathrm{s}
$$

$$
C_{w_{1}}+C_{w_{0}}=165 \mathrm{~m} / \mathrm{s} \text { (Fig. 19.39) }
$$

Fig. 19.39
Power developed

$$
\begin{aligned}
\dot{m}_{2} & \times \frac{\left(C_{w_{1}}+C_{w_{t}}\right) C_{u}}{1000} \\
& =13.5 \times \frac{165 \times 106.8}{1000}=237.89 \mathrm{~kW} . \text { (Ans.) }
\end{aligned}
$$

In Parson turbine blades are symmetrical, i.e.,

Enthalpy drop

$$
\begin{gathered}
\alpha=\phi, \theta=\beta \\
C_{1}=C_{r_{0}}, C_{r_{1}}=C_{0}
\end{gathered}
$$

$$
=2 \times \frac{C_{1}{ }^{2}-\psi C_{0}{ }^{2}}{2 \eta}=2 \times\left(\frac{143.7^{2}-0.74 \times 57^{2}}{2 \times 0.92 \times 1000}\right)=19.83 \mathrm{~kJ} / \mathrm{kg}
$$

\therefore Gross efficiency

$$
\begin{aligned}
& =\frac{\text { Work done } / \mathrm{kg}}{\text { Enthalpy drop } / \mathrm{kg}}=\frac{\left(C_{c_{e_{i}}}+C_{w_{0}}\right) C_{B t}}{19.83 \times 1000} \\
& =\frac{165 \times 106.8}{19.83 \times 1000}=0.888 \text { or } 88.8 \% . \quad \text { (Ans.) }
\end{aligned}
$$

Example 19.27. (a) Discuss the factors that influence the crosion of turbine blades. On a sketch mark the portions of the blades more likaly to be eroded. Sketch the methods used to prevent erosion of steam turbines blades.
(b) A reaction turbine running at 360 r.p.m. consumes 5 kg of steam per second. Tip leakage is 10%. Discharge blade tip angle for both moving and fixed blades is 20°. Axial velocity of flow is 0.75 times blade velocity. The power developed by a certain pair is 4.8 kW where the pressure is 2 bar and dryness fraction is 0.95. Find the drum diameter and blades height.
(U.P.S.C.)

Solution. (a) In the high pressure and intermediate pressure stages of turbine the pressures and temperatures are high and the blade material should be such that it stands high pressures and temperatures. In the intermediate pressure stages steam is wet therefore, the material
be able to withsfand both cornosion and crosion due to the presence of water particles. In addition to corrosion and erosion the blades nre almo subjected to high centrifugal stresses as the low pressure stages are longer, therefore, the blade material and its design should be such that it stands corrosion, crosion and high centrifugal strenses.

When the speed is high and moisture exceeds 10 per cent the effect of moisture is most prominent. The most effected portion is the back of the inlet edge of the blade, where either grooves are formed or even some portion breaks away. Due to centrifugal force the water particles tend to concentrate in the outer annulus and their tip speed is greater than the root speed, hence erosion effect is most on tips (Fig. 19.40),

Fig. 19.40

Methods adopted to prevent crosion :

(i) By raising the temperature of steam at inlet, so that at exit of turbine the wetness does not exceed 10 per cent.
(ii) By adopting reheat cycle ; so that the wetness at exit. remains in limit.
(iii) Drainage belts are provided on the turbine, so that the water droplets which are on outer periphery, duc to centrifugal force are drained. The drained amount is about 25 per cent of total water particles present.
(iv) The leading edso of the turbine is provided with a shield of hard material.

- In the method (i) difficulties aro the limits of temperature a material can withstand.
- Reheat cycle (method (ii)) has its own advantages and disadvantages.
- Drainage belts [method (iii)] cause structural changes in the turbine casing design. however, bleeding may help.
The most satisfactory solution is prowiding tungsten shield. This prolongs she blade life. however, it does not remove the resistance which the water dmplets impowe on the rotation of the rotor.
(b) Speed,

$$
\begin{aligned}
N & =360 \text { r.p.m. } \\
m_{y} & \left.=5\left[1-\frac{10}{100} \text { (tip leakage }\right)\right]=4.5 \mathrm{~kg} / \mathrm{s} \\
u & =\phi=20 ; C_{f}=0.75 C_{M C}
\end{aligned}
$$

Power developed in a certain pair

$$
=4.8 \mathrm{~kW} \text { at } 2 \text { bar }(x=0.95)
$$

Blade velocity,

$$
\begin{aligned}
C_{H}(L A H) & =\frac{\pi D N}{60}=\frac{\pi \times D \times 360}{60}=18.85 D \mathrm{~m} / \mathrm{s} . \\
C_{f} & =0.75 \times 18.85 D=14.138 D \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Fig. 19.41
From, $\boldsymbol{A L S P}$,

$$
C_{1}=\frac{C_{f_{1}}}{\sin 20^{\circ}}=\frac{14.138 D}{\sin 20^{\circ}} \mathrm{m} / \mathrm{s}
$$

and

$$
\begin{aligned}
L P & =C_{1} \cos 20^{\circ}=14.13 D \times \frac{\cos 20^{\circ}}{\sin 20^{\circ}}=14.138 D \cot 20^{\circ} \\
P Q & =2 L P-L M=\left(2 \times 14.138 D \cot 20^{\circ}-18.85 D\right) \mathrm{m} / \mathrm{s} \\
& =\frac{\dot{m}, \times P Q \times L M}{1000} \\
4.8 & =\frac{4.5 \times\left(2 \times 14.138 D \cot 20^{\circ}-18.85 D\right) \times 18.85 D}{1000}
\end{aligned}
$$

Power developed

Solving this equation, we get
Drum diameter,
From steam tables at 2 bar,
Mnss flow rate

$$
\begin{aligned}
D & =0.98 \mathrm{~m} . \quad \text { (Ans.) } \\
v_{i} & =0.885 \mathrm{~m}^{3} / \mathrm{kg} \\
& =\frac{\text { Flow area } \times \text { flow velocity }}{\text { Specifie volume }} \\
4.5 & =\frac{\pi D h \times C_{f}}{x v_{k}} \\
4.5 & =\frac{\pi \times 0.98 \times h \times(14.158 \times 0.98)}{0.95 \times 0.885} \\
h & =\frac{4.5 \times 0.95 \times 0.885}{\pi \times 0.98 \times 14.138 \times 0.98}=0.0887 \mathrm{~m} \\
& =0.0887 \mathrm{~m} . \quad \text { (Ans.) }
\end{aligned}
$$

\therefore Blade height
Example 19.28. (a) List the advantages of steam turbines over gns turbines.
(b) Determine the isentropic enthalpy drop in the stage of Parson's reaction turbine which has the following particulars :

$$
\begin{align*}
& \text { Speed }=1500 \mathrm{rpm} ; \text { mean diameter of rotor }=1 \mathrm{~m} \text {; } \\
& \text { stage efficiency }=80 \% ; \text { speed ratio }=0.7 \text { : } \\
& \text { blade outlet angle }=20^{\circ} . \tag{B.U.}
\end{align*}
$$

Solution. (a) Advantages of steam turbines over gas turbines:

1. The load control in steam turbines is easy simply by throttle governing or cut-off governing. In gas turbines the air-fuel ratio becomen too high, 100 to 150 at part loads. This causes problems to sustain the flame.
2. The steam turbine works on Rankine cycle. In this cycle most of the heat is supplied at constant temperature in the form of latent heat of evaporation. Also the heat is rejected in the condenser isothermally. Hence the cycle is more efficient, and its efficiency is close to that of Carnot cycle. On the other hand, the gas turbine works on Brayton cycle whose efficiency is must less than that of Carnot cycle working between the same maximum and minimum limits of temperatures.
3. The efficiency of steam turbine at part load is not very much reduced. In gas turbines the maximum cycle temperature decreases considerably at part load ; therefore its part load efficiency is considerably low.
4. The blade material for steam turbines is cheap. For gas-turbines the blade material is costly as it is required to sustain considerably high temperatures.
(b) For Parson's reaction turbine, the velocity trianglea are symmetrical, as shown in Fig. 19.37.

Given :

$$
N=1500 \text { r.p. } \mathrm{m}, D=1 \mathrm{~m}, \eta_{\text {stage }}=80 \% \text {; }
$$

Speed ratio,

$$
\begin{aligned}
\frac{C_{b L}}{C_{1}} & =0.7, \phi=\alpha=20^{\circ} \\
C_{1} & =C_{r}, \text { and } C_{n}=C_{0} \\
C_{N} & =\frac{\pi D N}{60}=\frac{\pi \times 1 \times 1500}{60}=78.54 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Speed ratio

$$
=0.7=\frac{C_{S}}{C_{1}}
$$

\therefore

$$
C_{1}=\frac{78.54}{0.7}=112.2 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
C_{n}^{2} & =C_{1}^{2}+C_{b}^{2}-2 C_{1} C_{b} \cos \alpha \\
& =(112.2)^{2}+(78.54)^{2}-2 \times 112.2 \times 78.54 \cos 20^{\circ}=2196.84
\end{aligned}
$$

or $C_{n}=46.86 \mathrm{~m} / \mathrm{s}$
$\Delta h=$ Actual enthalpy drop for the stage
$=\frac{1}{2}\left[\left(C_{1}{ }^{2}-C_{0}{ }^{2}\right)+\left(C_{n}{ }^{2}-C_{n}{ }^{2}\right)\right]$
$\left.=\frac{1}{2}\left(C_{1}{ }^{2}-C_{n}{ }^{2}\right)+\left(C_{1}^{2}-C_{n}{ }^{2}\right)\right]=C_{1}{ }^{2}-C_{n}{ }^{2}$ $\left(\because C_{0}=C_{n} ; C_{n}=C_{1}\right)$
or

$$
\Delta h=\left[(112.2)^{2}-(46.84)^{2}\right] \times 1 / 1000 \mathrm{~kJ} / \mathrm{kg}=10.39 \mathrm{~kJ} / \mathrm{kg}
$$

Isentropic enthalpy drop, $\left(\Delta h^{\prime}\right)=\frac{(\Delta h)}{\eta_{\text {lagn }}}=\frac{10.39}{0.8}=12.99 \mathrm{~kJ} / \mathrm{kg}$. (Ans.)

19.8.3. Condition for Maximum Efficiency

The condition for maximum efficiency is derived by making the following assumptions :
(i) The degree of reaction is 50%.
(ii) The moving and fixed blades are symmetrical.
(iii) The velocity of steam at exit from the preceding stage is same as velocity of steam at the entrance to the succeeding stage.

Refer Fig. 19.37 (velocity diagram for reaction blade).
Work done per kg of steam,

$$
W=C_{B}\left(C_{w,}+C_{m v_{0}}\right)=C_{b}\left[C_{1} \cos \alpha+\left(C_{r,} \cos \phi-C_{z}\right)\right]
$$

as

$$
\phi=\alpha \text { and } C_{r_{0}}=C_{n} \text { as per the assumptions }
$$

$$
\therefore \quad W=C_{N}\left[2 C_{1} \cos \alpha-C_{M}\right]
$$

or

$$
\begin{align*}
W & =C_{1}^{2}\left[\frac{2 C_{h} C_{1} \cos \alpha}{C_{1}^{2}}-\frac{C_{b}^{2}}{C_{1}^{2}}\right] \\
& =C_{1}^{2}\left[2 \rho \cdot \cos \alpha-p^{2}\right] \tag{19.27}
\end{align*}
$$

where $\rho=\frac{C_{N}}{C_{1}}$.
The K.E. supplied to the fixed blade $=\frac{C_{1}{ }^{2}}{2 g}$.
The K.E. supplied to the moving blade $=\frac{C_{r}{ }^{2}-C_{r_{1}}{ }^{2}}{2}$.
\therefore Total energy supplied to the stage,

$$
\Delta h=\frac{C_{1}^{2}}{2}+\frac{C_{n}^{2}-C_{n}^{2}}{2}
$$

$$
C_{r_{4}}=C_{1} \text { for symmetrical triangles. }
$$

$$
\therefore \quad \begin{align*}
\Delta h & =\frac{C_{1}^{2}}{2}+\frac{C_{1}^{2}-C_{n}^{2}}{2} \\
& =C_{1}^{2}-\frac{C_{n}^{2}}{2} \tag{19.28}
\end{align*}
$$

Considering the ALMS (Fig. 19,35)

$$
C_{n}^{2}=C_{1}^{2}+C_{b l}^{2}-2 C_{1} \cdot C_{D l} \cdot \cos \alpha
$$

Substituting this value of $C_{r_{3}}{ }^{2}$ is eqn. (19.35), we have
Total energy supplied to the stage

$$
\begin{align*}
\Delta h & =C_{1}^{2}-\left(C_{1}^{2}+C_{b l}^{2}-2 C_{1} \cdot C_{b d} \cdot \cos \alpha V 2\right. \\
& =\left(C_{1}^{2}+2 C_{1} C_{b l} \cos \alpha-C_{b d^{2}}^{2}\right) / 2 \\
& =\frac{C_{1}^{2}}{2}\left[1+\frac{2 C_{b}}{C_{1}} \cdot \cos \alpha-\left(\frac{C_{b l}}{C_{1}}\right)^{2}\right] \\
& =\frac{C_{1}^{2}}{2}\left[1+2 \rho \cos \alpha-p^{2}\right] \tag{19.29}
\end{align*}
$$

The blade efficiency of the reaction turbine is given by,

$$
n_{t u}=\frac{W}{\Delta h}
$$

Substituting the value of W and Δ_{1} from eqns. (19.27) and (19.29), we get

$$
\eta_{G}=\frac{c_{1}^{2}\left[2 \rho \cos \alpha-\rho^{2}\right]}{\frac{C_{1}^{2}}{2}\left(1+2 \rho \cos \alpha-\rho^{2}\right)}
$$

$$
\begin{align*}
& =\frac{2\left(2 \rho \cos \alpha-p^{2}\right)}{\left(1+2 \rho \cos \alpha-\rho^{2}\right)}=\frac{2 p(2 \cos \alpha-\rho)}{\left(1+2 \rho \cos \alpha-\rho^{2}\right)}=\frac{2\left(1+2 \rho \cos \alpha-\rho^{2}\right)-2}{\left(1+2 \rho \cos \alpha-p^{2}\right)} \\
& =2-\frac{2}{1+2 p \cos \alpha-\rho^{2}} \tag{19.30}
\end{align*}
$$

The η_{b} becomes maximum when the value of $\left(1+2 \rho \cos \alpha-\rho^{2}\right)$ becomes maximum.

Fig. 19.42
\therefore The required equation is

$$
\begin{array}{r}
\frac{d}{d \rho}\left(1+2 \rho \cos \alpha-\rho^{2}\right)=0 \\
2 \cos \alpha-2 \rho=0
\end{array}
$$

$$
\begin{equation*}
\therefore \quad \rho=\cos \alpha \tag{19.31}
\end{equation*}
$$

Substituting the value of ρ from eqn. (19.31) into the eqn. (19.30), the value of maximum efficiency is given by,

Hence

$$
\begin{align*}
& \left(\eta_{u}\right)_{\max }=2-\frac{2}{1+2 \cos ^{2} \alpha-\cos ^{2} \alpha}=2\left(1-\frac{1}{1+\cos ^{2} \alpha}\right)=\frac{2 \cos ^{2} \alpha}{1+\cos ^{2} \alpha} \\
& \left(\eta_{3}\right)_{\max }=\frac{2 \cos ^{2} \alpha}{1+\cos ^{2} \alpha} \tag{19.32}
\end{align*}
$$

The variation of $\eta_{a t}$ with blado speed ratio $\left(\frac{C_{M}}{C_{1}}\right)$ for the reaction stage is shown in Fig. 19.42.

19.9. TURBINES EFFICIENCIES

1. Blade or diagram efficiency ($\eta_{N N}$). It is the ratio of work done on the blade per second to the energy entering the blade per second.
2. Stage efficiency ($\eta_{\text {stage }}$). The stage efficiency covers all the losses in the nozzles, blades, diaphragms and discs that are associated with that stage.

$$
\begin{aligned}
\eta_{\text {stage }} & =\frac{\text { Network done on shaft per stage per kg of steam flowing }}{\text { Adiabatic heat drop per stage }} \\
& =\frac{\text { Network done on blades - Disc friction and winduge }}{\text { Adiabatic heat drop per stage }}
\end{aligned}
$$

3. Internal efficiency ($\eta_{\text {internal }}$). This is equivalent to the stage efficiency when applied to the whole turbine, and is given by :

$$
\eta_{\text {internal }}=\frac{\text { Heat coverted into useful work }}{\text { Total adiabatic heat drop }}
$$

4. Overall or turbine efficiency ($\eta_{\text {overall }}$). This efficiency covers internal and external losses ; for example, bearings and steam friction, leakage, radiation etc.

$$
\eta_{\text {overall }}=\frac{\text { Work delivered at the turbine coupling in heat units per kg of steam }}{\text { Total adiabatic heat drop }}
$$

5. Net efficiency or efficiency ratio ($\eta_{\text {net }}$). It is the ratio

Brake thermal efficiency
Thermal efficiency on the Rankine cycle
Also the actual thermal efficiency

$$
=\frac{\text { Heat converted into useful work per kg of steam }}{\text { Total heat in steam at stop valve }- \text { Water heat in exhaust }} .
$$

Again, Rankine efficiency

Hence $\quad \eta_{\mathrm{bat}}=\eta_{\text {everall }}$
It is the overall or net efficiency that is meant when the efficiency of a turbine is spoken of without qualification.

19.10. TYPES OF POWER IN STEAM TURBINE PRACTICE

In steam turbine performance the following types of power are generally used :

1. Adiabatic power (A.P.). It is the power based on the total internal steam flow and adiabatic heat drop.
2. Shai- power (S.P.). It is the actual power transmitted by the turbine.
3. Rim power (R.P.). It is the power developed at the rim. It is also called blade power.

Power losses are usually expressed as follows :
(i) $\left(P_{P_{D}}=\right.$ Power lost in overcoming disc friction.
(ii) $(P)_{b u}=$ Power lost in blade windage losses.

Let us consider the case of an impulse turbine. Let \dot{m}_{s}, be the total internal steam flow in kg/s.

Refer Fig. 19.43. The line (1-2) representa the adiabatic or isentropic expansion of steam in the nozzle from pressure F_{1} to p_{2}. But the actual path of the stage point during expansion in nozzles is shown by (1-3) which takes into account the effect of 'nozslea losses'

Then,
A.P. $=\dot{m},\left(h_{1}-h_{2}\right) \mathrm{kW}$

After expansion in the nozzle the steam enters the blades where the R.P. is developed. Due to blade friction the steam is somowhat reheated and this reheating is shown by (3-4) along the constant pressure p_{2} lino just for convenience. But in actual practice though the pressure at outlet of the blade is equal to that at the inlet, the pressure in the blade channels is not constant. However, with this simplification;

Fig. 19.43

$$
\begin{equation*}
\text { R.P. }=m_{2}\left(h_{1}-h_{4}\right) \mathrm{kW} \tag{19.34}
\end{equation*}
$$

4-5 shows the further reheating due to friction and blade windage and these losses are given as

$$
(P)_{w f}=\dot{m}_{\varepsilon}\left(h_{5}-h_{4}\right) \mathrm{kW}
$$

Now points 1 and 5 are the initial and final stage points respectively for a single stage impulse turbine. It, therefore, follows that

$$
\begin{equation*}
\text { S.P. }=m_{4}\left(h_{1}-h_{5}\right) \mathrm{kW} . \tag{19.36}
\end{equation*}
$$

REACTION TURBINES

Example 19.29. The following data refer to a particular stage of a Parson's reaction turbine :

Speed of the turbine	$=1500$ r.p.m.
Mean diameter of the rotor	$=1$ metre
Stage efficiency	$=80$ per cent

Blade outlet angle $\quad=20^{\circ}$
Speed ratio $\quad=0.7$
Determine the avaiiable isentropic enthalpy drop in the stage.
Solution. Mean diameter of the rotor, $D=1 \mathrm{~m}$
Turbine speed,
Blade outlet angle,
Speed ratio,
Stage efficiency,
Isentropic enthalpy drop :
Blade speed,

$$
C_{b}=\frac{\pi D N}{60}=\frac{\pi \times 1 \times 1500}{60}=78.54 \mathrm{~m} / \mathrm{s}
$$

But

$$
\rho=\frac{C_{\mathrm{N}}}{C_{1}}=0.7 \text { (given) }
$$

$\therefore \quad C_{1}=\frac{C_{\mathrm{k}}}{0.7}=\frac{75.54}{0.7}=112.2 \mathrm{~m} / \mathrm{s}$
In Parson's turbine

$$
\begin{aligned}
N & =1500 \mathrm{r} . \mathrm{p} . \mathrm{m} \\
\varphi & =20^{\circ} \\
\rho & =\frac{C_{b}}{C_{1}}=0.7 \\
\eta_{\text {stage }} & =80 \%
\end{aligned}
$$

With the above data known, the velocity diagram for the turbine can be drawn to a suitable scale as shown in Fig. 19.44.

Fig. 19.44
By measurement (from the diagram)
i.e.,

$$
\begin{aligned}
C_{w_{1}} & =106.5 \mathrm{~m} / \mathrm{s} ; C_{d_{0}}=27 \mathrm{~m} / \mathrm{s} \\
\eta_{\text {rase }} & =\frac{C_{\mathrm{s}}\left(C_{w_{1}}+C_{w_{0}}\right)}{h_{d}}, \text { where } h_{d}=\text { isentropic enthalpy drop. } \\
0.8 & =\frac{78.54(106.25+27)}{h_{d} \times 1000}
\end{aligned}
$$

$$
\therefore \quad h_{d}=\frac{78.54(106.25+27)}{0.8 \times 1000}=13.08 \mathrm{~kJ}
$$

Hence, isentropic enthalpy drop $=\mathbf{1 3 . 0 8} \mathbf{k J} / \mathrm{kg}$. (Ans.)
Example 19.30. In a reaction turbine, the blade tips are inclined at 35° and 20° in the direction of motion. The guide blades are of the same shape as the moving blades, but reversed in direction. At a certain place in the turbine, the drum diameter is 1 metre and the blades are 10 cm high. At this place, the steam has a pressure of 1.75 bar and dryness 0.935 . If the speed of this turbine is 250 r.p.m. and the steam passes through the blades without ahock, find the mass of steam flow and power developed in the ring of moving blades.

Fig. 19.45
Solution. Refer Fig. 19.45.
Angles, $\alpha=\phi=20^{\circ}$, and $\theta=\beta=35^{\circ}$
Mean drum diameter, $D_{m}=1+0.1=1.1 \mathrm{~m}$
Area of flow $=\pi D_{v} h$, where h is the height of blade
Steam pressure

$$
\begin{aligned}
& =\pi \times 1.1 \times 0.1=0.3456 \mathrm{~m}^{2} \\
& =1.75 \text { bar } \\
x & =0.935
\end{aligned}
$$

Dryness fraction of steam,
Speed of the turbine,
Rate of steam flow, $\mathrm{m}_{\mathbf{3}}$:
Blade speed,

$$
C_{B}=\frac{\pi D N}{60}=\frac{\pi \times 1.1 \times 250}{60}=14.4 \mathrm{~m} / \mathrm{s}
$$

With the above given data the velocity diagram can be drawn to a suitable scale as shown in Fig. 19.45.

By measurement (from diagram) :

$$
C_{w_{1}}=30 \mathrm{~m} / \mathrm{s} ; C_{w_{0}}=15.45 \mathrm{~m} / \mathrm{s} ; C_{h}=C_{h}=10.8 \mathrm{~m} / \mathrm{s}
$$

From steam tables corresponding to 1.75 bar pressure.

$$
\begin{aligned}
v_{z} & =\text { Specific volume of dry saturated steam } \\
& =1.004 \mathrm{~m}^{3} / \mathrm{kg} \\
x & =0.935(\text { given })
\end{aligned}
$$

\therefore Specific volume of wet steam $=x v_{g}=0.935 \times 1.004=0.938 \mathrm{~m}^{1} / \mathrm{kg}$

Mean flow mate is given by :

$$
m_{4}=\frac{\text { Area of flow } \times \text { Velocity of flow }}{\text { Specific volume of steam }}=\frac{0.3456 \times 10.8}{0.938}=3.98 \mathrm{~kg} / \mathrm{s} .
$$

Power developed, P:

$$
\begin{aligned}
P & =\frac{m_{2}\left(C_{w_{1}}+C_{w_{0}}\right) C_{b H}}{1000} \mathrm{~kW} \\
& =\frac{3.98(30+15.45) \times 14.4}{1000}=\mathbf{2 . 6} \mathrm{kW} . \text { (Ans.) }
\end{aligned}
$$

Example 19.31. In a raction turbine, the fixed blades and mowing blades are of the same shape but reversed in direction. The angles of the receiting tips are 35° and of the discharging tips 20°. Find the power deceloped per pair of blades for a stean consumption of $2.5 \mathrm{~kg} / \mathrm{s}$, when the blade speed is $50 \mathrm{~m} / \mathrm{s}$. If the heat dirup per pair is $10.04 \mathrm{kol} / \mathrm{kg}$, find the efficiency of the pair.

Solution. Angles of receiving tips, $\theta=\beta=35^{-}$
Angles of discharging tips.

$$
\alpha=0=20^{-}
$$

Steam consumption,

$$
\begin{aligned}
\dot{m}_{s} & =2.5 \mathrm{~kg} / \mathrm{s} \\
C_{i j} & =50 \mathrm{~m} ; \\
h_{y} & =10.04 \mathrm{k} / / \mathrm{kg}
\end{aligned}
$$

Blade speed,
Heat drop per pair.

Power developed per pair of blades :

Refer Fig. 19.46.

Fi4. 19.46

$$
N S=P Q=152 \mathrm{~m} / \mathrm{s}
$$

Work done per pair per hig of steam

$$
\begin{aligned}
& =\left(C_{w_{1}}+C_{a_{s}}\right) C_{H}=152 \times 50=7600 \mathrm{Nm} k g \text { of steam. } \\
\text { Power/pair } & =\frac{m_{s}\left(C_{w_{2}}+C_{w_{H}}\right) C_{N}}{1000}=\frac{2.5 \times 7600}{1000}=19 \mathrm{~kW} \text {. (Ans.) }
\end{aligned}
$$

Efficiency of the pair :

$$
\begin{aligned}
\text { Efficiency } & =\frac{\text { Work done per pair per kg of steam }}{h_{i}} \\
& =\frac{7600}{10.04 \times 1000}=0.757=75.7 \% . \text { (Ans.) }
\end{aligned}
$$

Er Example 19.32. A stage of a turbine with Parson's blading delivers dry saturated steam at 2.7 bar from the fixed blades at $90 \mathrm{~m} / \mathrm{s}$. The mean blade height is 40 mm , and the moving blade cxit angle is 20°. The axial velocity of steam is $3 / 4$ of the blade velocity at the mean radius. Stoam is supplied to the stase at the rate of $9000 \mathrm{~kg} / \mathrm{h}$. The effect of the blude tip thickness on the anntilus anva can be neglected, Calculate :
(i) The whed speed in r.p.m. : (ii) The diagram pouver :
(iii) The diagram efficiency :
(iv) The enthalpy drop of the steam in this stage.

Solution. The velocity dingram is shown in Fig. 19.47 (t) and the blade wheel annulus is represented in Fig. 19.47 (b).

Pressure $=2.7$ bar, $x=1, C_{1}=90 \mathrm{~m} / \mathrm{s}, h=40 \mathrm{~mm}=0.04 \mathrm{~m}$

$$
\begin{aligned}
\alpha & =0=20^{\circ}, C_{f t}=C_{f_{e}}=3 / 4 C_{h /} \\
& =9000 \mathrm{kgh} .
\end{aligned}
$$

Rate of steam supply
(i) Wheel speed, N ;

$$
\begin{array}{ll}
\therefore \quad C_{l}=3 / 4 C_{b}=C_{1} \sin 20^{\circ}=90 \sin 20^{\circ}=30.78 \mathrm{~m} / \mathrm{s} \\
\therefore & C_{d \alpha}=30.78 \times 43=41.04 \mathrm{~m} / \mathrm{s}
\end{array}
$$

(a)

(b)

The mass flow of steam is given by : $\dot{m}_{s}=\frac{C_{r} A}{v}$ (where \boldsymbol{A} is the annulus area, and v is the specific volume of the steam).

In this case, $v=v_{z}$ at 2.7 bar $=0.6686 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\therefore \quad \quad \dot{m}_{n}=\frac{9000}{3600}=\frac{30.78}{0.6686} \text { or } A=\frac{9000 \times 0.6686}{3600 \times 30.78}=0.054 \mathrm{~m}^{2}
$$

Now, annulus area, $\quad A=\pi D h$
(where D is the mean diameter, and h is the mean blade height)

$$
\therefore \quad 0.054=\pi D \times 0.04 \text { or } D=\frac{0.054}{\pi \times 0.04}=0.43 \mathrm{~m}
$$

Also,

$$
C_{b l}=\frac{\pi D N}{60} \text { or } 41.04=\frac{\pi \times 0.43 \times N}{60}
$$

or

$$
N=\frac{41.04 \times 60}{\pi \times 0.43}=1823 \mathrm{r} . \mathrm{p} . \mathrm{m} . \quad \text { (Ans.) }
$$

(ii) The diagram power :

Diagram power

$$
=\dot{m}, C_{w} C_{b}
$$

Now,

$$
C_{u}=2 C_{1} \cos \alpha-C_{b}
$$

$$
=2 \times 90 \times \cos 20^{\circ}-41.04=128.1 \mathrm{~m} / \mathrm{s}
$$

\therefore Diagram power

$$
=\frac{9000 \times 128.1 \times 41.04}{3600 \times 1000}=13.14 \mathrm{~kW} . \quad \text { (Ans.) }
$$

(iii) The diagram efficiency :

Rate of doing work per $\mathrm{kg} / \mathrm{s}=C_{\omega} C_{\omega}=128.1 \times 41.04 \mathrm{~N} \mathrm{~m} / \mathrm{s}$
Also, energy input to the moving blades per stage

$$
=\frac{C_{1}^{2}}{2}+\frac{C_{n}^{2}-C_{n}^{2}}{2}=\frac{C_{1}^{2}}{2}+\frac{C_{1}^{2}-C_{n}^{2}}{2}=C_{1}^{2}-\frac{C_{n}^{2}}{2} \quad\left(\because C_{n}=C_{1}\right)
$$

Referring to Fig. 19.47 (a), we have

$$
\begin{aligned}
C_{n}{ }^{2} & =C_{1}{ }^{2}+C_{N}{ }^{2}-2 C_{1} C_{B} \cos \alpha \\
& =90^{2}+41.04^{2}-2 \times 90 \times 41.04 \times \cos 20^{\circ} \\
& =8100+1684.28-6941.69 \\
\therefore \quad C_{n} & =53.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Energy input

$$
=90^{2}-\frac{53.3^{2}}{2}=6679.5 \mathrm{Nm} \text { per } \mathrm{kg} / \mathrm{s}
$$

$$
\therefore \text { Diagram efficiency }=\frac{128.1 \times 41.04}{6679.5}=0.787 \text { or } 78.7 \% \text {. (Ans.) }
$$

(iv) Enthalpy drop in the stage :

Enthalpy drop in the moving blades

$$
=\frac{C_{r_{0}}{ }^{2}-C_{n}^{2}}{2}=\frac{90^{2}-53.3^{2}}{2 \times 1000}=2.63 \mathrm{~kJ} / \mathrm{kg} \quad\left(\because C_{n}=C_{n}\right)
$$

\therefore Total enthalpy drop per stage $=2 \times 2.63=5.26 \mathrm{~kJ} / \mathrm{kg}$. (Ans.)

Example 19.33. The outlet angle of the blade of a Parson's turbine is 20° and the axial velocity of flow of steam is 0.5 times the mean blade velocity. If the diameter of the ring is 1.25 m and the rotational speed is 3000 r.p.m. determine :
(i) Inlet angles of blades.
(ii) Power developed if dry saturated steam at 5 bar passes through the blade whose height may be assumed as 6 cm . Neglect the effect of blade thickness.

Solution. Refer Fig. 19.48.

Fig. 19.48
Angles,

$$
\alpha=\phi=20^{\circ}
$$

Axial velocity of flow of steam,

$$
C_{h}=C_{f_{0}}=0.5 C_{H} \text { (blade speed) }
$$

Diameter of the ring.

$$
D=1.25 \mathrm{~m}
$$

Rotational speed,

$$
N=3000 \mathrm{r} . \mathrm{p} \cdot \mathrm{~m}
$$

Blade speed,

$$
C_{B}=\frac{\pi D N}{60}=\frac{\pi \times 1.25 \times 3000}{60}=196 \mathrm{~m} / \mathrm{s}
$$

$$
\therefore \quad C_{f_{1}}=C_{f_{0}}=0.5 \times 196=98 \mathrm{~m} / \mathrm{s}
$$

Velocity diagram is drawn as follows :

- Takes $L M\left(C_{b j}\right)=196 \mathrm{~m} / \mathrm{s}$, and $\alpha=\phi=20^{\circ}$.
- Draw line 1-2 parallel to $L M$ at a value of $98 \mathrm{~m} / \mathrm{s}$ (according to scale). The points S and N are thus located on the line 1-2.
- Complete the rest of the dingram as shown in Fig. 19.48.
(i) Inlet angles of blades :

The inlet angles (by measurement) are :

$$
\beta=\theta=55^{\circ} \quad \text { (Ans.) }
$$

(ii) Power developed, P :

Area of flow is given by,
Mean flow rate is given by.

$$
m_{n}=\frac{\text { Area of flow } \times \text { Velocity of flow }}{\text { Specific volume of steam }}=\frac{\pi D h \times C_{f}}{v}
$$

From steam tables, $\quad v_{\mathrm{k}}=0.375 \mathrm{~m}^{3} / \mathrm{kg}$ at 5 bar
$\therefore \quad m_{3}=\frac{-1.25 \times\binom{ 6}{100} \times 9 \mathrm{M}}{0.375}=61.57 \mathrm{~kg} / \mathrm{s}$
Power developed.

$$
P=\frac{m_{s} \times C_{w} \times C_{b d}}{1000}=\frac{61.57 \times 330 \times 196}{1000}=3982.3 \mathrm{~kW} . \text { (Ans.) }
$$

Fxample 19.34. A 50\% reaction furbine fwith symmetrical velocity triangles) running at 400 r.p.m, has the cxit angle of the blades as 20° and the velocity of steam relative to the blades at the exit is 1.35 times the mean blade specd. The steam flow rate is $8.33 \mathrm{~kg} / \mathrm{s}$ and at a particular stage the spocyfic volume is $1.381 \mathrm{~m}^{3} / \mathrm{kg}$. Calculate for this stage :
(i) A suitable blade height, assuming the rotor mean diameter 12 times the blade height, and
(ii) The diagram work.
(N.U.)

Solution. Speed.

$$
\begin{aligned}
N & =400 \text { r.p.m. } ; \alpha=20 \\
C_{r_{n}} & =C_{1}=1.35 C_{\text {tr }} ; m,=8.33 \mathrm{~kg} / \mathrm{s} \\
v & =1.381 \mathrm{~m}^{3} / \mathrm{kg} ; D=12 \mathrm{~h}
\end{aligned}
$$

(i) Blade height, h:

Refor Fig. 19.49.

Axial flow velocity,

$$
C_{f}=C_{f_{0}}=C_{f}=C_{1} \sin \alpha
$$

$$
=1.35 C_{M} \sin 20
$$

$$
=0.4617 C_{b}
$$

Area of flow,

$$
A=\pi D h=\pi D \times \frac{D}{12}=\frac{\pi D^{2}}{12}
$$

$$
\text { Mass flow rate, } \quad m=\frac{A C_{i}}{1} \text { or } 8.33=\frac{A \times 0.4617 C_{N}}{1.381}
$$

$$
\frac{8.33 \times 1.381}{0.4917}=A \times C_{64}=\frac{\pi D^{2}}{12} \times \frac{\pi D N}{60}
$$

$$
24.916=\frac{\pi^{2} D^{3} \times 400}{720} \text { or } D^{3}=\frac{24.919 \times 720}{\pi^{2} \times 400} \text { or } D=1.656 \mathrm{~m}
$$

\therefore Blade height, $\quad h=\frac{D}{12}=\frac{1.656}{12}=0.138 \mathrm{~m}$ or 138 mm . (Ans.)
(ii) The diagram work :

Diagram work

$$
\begin{aligned}
& =m \times C_{H}\left(C_{W_{Q}}+C_{w_{Q}}\right) \\
& =m \times C_{N}\left(2 C_{1} \cos \alpha-C_{H N}\right) \\
& =8.33 \times C_{N}\left(2 \times 1.35 C_{M} \cos 20^{\circ}-C_{B N}\right) \\
& =8.33 \times C_{b L}^{2}\left(2 \times 1.35 \cos 20^{\circ}-1\right) \\
& =8.33 \times\left(\frac{\pi D N}{60}\right)^{2} \times 1.537=8.33 \times\left(\frac{\pi \times 1.656 \times 400}{60}\right)^{2} \times 1.537 \\
& =15401.2 \mathrm{~W} \text { or } 15.4 \mathrm{~kW} . \text { (Ans.) }
\end{aligned}
$$

Example 19.35. $300 \mathrm{~kg} / \mathrm{min}$ of steam (2 bar, 0.98 dry) flows through a given stage of a naction turbine. The crit angle of fixed blades as well as moving blader is 20° and 3.68 kW of power is developed. If the rotor speed is 360 r.p.m. and tip leakage is 5 per cent, calculate the mean drum diameter and the blade height. The axial flow velocity is 0.8 times the blade velocity,
(Roorkee University)
Solution. Rate of flow of steam through the turbine, $m_{n}=\frac{300}{60}=5 \mathrm{~kg} / \mathrm{s}$
Pressure and condition of steam, $p=2$ bar, $x=0.98$.
The exit angles of fixed blades as well as moving blades, $\alpha=\phi=20^{\circ}$
Power developed,

$$
P=3.68 \mathrm{~kW}
$$

Speed of the rotor,
Tip leakage

$$
\begin{aligned}
N & =360 \text { r.p.m. } \\
& =5 \text { per cent. } \\
C_{f} & =0,8 C_{b t} \text { (blade velocity) }
\end{aligned}
$$

Axial flow velocity,
Refer Fig 19.49.

Mean drum diameter, D :

Mean blade velocity, $\quad C_{H}=\frac{\pi D N}{60}=\frac{\pi D \times 360}{60}=18,85 \mathrm{D} \mathrm{m} / \mathrm{s}$
Power developed,

$$
P=\frac{m_{1} C_{b} C_{e}}{1000}
$$

$$
3.67=\frac{(5 \times 0.95) \times 18.85 D \times C_{0}}{1000}
$$

$$
C_{\psi}=\frac{3.67 \times 1000}{(5 \times 0.95) \times 18.85 D}=\frac{40.958}{D}
$$

Assuming Parson's reaction turbine, we have

$$
C_{h}=C_{1} \sin \alpha \text { or } C_{1}=\frac{C_{f}}{\sin \alpha}=\frac{0.8 C_{h}}{\sin \alpha}=\frac{0.8 \times 18.85 D}{\sin 20^{\circ}}=44.091 \mathrm{D}
$$

$$
\left(C_{f_{h}}=C_{f_{f}}=C_{f}\right)
$$

Also,

$$
\begin{aligned}
C_{k} & =2 C_{1} \cos \alpha-C_{b} \text { or } \frac{40.988}{D}=2 \times 44.091 D \cos 20^{\circ}-18.85 D=64.01 D \\
40.988 & =64.01 D^{2} \text { or } D=0.8 \mathrm{~m} \text { or } 800 \mathrm{~mm} \text {. (Ans.) }
\end{aligned}
$$

Blade height, h :
Mean steam flow rate, $m_{s}=\frac{\pi D h C_{f}}{x v_{r}}$
or

$$
(5 \times 0.95)=\frac{\pi \times 0.8 \times h \times C_{1} \sin \alpha}{0.98 \times 0.885}=\frac{\pi \times 0.8 \times h \times\left(44.091 D \times \sin 20^{\circ}\right)}{0.98 \times 0.885}
$$

(At 2 bar : $v_{f}=0.885 \mathrm{~kg} / \mathrm{m}^{3}$)
or

$$
h=\frac{(5 \times 0.95) \times 0.98 \times 0.885}{\pi \times 0.8 \times(44.091 \times 0.80 \times 0.3420)}=0.1359 \mathrm{~m} \quad \text { or } \quad 135.9 \mathrm{~mm} . \quad \text { (Ans.) }
$$

Example 19.36. (a) Why is drum type construction preferred to disc type construction in reaction turbine ?
(b) Why is partial admission of steam adopted for H.P. imoulse stages while full admission is essential for any stage of a reaction turbine?
(c) In a 50% reaction turbine, the speed of rotation of a blade group is 3000 r.p.m. with mean blade velocity of $120 \mathrm{~m} / \mathrm{s}$. The velocity ratio is 0.8 and the exit angle of the blades is 20°. If the mean blade height is 30 mm , calculate the total steam flow rate through the turbine. Neglect the effect of blade edge thickness of the annular area but consider 10% of the total steam flow rate as the tip leakage loss. The mean condition of steam in that blade group is found to be 2.7 bar and 0.95 dry.
(d) What do you mean by once through boilder?
(AMIE Summer, 1998)
Solution. (a) The rotor of the turbine can be of drum type or disc type. Disc type construction is difficult (complicated) to make, but lighter in weight. Hence the centrifugal stresses are lower at a particular speed. On the other hand drum type construction is simple in construction, and it is easy to attach aerofoil shape blades. Further it is easier to design for tip lea age reduction which is a major problem in reaction turbines. Moreover due to small pressure drop per stage (larger number of stages) in reaction turbines, their rotational speeds are lower and so the centrifugal stresses are not very high (even the reaction blades are lighter). Therefore drum type construction is preferred to disc type in reaction turbines.

To accommodate increase in specific volume at lower pressures the drum diameter is stepped up which allows greater area without unduly increasing blade height. The increased drum diameter also increases the torque due to steam pressure.
(b) In impulse turbines there is no expansion of steam in moving blades, and the pressure of steam remains constant while flowing over the moving blades. The expansion takes place only in the nozzles at the inlet to the turbine in H.P. stages, or through the fixed blades in the subsequent stages. The nozzles need not occupy the complete circumference. Therefore partial admission of steam is feasible and adopted for H.P. impulse stages.

In reaction turbines, pressure drop is required in the moving blades also. This is not possible with partial admission. Hence full admission is essen* al for all stages of a reaction turbine.
(c) Refer ${ }^{-}$g. 19.37.

Given :

$$
N=3000 \mathrm{r} . \mathrm{p} . \mathrm{m} . ; \varphi=\alpha=20^{\circ} ; C_{B}=120 \mathrm{~m} / \mathrm{s} ; \frac{C_{b d}}{C_{1}}=0.8 ;
$$

$\therefore \quad C_{1}=\frac{C_{H}}{0.8}=\frac{120}{0.8}=150 \mathrm{~m} / \mathrm{s}$
Also

$$
c_{B}=\frac{\pi D N}{60}
$$

or

$$
120=\frac{\pi D N}{60}
$$

$$
\therefore \quad D=\frac{120 \times 60}{\pi \times 3000}=0.764 \mathrm{~m}
$$

From steam tables, v_{f} (at 2.7 bar) $=0.668 \mathrm{~m}^{3} / \mathrm{kg}$

$$
\begin{aligned}
& v=0.95 \times 0.668=0.6346 \mathrm{~m}^{3} / \mathrm{kg} \\
& A=\pi D h=\pi \times 0.764 \times \frac{30}{1000}=0.072 \mathrm{~m}^{2} \\
& C_{f}=C_{1} \sin \alpha=150 \sin 20^{\circ}=51.3 \mathrm{~m} / \mathrm{s} \quad\left(C_{f_{1}}=C_{f}=C_{f}\right) \\
& \dot{m}=\frac{A C_{f}}{v}=\frac{0.072 \times 51.3}{0.6346}=5.82 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Flow area
Flow velocity
Mass flow rate
Accounting for 10 per cent leakage (of total steam flow, the total steam flow rate is

$$
\frac{5.82}{0.9}=6.467 \mathrm{~kg} / \mathrm{s} . \quad(\text { Ans. })
$$

(d) Once through boiler is a boiler which does not require any water or steam drum. It is a monotube boiler using about 1.5 kg long tube arranged in the combustion chamber and the furnace. The conomizer, boiler and superheater are in scries with no fixed surfaces as separators between the steam and water.

Benson boiler is an example of once through boiler, operating at supercritical pressure. The tube length to diameter ratio of such a boiler is about 2500 . Due to large frictional resistance the feed pressure should be about 1.4 times the boiler pressure.

5 Example 19.37. A turenty-stage Parson turbine receives steam at 15 bar at $300^{\circ} \mathrm{C}$. The steam leaves the turbine at 0.1 bar pressure. The turbine has a stage effictency of 80% and the reheat factor 1.06. The total pouer deteloped by the turbine is 10665 kW . Find the steam flow rate through the turbine assuming all stages develop equal power.

The pressure of steam, at certain stage of the turbinc is I bar abs., and is dry and saturated. The blade exit angle is 25° and the blade apeed ratio is 0.75 . Find the mean diameter of the rotor of this stagre and also the rotor speed. Take biade height as $1 / 12 t h$ of the mean diameter. The thickness of the blades may be neglected.

Solution. Number of stage

$$
\begin{aligned}
& =20 \\
& =15 \text { bar, } 300^{\circ} \mathrm{C} \\
& =0.1 \text { bar } \\
I_{\text {taia }} & =80 \% \\
& =1.06 \\
& =10665 \mathrm{~kW} \\
\text { 4ge } & =1 \text { bar abs, } x=1 \\
& =25^{\circ}
\end{aligned}
$$

Steam supply pressure $\quad=15$ bar, $3000^{\circ} \mathrm{C}$
Exhaust pressure
Stage efficiency of turbine,
Reheat factor
Total power developed
Steam pressure at a certain stage
Blade exit angle
Blade speed ratio,

$$
\mathrm{p}=\frac{C_{01}}{C_{1}}=0.75
$$

Height of the blade,

$$
h=\frac{1}{12} D \text { (mean dia. of rotor) }
$$

(i) Steam flow rate, m_{n} :

Refer Fig. 19.50.
Isentropic drop, $\quad\left(\Delta h_{1}\right)_{\text {sentrupio }}=h_{1}-h_{2}=3040-2195=845 \mathrm{ka} / \mathrm{kg}$

Fitic 19.50
Work done
= Actual enthalpy drop
$=(\Delta h)_{\text {Temberipie }} \times \eta_{\text {inctrali }}$
$=845 \times 0.848=716.56 \mathrm{~kJ} / \mathrm{kg}$
Work done per stage per $\mathrm{kg} \quad=\frac{716.56}{20}=35.83 \mathrm{~kJ}$
Also, total power $\quad=$ No. of stages $\times m_{3} \times$ work done kg stage

$$
\begin{array}{lrl}
\therefore & 10665 & =20 \times m_{v} \times 35.83 \\
\therefore & \dot{m}_{s} & =\frac{10665}{20 \times 35.83}=14.88 \mathrm{~kg} / \mathrm{s} . \quad \text { (Ans.) }
\end{array}
$$

(ii) Mean diameter of rotor, D :

Rotor speed, N :
Refer Fig. 19.51.
Work done per kg per stage $=C_{N} \times C_{k}=C_{H}\left(2 C_{1} \cos 25^{\circ}-C_{E}\right)$
Also,

$$
\frac{C_{B}}{C_{1}}=0.75
$$

$$
\therefore \quad C_{1}=\frac{C_{N}}{0.75}=1.33 C_{B}
$$

Fig. 19.51
i.c. Work done per kg per stage

$$
\begin{align*}
& =C_{b d}\left(2 \times 1.33 C_{b l} \times 0.906-C_{b j}\right) \\
& =1.41 C_{b j}{ }^{2} \mathrm{Nm} \tag{ii}
\end{align*}
$$

Equating (i) and (ii), we get

$$
\begin{array}{lrl}
& 1.41 C_{b f}^{2} & =35.83 \times 1000 \\
\therefore & C_{b r}^{2} & =\frac{35.83 \times 1000}{1.41}
\end{array} \text { or } C_{k z}=159.41 \mathrm{~m} / \mathrm{s} .
$$

$$
C_{f_{1}}=C_{1} \sin \alpha=212 \sin 2 \pi=89.59 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
v_{d} & =\text { Specific volume at } 1 \text { bir when steam is dry and saturated } \\
& =1.694 \mathrm{~m}^{3} / \mathrm{kg} \text { (from steam tables) }
\end{aligned}
$$

Mass flow rate, $\quad \dot{m}_{s}=\frac{\pi D h C_{f}}{v}$

$$
\begin{aligned}
\therefore \quad 14.88 & =\frac{\pi \times D \times\binom{ D}{12} 89.59}{1.694} \text { or } D^{2}=\frac{14.88 \times 1.694 \times 12}{\pi \times 89.59} \\
\therefore \quad D & =1.036 \mathrm{~m} .(\text { An } \times .)
\end{aligned}
$$

Now,
Also,

$$
h=\frac{D}{12}=\frac{1.036}{12}=0,086 \mathrm{~m}=8.6 \mathrm{~cm} . \quad \text { Ans.) }
$$

\therefore

$$
C_{H}=\frac{\pi D N}{60}
$$

Example 19.3 $N=\frac{\pi D}{}=\frac{10.1 .036}{\pi \times 1.036}=2938.7$ r.p.m. (Ans.) 3000 r.p.m.

Mean rotor diameter 1 保
(i) Determine the diagram efficiency.
(ii) Determine the percentage increase in diagram efficiency and rotor speed if the rotor is designed to run at the best theoretical speed, the exit angle being 20°.

Solution. Mean rotor diameter, $D=15 \mathrm{~m}$
Speed ratio,

$$
\begin{aligned}
\mathrm{p} & =\frac{C_{M}}{C_{1}}=0.72 \\
& =20 \\
N & =3000 \text { r.p.m. }
\end{aligned}
$$

Blade outlet angle
Rotor speed.
(This example solved purely by calculations (Fig. 19.52) is not drawn to scale.)

Fige 19. 5
(f) Diagram efficiency :

Blade velocity,

$$
C_{y}=\frac{\pi D N}{60}=\frac{\pi \times 1.5 \times 3000}{60}=285.6 \mathrm{~m} / \mathrm{s}
$$

Speed ratio,

$$
a=\frac{C_{3}}{C_{1}}=0.72
$$

$\therefore \quad C_{3}=\frac{C_{0}}{0.72}=\frac{235.6}{0.72}=827.2 \mathrm{mb}$

Assuming that celocity triandes are symmatrical

$$
\pi=\theta=20
$$

From the velocity $A L . M / S$
i.e.,

$$
\begin{aligned}
& C_{n}^{2}=C_{1}^{2}+C_{n d}^{2}-2 C_{1} C_{0} \cos \alpha \\
& C_{n}=\sqrt{(327.2)^{2}+1235.6 t^{2}-2 \times 327.2 \times 235.0 \mathrm{cus} 201} \\
& =100 \sqrt{10.7}+5.55-14.48=133 \mathrm{~mm} \\
& C_{n}=133 \mathrm{~m} \mathrm{~m} \\
& \left.=C_{h i} C_{6}=C_{N} 12 C_{,} \cos \alpha-C_{6}\right) \\
& =235.612 \times 397.2 \cos 20^{-}-235.61=29371.3 \mathrm{Nm} \text {. }
\end{aligned}
$$

Work done per kg of steam
Energy supplied per kg of steam

$$
\begin{aligned}
& =\frac{C_{1}^{2}+C_{n}^{2}-C_{n}^{2}}{2} \\
& =\frac{2 C_{1}^{2}-C_{n}^{2}}{2}
\end{aligned}
$$

$$
=\frac{2 \times(327.2)^{2}-(138)^{2}}{2}=98215.3 \mathrm{Nm}
$$

\therefore Diagram efficiency $\quad=\frac{89371.3}{98215.3}=0.91=\mathbf{9 1 \%}$. (Ans.)
(i) Percentage increase in diagram efficiency :

For the best diagram efficiency (maximum), the required condition is

$$
\begin{aligned}
\rho & =\frac{C_{b L}}{C_{1}}=\cos \alpha \\
C_{b l} & =C_{1} \cos \alpha=372.2 \cos 20^{\circ}=307.46 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

For this blade speed, the value of $C_{r_{2}}$ is again calculated by using eqn. (i),

$$
\begin{aligned}
C_{r_{1}} & =\sqrt{(327.2)^{2}+(307.46)^{2}-2 \times 327.2 \times 307.46 \times \cos 20^{\circ}} \\
& =100 \sqrt{10.7+9.45-18.906}=111.5 \mathrm{~m} / \mathrm{s} \\
& =\frac{2 C_{h l}\left(2 C_{1} \cos \alpha-C_{h 2}\right)}{\left(C_{1}^{2}+C_{n}^{2}-C_{r}^{2}\right)} \\
& =\frac{\left.2 \times 307.46 / 2 \times 327.2 \cos 20^{\circ}-307.46\right)}{(327.2)^{2}+(327.2)^{2}-(111.5)^{2}}=0.937 \text { or } 93.7 \%
\end{aligned}
$$

Percentage increase in diagram efficiency

$$
=\frac{0.937-0.91}{0.91}=0.0296 \text { or } 2.96 \% \text {. (Ans.) }
$$

The diagram efficiency for the best speed can also be calculated by using relation

$$
\pi_{\text {thate }}=\frac{2 \cos ^{2} \alpha}{1+\cos ^{2} \alpha}=\frac{2 \times \cos ^{2} 20^{\circ}}{1+\cos ^{2} 20^{\circ}}=\frac{1.766}{1+0.883}=0.937 \text { or } 93.7 \% \text {. (Ans.) }
$$

The best theoretical speed of the rotor is given by,

$$
C_{b L}=\frac{\pi D N}{60} \text { or } N=\frac{60 C_{b s}}{\pi D}=\frac{60 \times 307.46}{\pi \times 1.5}=3914.7 \text { r.p.m. (Ans.) }
$$

Evi Example 19.39. (Impulse reaction turbine). The following data relate to a stage of on impulse raction turbine :

Steam celocity coming out of nozzle $=245 \mathrm{~m} / \mathrm{s} ;$ nozzle angle $=20^{\circ}$; blade mean speed $=145 \mathrm{~min}$; speed of the rotor $=300 \mathrm{r}$. p.m. ; blade height $=10 \mathrm{~cm}$; specific volume of steam at nuesle ourlet and blade outlet respectively $=3.45 \mathrm{~m}^{3} / \mathrm{kg}$ and $3.95 \mathrm{~m}^{3} / \mathrm{kg}$; Power developed by the turbine $=287 \mathrm{~kW}:$ efficiency of nozzle and blades combinedly $=90 \%$: carry over co-efficient $=0.82$.

Find (i) The heat drop in each stage: (ii) Degree of reaction:
(iii) Stoge efficienry

Solution. Steam velocity coming out of nozale, $C_{1}=245 \mathrm{~m} / \mathrm{s}$
Nozale angle,
Blade mean speed,
Speed of the rotor.

Blade height,

$$
\begin{aligned}
\alpha & =20^{-} \\
E_{h \mathrm{c}} & =14 \mathrm{~m} / \mathrm{s} / \mathrm{s} \\
\mathrm{~N} & =3000 \mathrm{r} \cdot \mathrm{p} \cdot \mathrm{~m} . \\
h & =10 \mathrm{~cm}=0.1 \mathrm{~m}
\end{aligned}
$$

Specific volume of steam at nozzle outlet or blade inlet, $v_{1}=3.45 \mathrm{~m}^{3} / \mathrm{kg}$ Specific volume of steam at blade outlet, $v_{0}=3.95 \mathrm{~m}^{3} / \mathrm{kg}$
Power developed by the turbine $=287 \mathrm{~kW}$
Efficiency of nozzle and blades combinedly $=90 \%$
Carry over co-efficient, $\psi=0.82$
Blade speed,

$$
C_{b l}=\frac{\pi D N}{60}
$$

$$
\therefore \quad D=\frac{60 C_{b i}}{\pi N}=\frac{60 \times 145}{\pi \times 3000}=0.923 \mathrm{~m}
$$

Fig 19.53

Mass flow rate,

$$
\begin{aligned}
\dot{m}_{n} & =\frac{C_{f_{1}} \times \pi D h}{v_{1}}=\frac{C_{1} \sin \mathrm{\Sigma} \times \pi D h}{v_{1}} \\
& =\frac{245 \times \sin 20^{\circ} \times \pi \times 0.923 \times 0.1}{3.45}=7.04 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Also

$$
\dot{m}_{s}=\frac{C_{f_{1}} \pi D h}{v_{0}}
$$

$$
\begin{aligned}
& \therefore \\
& \qquad C_{f_{a}}=\frac{\dot{m}_{4} v_{0}}{\pi D h}=\frac{7.04 \times}{\pi \times 0.92} \\
& \text { The power is given by, } \quad P=\frac{\dot{m}_{\mathrm{s}} \times C_{h l} \times C_{w}}{1000}
\end{aligned}
$$

$$
\begin{aligned}
287 & =\frac{7.04 \times 145 \times C_{w}}{1000} \\
\therefore \quad C_{w} & =\frac{287 \times 1000}{7.04 \times 145}=281 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Now draw velocity triangles as follows :
Select a suitable sate (say $1 \mathrm{~cm}=25 \mathrm{~m} / 8$)

- Draw $L M=$ blade velocity $=145 \mathrm{~m} / \mathrm{a} ; \angle \mathrm{MLS}=$ nozzle angle $=20^{\circ}$

Join MSS to complete the inlet ALASS.

- Draw a perpendicular from S which cuts the line through $L M$ at point P.

Mark the point Q such that $P Q=C_{6}=281 \mathrm{~m} / \mathrm{s}$.

- in a perpendicular through point Q and the point N as $Q N=95.9 \mathrm{~m} / \mathrm{s}$.

Jan $L N$ and $M N$ to complete the outlet velocity triangle.
From the velocity triangles:

$$
C_{n}=117.5 \mathrm{~m} / \mathrm{s} ; C_{r_{0}}=217.5 \mathrm{~m} / \mathrm{s} ; C_{0}=105 \mathrm{~m} / \mathrm{s} .
$$

(i) Heat drop in each stage, $(\mathrm{V} /)_{\text {stage }}$:

Heat drop in fixed blades (N_{1})

$$
\begin{aligned}
& =\frac{C_{1}^{2}-v C_{0}^{2}}{2 \times \eta_{\text {trame }}} \text {, where } \psi \text { is a carry over co-efficien } \\
& =\frac{(245)^{2}-0.82 \times(105)^{2}}{2 \times 0.9 \times 1000}=28.32 \mathrm{kol} / \mathrm{kg}
\end{aligned}
$$

Heat drop in moring blades ($\mathrm{V}_{\mathrm{T}_{\mathrm{m}}}$)

$$
=\frac{C_{r}^{2}-C_{1}^{2}}{2 \times \eta_{\text {couzhe }}^{2}}=\frac{(217.5)^{2}-(117.5)^{2}}{2 \times 0.9 \times 1000}=18.61 \mathrm{~kJ} / \mathrm{kg}
$$

Total heat drop in a staged.

$$
\left(\Delta_{2}\right)_{\text {taiev }}=\Delta l_{f}+V_{2}=28.32+18.61=46.93 \mathrm{k} \cdot \mathrm{~J} / \mathrm{kg} . \quad \text { (Ans.) }
$$

(ii) Degree of reaction, R_{d} :

$$
R_{0}=\frac{\Delta h_{m}}{\Delta h_{m}-\Delta h_{f}}=\frac{18.61}{18.61-28.32}=\mathbf{0 . 3 9 6 .} \quad(\mathrm{Ans})
$$

(iii) Stage efficiency, Hataze :

Work done per kg of steam

$$
\begin{aligned}
= & \frac{C_{b 1} \times C_{\text {te }}}{1000}=\frac{145 \times 281}{1000}=40.74 \mathrm{~kJ} / \mathrm{kg} \text { of steam } \\
\eta_{\text {stap }} & =\frac{\text { Work done per kg of stearn }}{\text { Total heat drop in a stage }}=\frac{40.74}{46.93}=0.868 \text { or } 86.8 \% \text {. (Ans.) }
\end{aligned}
$$

10.11. "SIATE POINT LOCUS" AND "REHEAT FACTOR"

The termis state point locus and reheat factor are discussed below :

State Point Lesun

The state point may te defined os that point on h-s diagram which represents the condition of steam at that instant. Thus knowim: the initial condition of steam entering the nozzle of a turbine the initial state point of Fig. 19.43 may be located on h-s diagram. If stage efficiency $\left[\eta_{\text {tange }}=\frac{\text { S.P. }}{\text { A.P. }}=\frac{h_{1}-h_{5}}{h_{1}-h_{2}}\right]$ be known or assumed the position of the end state point 5 for a stage be readily obtained. The point 5 now becomes the initial state point for the succeeding stage of the turbine.

Let us now consider a multistage turbine having four stages. Refer Fig. 19.54.

Fig. 19.54

The initial point 1 is located according to the given initial condition. (1-2) is adiabatic expansion in the first stage, $h_{1}{ }^{\prime}$ may be calculated from the following relation, $h_{1}-h_{2}^{\prime}=\eta_{\text {tace }}\left(h_{1}-h_{2}\right)$. Point 2^{\prime} is then located with the value h_{2}^{\prime} on p_{2} line. Then ($2^{\prime}-3$) is drawn showing adiabatic expansion. Point 3^{\prime} may be locatod by finding h_{3}^{\prime} from $h_{2}^{\prime}-h_{3}^{\prime}=\eta_{\text {etage }}\left(h_{2}^{\prime}-h_{3}\right)$. Proceeding in thin way all stage points $3^{\prime}, 4^{\prime}$ and 5^{\prime} may be fixed. The locus passing through these points is called "State point locus". The sum of the adiabatic heat drops $(1-2)+\left(2^{\prime}-3\right)+\left(3^{\prime}-4\right)+\left(4^{\prime}-5\right)$ is generally called "cumulative heat drop" and is represented as $h_{\text {eun }}$ For the purpose of design the various quantities obtained from the Mollier diagram are set out in some curves form, and these curves are termed "condition curves".

Reheat factor

Referring to Fig. 19.54, the adiabatic heat drop $\left(h_{\text {at }}\right)$ from pressure p_{1} to final pressure p_{s}, considering all the stages as one unit, is $\left(h_{1}-h_{6}\right)$. It will be found that $h_{\text {ad }}$ is less that $h_{\text {eam. }}$ The ratio $\frac{h_{\text {raal }}}{h_{\text {adi }}}$ is termed as Reheat factor.

The value of reheat factor depends on the following factors :
(i) Stage efficiency ;
(ii) Initial pressure and condition of steam ;
(iii) Final pressure.

Example 19.40. In a three-stage steam turbine steam enters at 35 bar and $400^{\circ} \mathrm{C}$ and exhausts at 0.05 bar, 0.9 dry. If the work developed per stage is equal, determine :
(i) Condition of steam at entry to each stage.
(ii) The stage efficiencies.
(iii) The reheat factor.
(iv) Internal turbine efficiency.

Assume condition line to be straight.
Solution. Initial condition of steam $=35 \mathrm{bar}, 400^{\circ} \mathrm{C}$
Exhaust condition of steam $=0.05$ bar, 0.9 dry
(i) Condition of steam at entry to each stage :

Refer Fig. 19.55.

Fig. 19.55

- Locate points L_{1} and L_{4} corresponding to entry and exhaust conditions of steam.
- Since the condition line is straight (given), points L_{1} and L_{4} are joined by a straight line.
Heat drop due to expansion from L_{1} to $L_{\mathbf{4}}=3222-2315=907 \mathrm{~kJ} / \mathrm{kg}$
- Since the wark developed per stage is equal,
\therefore Useful work/stage $=\frac{907}{3}=302.3 \mathrm{~kJ} / \mathrm{kg}$ i.e., $\left(h_{L_{9}}-h_{N_{1}}\right)=302.3 \mathrm{~kJ} / \mathrm{kg}$
Produce horizontal to cut condition line at $L_{2}, L_{1} N_{1}$ produced cuts the pressure line through L_{2} at M_{1}. Thus L_{2}, N_{1} and M_{1} are located.

Proceeding for other stages likewise, we get the following results :

Points	Pressure	Temp, or quality of steam	
L_{2}	6.2 bar	$234^{*} \mathrm{C}$	(Ans.)
L_{3}	0.73 bar	0.98 dry	(Ans.)

$$
\begin{aligned}
& h_{L_{1} M_{1}}=h_{L_{1}}-h_{M_{1}}=3222-2800=422 \mathrm{~kJ} / \mathrm{kg} \\
& h_{L_{2} M_{2}}=h_{L_{9}}-h_{M_{\mathrm{s}}}=2920-2525=395 \mathrm{~kJ} / \mathrm{kg} \\
& h_{L_{3} M_{2}}=h_{L_{3}}-h_{M_{3}}=2615-2235=380 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

(ii) Stage efficiencies :

Efficiency of stage 1, $\quad \eta_{1}=\frac{h_{L_{9}}-h_{N_{1}}}{h_{L_{2}}-h_{M_{1}}}=\frac{302.3}{422}=0.7163$ or 71.63\%. (Ans.)
Efficiency of stage 2, $\quad \eta_{2}=\frac{h_{L_{7}}-h_{N_{2}}}{h_{h_{7}}-h_{M_{2}}}=\frac{302.3}{395}=0.7653$ or 76.53%. (Ans.)
Efficiency of stage 3, $\quad \eta_{3}=\frac{h_{L_{9}}-h_{N_{3}}}{h_{h_{9}}-h_{M_{2}}}=\frac{302.3}{380}=0.7955=79.55 \%$. (Ans.)
(iii) Reheat factor :

Reheat factor

$$
\begin{aligned}
& =\frac{\text { Cumulative drop }}{\text { Isentropic enthalpy drop }}=\frac{h_{L_{1} M_{1}}+h_{L_{1} M_{1}}+h_{L_{2} M_{1}}}{h_{L_{1}}-h_{s}} \\
& =\frac{422+395+380}{3222-2090}=1.057 . \text { (Ans.) }
\end{aligned}
$$

(iv) Internal turbine efficiency :

Internal turbine efficiency $=\frac{h_{L_{1}}-h_{L_{4}}}{h_{L_{1}}-h_{\mathrm{S}}}=\frac{3222-2315}{3222-2090}=0.801$ or 80.1%. (Ans.)

19.12. REHEATING STEAM

Please refers Art. 15.5 (Reheat cyclo)

19.13. BLEEDING

Bleeding is the process of draining steam from the turbine, at certain points during its expansion, and using this steam for heating the feed water supplied to the boiler. In this process a small quantity of steam, at certain sections of the turbine, is drained from the turbine and is then circulated around the feed water pipe leading from hot well to the boiler. The steam is thus condensed due to relatively cold water, the heat so lost by steam is transferred to the feed water. The condensed steam then finds its way to hot well.

There is a usual practice in bleeding installations to allow the bled steam to mix with the feed water. The mixture of steam and water then proceeds to the boiler.

By bleeding process hotter water is supplied to the boiler of course at the cost of loss of small amount of turbine work. Due to this process efficiency is slightly increased but at the same time power developed is also decreased.

The bleeding process in steam turbines approximates to cascade heating and tends to modify the Rankine cycle to a reversible cycle, thus increasing the efficiency ; but any increase in efficiency due to an approach to the condition of thermodynamic reversibility is accompanied by a decrease in power. Hence it follows that the thermodynamic benefits derived from the process of bleeding are of a limited character. The ideal Rankine cycle, modified to take into account the effect of bleeding is known as the regenerative cycle.

Note. Please refer Art. 15.4 (Regenerative cycle) also.

19.14. ENERGY LOSSES IN STEAM TURBINES

The incrense in heat energy required for doing mechanical work in netunl practice as compared to the theoretical value, in which the process of expansion takes place strictly according to the adiabatic process, is termed as energy loss in a steam turbine.

The losses which appear in an actual turbine may be divided Into two following groups :

1. Internal losses. Losses directly connected with the steam conditions while in ita flow through the turbine. They may be further classified as :
(i) Losses in regulating valves.
(ii) Losses in nozzles (guide blades).
(iii) Losses in moving blades :
(a) losses due to trailing edge wake;
(b) impingement losses ;
(c) losses due to leakage of steam through the angular space ;
(d) frictional losses ;
(e) losses due to turning of the steam jet in the blades;
(f) losses due to shrouding.
(iv) Leaving velocity losses (exit velocity).
(v) Losses due to friction of disc carrying the blades and windage lcsses.
(vi) Losses due to clearance between the rotor and guide blade discs.
(vii) Losses due to wetness of steam.
(viii) Losses in exhaust piping etc.
2. External losses. Lossen which do not influence the stean conditions. They may be further classified as :
(i) Mechanical losses.
(ii) Losses due to leakage of steam from the labyrinth gland seals.

19.15. STEAM TURBINE GOVERNING AND CONTROL

The objective of governing is to keep the turbine speed fairly constant irrespective of load.
The principal methods of steam turbine governing are as follows:

1. Throttle governing
2. Nozzle governing
3. By-pass governing
4. Combination of 1 and 2 and 1 and 3.

1. Throttle governing

Throttle governing is the most widely used particularly on small turbines, because its initial cost is less and the mechanism is simple. The object of throttle governing is to throttle the steam whenever there is a reduction of load compared to economic or design load for maintaining speed and vice versa.

Fig. 19.56 (a) ahows a simple throttle arrangement. To start the turbine for full load running valve A is opened. The operation of double beat valve B is carried out by an oil servo motor which is controlled by a centrifugal governor. As the steam turbine gains speed the valve B closes to throttle the steam and reduces the supply to the nozzle.

Fig. 19.56. Throttle governing.
For a turuine governed by throttling the relationship between steam consumption and load is given by the well known Willan's line as shown in Fig. 19.56 (b). Several tests have shown that when a turbine is governed by throttling, the Willan's line is straight. It is expressed as :

$$
\begin{equation*}
m_{s}=K M+m_{x_{0}} \tag{19.37}
\end{equation*}
$$

where, $\dot{m}_{\varepsilon}=$ Steam consumption in kg / h at any load M,
$m_{s,}=$ Steam consumption in kg / h at no load,
$m_{s_{1}}=$ Stoam consumption in kg / h at full load,
$M=$ Any other load in kW,
$M_{1}=$ Full load in kW, and
$K=$ Constant.
$m_{\mathbf{r}_{4}}$ varies from about 0.1 to 0.14 times the full load consumption. The eqns. (19.37) can also be written as :

$$
\frac{m_{2}}{M}=K+\frac{m_{20}}{M} \text {, where } \frac{m_{2}}{M} \text { is called the steam consumption per } k W h \text {. }
$$

2. Nozzle governing

The efficiency of a steam turbine is considerably reduced if throttle governing is carried out at low loads. An alternative, and more efficient form of governing is by means of nozzle control. Fig. 19.57 shows a diagrammatic arrangement of typical nozzle control governing. In this method of governing, the nozzles are grouped together 3 to 5 or more groups and supply of steam to each group is controlled by regulating valves. Under full load conditions the valves remain fully open.

Fig. 19.57. Norzle governing.
When the load on the turbine becomes more or less than the design value, the supply of steam to a group of nozzles may be varied accordingly so as to restore the original speed.

Nozale control can only be applied to the first stage of a turbine. It is suitable for simple impulse turbine and larger units which have an impulse stage followed by an impulse-reaction turbine. In pressure compounded impulse turbines, there will be some drop in pressure at entry to second atage when some of the first stage nozzles are cut out.

Comparison of Throttle and Nozzle control governing

\&. Na.	Aapecta	Throtile Control	Norsle Control
1.	Throtuling losser	Severe	No throttling losses (Actually there are a little throttling losses in norzles valves which are partially open).
2.	Partial admission losses	Low	High.
3.	Heat drop available	Lesser	Larger
4.	Use	Used in impolse and reaction turbines both.	Used in impalse and also in reaction (if initial stage impulse) turbines.
5.	Suitability	Small turbines	Mcdium and larger turbines.

3. By-pass governing

The steam turbines which are designed to work at economic load it is desirable to have full admission of steam in the high pressure stagen. At the maximum load, which is greater than the cconomic load, the additional steam required could not pass through the first stage since additional nozzles are not available. By-pass regulation allows for this in a turbine which is throttle governed, by means of a second by-pass valve in the first stage nozzle (Fig. 19.58). This valve opens when throttle valvo has opened a definite amount. Steam is by-passed through the second valvo to a lower stage in the turbine. When by-pass valve operates it is under the control of the turbine governor. The secondary and tertiary supplies of steam in the lower stages increase the work output in these stages, but there is a loss in efficiency and a curving of the Willian's line.

Fig. 19,58, By pusi givernitus.
In reaction turbines, bocture of the jupesure drup nequired in the moxing blades, nozzles control goterning is net posyible, and themithe poverning plus by pases soocrning, is used.

19.16. SPECIAL FORMS OF STEAM TLRBZ:VS

In many industries such as chemical, sugar refining, paper making, textile cte, where combined use of power and henting and process work is roquired it is wasteful to generate steam for power and process purposes sepurately, because nbout 70 per cont of heat supplied for power purposes will normally be carried away by the cooling water. On the other hand, if the engine or tarbine is operated with a normal exhaust pressure then the temperoture of the exhaust steam is too low to be of any use for heating process. It would be possible to generate the required power and still have available for process work a large quentity of heat in the exhaust steam, if suitable modification of the initial steam preseure and exhuust pressure is made. Thus in combined power and proces plants following type of steum turbines are used; (1) Back pressure turbines, and (2) Steam extraction or pass-out turbines.

1. Back pressure turbine

In this type of turbine steam at boiler pressure enters the turbine and is exhausted into a pipe. This pipe leads to process plant or other turbine. The back pressure turbine may be used in cases where the power generated by expanding steam) from cconomical initial pressure down to the heating pressure is equal to, or greater than, the power requirements. The sleam exhausted from the tarbine is usually supericated and in most cases it is not sutable for process work due to the reasons :
(i) It is impossible to control its temperature, and
(ii) Rate of the heat transfer from superheated steam to the heating surface is lower than that of saturated steam. Consequently a desuperheater is invariably used. To enhance the power capacity of the existing installation, a high pressure boiler and a back-pressure turbine are added to it. This added high pressure boiler supplies steam to the back pressure turbine which exhausts into the old low pressure turbine.

2. Extraction pass out turbine

It is found that in several cases the power available from a back pressure turbine (through which the whole of the steam flows) is appreciably less than that required in the factory and this may be due to the following reasons :
(i) Small heating or process requirements ;
(ii) A relatively high exhaust pressure; and
(iii) A combination of the both.

In such a case it would be porsible to install a back-pressure turbine to provide the heating steam and a condensing turbine to generate extra power, but it is possible, and useful, to combine functions of both machines in a single turbine. Such a machine is called extraction or pass out turbine and here at some point internediate between inlet and exhaust some steam is extracted or passed out for process or heating purposes. In this type of turbine a sensitive governor is used which controls the admission of steam to the high pressure section so that regardless of power or process requirements, constant speed is maintained.

Exhaust or low pressure turbine

If an uninterrupted supply of low pressure steam is available (such as from reciprocating steam engines cxhaust) it is possible to improve the efficiency of the whole plant by fitting an exhaust or low pressure turbine. The use of exhaust turbine is chiefly made where there are several reciprocating steam engines which work intermittently ; and are non-condensing (e.g., rolling mill and colliery engines). The oxhaust ateam from these engines is expanded in an exhaust turbine and then condensed. In this turbine some form of heat accumulator is needed to collect the more or less irregular supply of low pressure steam from the non-condensing steam engines and deliver it to the turbine at the rate required. In some cases when the supply of low pressure steam falls below the demand, live steam from the boiler, with its pressure and temperature reduced ; is used to make up the deficiency.

The necessary drop in preasure may be obtained by the use of a redusing valve, or for large flows, more economically by expansion through another turbine. The high pressure and low pressure turbines are sometimes combined on a common apindle and because of two supply pressures this combined unit is known as 'mixed pressure turbine'.

HIGHLIGHTS

1. The steam turbine is a prime mover in which the potential energy of the steam is transformed into kinetie energy, and latter in ita turn is transformed into the mechanical energy of rotation of the turbine shaf.
2 The most important classification of steam turbines is as follows :
(i) Impulse turbines
(ii) Reaction turbines
(iii) Combination of impulse and reaction turbines.
2. The main difference between Impulse and Reaction turbines lies in the way in which steam in expanded while its moves through them. In the former type, steam expands in the nozzle and its pressure does not change as it moves over the blades while in the latter type the steam expands continuously as it passes over the blades and thus there is a gradual fall in pressure during expansion.
3. The different methode of compounding are:
(i) Velocity compounding
(ii) Pressure compounding
(iii) Pressure velocity compounding
(iv) Reaction turbine.
4. Force (tangential) on the wheel $=m_{4}\left(C_{m_{2}}+C_{w_{0}}\right) \mathrm{N} \cdot \mathrm{m}$

Power per wheel

$$
=\frac{\dot{m}_{2}\left(C_{\mathrm{m}}+C_{\mathrm{m}_{\mathrm{l}}}\right) \times C_{\mathrm{bl}}}{1000} \mathrm{~kW}
$$

Blade or diagram efficiency, $\quad \eta_{w}=\frac{2 C_{b t}\left(C_{w_{1}}+C_{w_{0}}\right)}{C_{1}{ }^{2}}$.
Stage efliciency, $\quad \eta_{\text {tap }}=\frac{C_{b i}\left(C_{w c_{1}}+C_{w_{0}}\right)}{\left(h_{1}-h_{2}\right)}$.
6. The axial thrust on the wheel due to difference between the velocities of flow at entrance and outlet.

Axial force on the wheel $\quad=\dot{m}_{s}\left(C_{f_{1}}-C_{f_{0}}\right)$.
7. Energy converted to heat by blade friction $=$ Loss of kinetic energy düring flow over bladea

$$
=\dot{m}_{s}\left(C_{n}^{2}-C_{n}{ }^{2}\right) .
$$

8. Optimum value of ratio of blade speed to steam speed is, $p_{\text {ape }}=\frac{\cos \alpha}{2}$.
9. The blade efficiency for two-stage turbine will be maximum when, $\mathrm{p}_{9 c}=\frac{\cos \alpha}{4}$.

In general optimum blade speed ratio for maximum blade efficiency or maximum work done is given by

$$
\rho_{\omega}=\frac{\cos \alpha}{2 n}
$$

and the work done in the last row $=\frac{1}{2^{n}}$ of total work,
where n is the number of moving/rotating blade rows in serios.
In practice more than two rotes are hardly preferred.
10. The degree of reaction of reaction turbine stage is defined as the ratio of heat drop over moving blades to the total heat drop in the stage.
11. The blade efficiency of the reaction turbine is given by $\eta_{b} \alpha=2-\frac{2}{1+2 \rho \cos \alpha-\rho^{2}}$;
$\eta_{C /}$ becomes maximum when, $p=\cos \alpha$
and hence $\left(\eta_{k}\right)_{m a n}=\frac{2 \cos ^{2} \alpha}{1+\cos ^{2} \alpha}$.
12. The state point may be defined as that point on $h-s$ diagram which represents the condition of steam at that instant.
13. Theoretical efficiency of reheat cycle ir given by $\eta_{\text {oanma }}=\frac{\left(h_{1}-h_{2}\right)+\left(h_{3}-h_{4}\right)}{\left(h_{1}-h_{f}\right)+\left(h_{3}-h_{2}\right)}$, neglecting pump work.
14. The principal methods of steam governing are as follows :
(i) Throttle governing
(ii) Nozzle governing
(iii) By-pass governing
(iv) Combination of (i), (ii) and (iii).

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer :

1. In case of impulse steam turbine
(a) there is enthalpy drop in fixed and moving blades
(b) there is enthalpy drop only in moving blades
(e) there is enthalpy drop in nozzies
(d) none of the above.

2 De-Laval turbine is
(a) pressure compounded impulse turbine
(b) velocity compounded impulse turbine
(c) simple single wheel impulse turbine
(d) simple single wheel reaction turbine.
3. The pressure on the two siden of the impulae wheel of a steam turbine
(a) is samu
(c) increanes from one ade to the ofher aide
(b) in different
(d) decreasen from one wide to the other side.
4. In De Laval steam turtrine
(a) the posesum in the cumbine rotor in approximately nume as in condenner
(b) the prysare in the furbine rotor in higher than pressure in the candenser
(i) the puessure in the turbine rotor gradually decreases from inlet to exit ts condenser
(id) none of the above.
5. In case of reaction sterm turbine
(a) there is enthalpy drop both in fixed and moving bladea
(b) thene is enthalpy drop only in fixed blades
(e) there is enthalpy drop only in moving blades
(d) none of the above.
c. Curtis turbine is
(a) reaction steam turbine
(c) pressure compounded impulse steam turbine
(b) pressure velocity compounded steam turbine (d) velocity compounded impulse steam turbine.
7. Rateau steam turbine is
(a) reaction steam turbine
(c) pressure compounded impulse steam turbine
(d) pressure velocity compounded steam turbine.

8 Parsan'sturbine is
(a) pressure compounded steam turbine
(5) simple single wheel reaction steam turbine
(b) velocity compounded impulse steam turbine
9. Blade or diagram efficiency is given by
(a) $\frac{C_{w_{1}} \pm C_{T r e v_{4}} \times C_{b t}}{C_{1}}$
(c) $\frac{C_{s}{ }^{2}}{C_{1}^{2}}$
19. Axial thrust on rotor of steam tarbine is
(b) $\frac{2 C_{h t}\left(C_{L_{y} y} \pm C_{i h_{j}}\right)}{C_{1}^{2}}$
(d) $\frac{c_{1}^{2}-c_{0}^{2}}{c_{1}^{2}}$.
(b) simple single wheel, impulse steam turbine
(d) multiwhcul reaction steam turbine.
(a) $m_{2}\left(C_{6}-C_{f_{11}}\right)$
(ci $m_{2}\left(C_{f_{1}}+C_{f_{1}}\right.$)
11. Stage efficiency of steam turbine is
(b) $\dot{m}_{n}\left(C_{f_{1}}-2 C_{f_{n}}\right)$
(d) $m_{n}\left(2 C_{f_{1}}-C_{f_{0}}\right)$.
(a) Muas/illat
(e) $\eta_{\text {n }} \times \eta_{i=1}$
12. For maximum blade efficiency for single stage impulse turbine
(a) $p\left(-\frac{c_{6 t}}{c_{1}}\right)=\cos ^{2} a$

$$
\begin{aligned}
& \text { (b) } \rho=\cos u \\
& \text { (d) } \rho=\frac{\cos ^{2} u}{2}
\end{aligned}
$$

(eip $=\frac{\operatorname{tin} y}{2}$
13. Degree of reaction an referred to steam turtine is defined an

$$
\text { (a) } \frac{\Delta h_{y}}{\Delta h_{m}}
$$

(c) $\frac{\Delta h_{m}}{\Delta h_{m}+\Delta h_{f}}$
(b) $\frac{\Delta t_{m_{1}}}{\Delta t_{f}}$
14. For Parsonis reaction steam turhine, degroe of reaction in
(a) 75%
(b) 100%
(c) 50%
(d) 60%.
15. The maximum efliciency for Paraon'/ reartion turbine in given by
(a) $\pi_{\max }=\frac{\cos \alpha}{1+\cos \alpha}$
(b) $n_{\text {trat }}=\frac{2 \operatorname{cosec} a}{1+\cos a}$
$(i \cdot)_{\eta_{\operatorname{mas}}}=\frac{9 \cos ^{2} \theta}{1+\cos ^{2} \theta}$
(d) $\eta_{\text {max }}=\frac{1+\operatorname{con}^{2} \theta}{2 \cos ^{2} \pi}$.
16. Reheat factor in steam turbines depends on (a) exit pressure only
(b) stage efficiency only
icl imitial pressure and temperature only
(d) all of the above.
17. For multistage steam turbine reheat factor is defined as
(a) stage efficiency x nozale efliciency
(b) commulative onthalpy drop $\times \pi_{\text {naule }}$
(c) $\frac{\text { commulative enthalpy drop }}{\text { isentropic enthalpy drop }}$
(d) $\frac{\text { isentropic enthalpy drop }}{\text { cumulative actual enthalpy drop }}$
18. The value of reheat factor normally varies from
(a) 0.5 to 0.6
(b) 0.9 to 0.95
(c) 1.02 to 1.06
(d) 1.2 to 1.6.
19. Steam turbines are governed by the following methods
(a) Throttle governing
(b) Nozzle control governing
(c) By-pass governing
(d) All of the ahove.
20. In steam turbines the reheat factor
(a) increases with the increase in number of stages
(b) decreases with the increase in number of stages
(c) remainis same irrespective of number of stages
(d) none of the above.

ANSWERS

1. (c)
2. (c)
3. (d)
4. (a)
5. (a)
6. (d)
7. (c)
8. (d)
9. (b)
10. (a)
11. (c)
12. (c)
13. (c)
14. (e$)$
15. |c|
16. (d)
17. (c)
18. (c)
19. (d)
20. (a).

THEORETICAL QUESTIONS

1. Define a nteam turbine and state its fields of application.

2 How are the iteam turbines classified?
3. Dincuss the advantoges of a steam turbine over the steam engines.
4. Explain the diflerence between an impulse turbine and a reaction turbine
5. What do you mean by compounding of steam turbines? Dievis virious mothods of compounding steam turbines.
6. What methads are used in reducing the speed of the turbine rotor?
7. Explain with the help of neat sketeh a single-BLage impul se turbine, Also uxplain the pressure and velocity variations along the axial direction
8. Define the following as related io nteam turtunca
(i) Speed ratio
(iii) Diagram efficiency
(ii) Mlade velocity corellicient
(ii) Stase efficiency.
a. In ease of steam turbines derive expressions for the following:
(i) Force
(ii) Work done
(iii) Diagram efficiency
(iv) Stage efficiency
(v) Axial thrust.
10. Derive the expression for maximum blade efficiency in a single-atage impulse turtine.
11. Explain the pressure compounded impulse steam turbine showing pressure and velocity variations along the axis of the turbine.
12. Explain velocity compounded impulse steam turbine showing pressure and velocity variations along the axis of the turbine.
13. Define the term "degree of reaction" used in reaction turbines and prove that it is given by

$$
R_{d}=\frac{C_{f}}{2 C_{B}}(\cot \phi-\cot \theta) \text { when } C_{h}=C_{f_{0}}=C_{r}
$$

Further prove that the moving and fixed blades should have the same shape for a 50% reaction.
14. Prove that the diagram or blade efliciency of a single stage reaction turbine is given by

$$
\eta_{w}=2-\frac{2}{1+2 \rho \cos \alpha-\rho^{2}} \text { where } R_{d}=50 \% \text { and } C_{f}=C_{f 6}
$$

Further prove that maximum blade efficiency is given by $\left(\eta_{w}\right)_{m a n}=\frac{2 \cos ^{2} \alpha}{1+\cos ^{2} \alpha}$,
15. Explain 'reheat factor'. Why is its magnitude always greater than unity?
16. Describe the procoss and purpose of reheating as applicable to steam flowing through a turbine.
17. State the advantages and disadvantages of reheating steam.
18. Write a short note en bleeding of steam turbines'.
19. Enumerate the energy lossea in ateam turbines.
20. Describe briefly the various methods of 'steam turbine governing'.

UNSOLVED EXAMPLES

IMPULSE TURBINES

1. A steamjet enters the row of blades with a velocity of $380 \mathrm{~m} / \mathrm{s}$ at an angle of 22^{*} with the direction of motan of the moving blades. If the blade speed is $180 \mathrm{~m} / \mathrm{s}$ and there is no thrust on the blades, determine the inlet and outlet blade angles. Velocity of steam while passing over the blade is reduced by 10%. Also determine the power developed by turbine when the rate of flow of steam is 1000 kg per minute. [Ank. 879 kW]
2 In a simple impulse turbine, the nozzles are inclined at 20° to the direction of motion of moving blades. The steam leaves the nozzles at $375 \mathrm{~m} / 2$. The blade speed is $165 \mathrm{~m} / \mathrm{s}$. Find suitable inlet and outlet angles for the blades in order that the axial thrust is zero. The relative velocity of steam as it flows over the blades is reduced by 15% by friction. Determine also the power developed for a flow rate of $10 \mathrm{~kg} / \mathrm{s}$.
[Ans, 34*, $41^{*}, 532 \mathrm{~kW}$]
2. In an impulse turbine the norzles are inclined at 24° to the plaiee of rotation of the blades. The steam speed is $1000 \mathrm{~m} / \mathrm{s}$ and blade speed is $400 \mathrm{~m} / \mathrm{s}$. Assuming equiangular blades, determine:
(i) Blade angles
(ii) Force on the blades in the dirsection of motion
(iii) Axial thrust
(iv) Power developed for a flow rate of $1000 \mathrm{~kg} / \mathrm{h}$.
[Ans. (i) 39°, (ii) 1.135 kN , (iii) 113.5 kW]
4 In a De Laval turbine, the ateam issues from the nozzles with a velocity of $850 \mathrm{~m} / \mathrm{s}$. The nozzle angle is 20°, Mean blade velocity is $350 \mathrm{~m} / \mathrm{s}$. The blades are equiangular. The mass fow rate is $1000 \mathrm{~kg} / \mathrm{min}$. Friction factor is 08 . Determine:(i) Blade angles (ii) axial thrust on the end bearing (iii) pewer develnned inkW (iv) blade efficiency (\mathbf{v}) stage officiency, if nozte efficiency is 93%.
[Ans. (i) $33^{\circ}, 33^{\circ}$, (ii) 500 N , (iii) 4666.7 kW , (iv) 77.5%, (v) 72.1%]
3. In a single atage impulee turbine the nozxlen diacharge the ateam on to the blades at an angle of 25° to the plane of rotation and the fluid leaven the blades with an abeolute velocity of $300 \mathrm{~m} / \mathrm{s}$ at an angle of 120° to the direction of motion of the blades. If the blades have equal inlet and outlet angles and there is no axial thrusit, entimate
(i) Bade angle
(iii) Diagram efficiency.

(ii) Power produced par kw/s flow of steam

(Ans. (i) 36.3°, (ii) 144 kW , (iii) 0.762)
6. Steam enters the blade row of an impulse turbine with a velocity of $600 \mathrm{~m} / \mathrm{s}$ at an angle of 25° to the plane of rotation of the blades. The mean blade npeed in $255 \mathrm{~m} / \mathrm{s}$. The blade angle on the exit side in 30°. The blade friction co-eflicient is 10%. Determine:
(f) Work done per kg of isteam
(ii) Diagram efficiency
(iai) Axial thrust per kg of steam/s.
[Ans, (i) 150.45 kW , (ii) 83.6%, (iii) 90 N]
7. The nozzles of an impulse turbine are inclined at 22° to the plane of rotation. The blade angles both at inlet and outlet are 36°. The mean diameter of the blade ring is 1.25 m and the steam velocity is $680 \mathrm{~m} / \mathrm{s}$, Assuming shockless entry determine : (i) The speed of the turbine rotor in r.p.m., (ii) the absolute velocity of steam leaving the blades, and (iii) The torque on the rotor for a flow rate of $2500 \mathrm{~kg} / \mathrm{h}$.

$$
\text { [Ans. (i) } 4580 \mathrm{r} . \mathrm{p} . \mathrm{m}_{\mathrm{k}} \text {, (ii) } 225 \mathrm{~m} / \mathrm{s}, \text { (iii) } 290.5 \mathrm{Nm} \text {] }
$$

\& A single-stage steam turbine is provided with nozzles from which steam is released at a velocity of $1000 \mathrm{~m} / \mathrm{s}$ at an angle of $24^{\prime \prime}$ to the direction of motion of blades. The speed of the blades is $400 \mathrm{~m} / \mathrm{s}$. The blade angles at inlet and outlet are equal. Find: (i) Inlet blade angle, (ii) Force exerted on the blades in the direction of their motion, (iii) Power developed in kW for nteam flow rate of $40000 \mathrm{~kg} / \mathrm{h}$.
Assume that the steam enters and leaves the blades without shock.
[Ans. (i) 39°, (ii) 1135 N , (iii) 4540 kW]
9. In a single row impulse turbine the nozzle angle is 30° and the blade speed is $215 \mathrm{~m} / \mathrm{s}$. The steam speed is $550 \mathrm{~m} / \mathrm{s}$. The blade friction co-efficient is 0.85 . Assuming uxial exit and a flow rate of $700 \mathrm{~kg} / \mathrm{h}$, determine :
(t) Blade angles,
(ii) Absolute velocity of steam at exit.
(iii) The power output of the turbine,
[Ans. (i) $46^{\circ}, 49^{\circ}$; (iii) $243 \mathrm{~m} / \mathrm{s}$; (iii) 19.8 kW]
10. In a steam turbine, steam expands from an inlet condition of 7 bar and $300^{\circ} \mathrm{C}$ with an isentropic efficiency of 0.9 . The nozzle angle is 20°. The stage operates at optimum blade speed ratio. The blade inlet angle is equal to the outlet angle. Determine:
(i) Blade angles.
(ii) Power developed if the steam flow rate is $0.472 \mathrm{~kg} / \mathrm{s}$.
[Ans. (i) 36°, (ii) 75 kW]
11. Steam at 7 bar and $300^{\circ} \mathrm{C}$ expands to 3 bar in an impulse stage. The nozzle angle is 20°, the rotor blades have equal inlet and outlet angles and the stage operates with the optimum blade speed ratio. Assuming that isentropic efficiency of nozzles is 90% and velocity at entry to the stage is negligible, deduce the blade angles used and the mass flow required for this stage to produce 50 kW .
[Ans. $36^{3}, 0.317 \mathrm{~kg} / \mathrm{s}$]
12 In a two-stage velocity compounded steam turbine, the mean blade speed is $150 \mathrm{~m} / \mathrm{s}$ while the steam velacity as it is issued from the nozzle is $675 \mathrm{~m} / \mathrm{s}$. The nozzle angle is 20°. The exit angle of first row moving blade, fixed blade and the second row moving blades are $25^{\circ}, 25^{\circ}$ and 30° respectively. The blade friction coefficient in 0.9 If the nteam flow rate is $4.5 \mathrm{~kg} / \mathrm{s}$, determine:
(4) Power output.
(ii) Diagram efficiency.
[Ans, (i) 807 kW , (ii) 78.5%]

REACTION TURBINES

13. At a particular ntage of reaction tarbine, the mean blade speed is $60 \mathrm{~m} / \mathrm{s}$ and the steam pressure is 3.5 bar with a temperature of $175^{\circ} \mathrm{C}$. The identical fixed and moving blades have inlet angles of 30° and outlet angles of 20°. Determine :
(i) The blade height if it in $\frac{1}{10}$ th of the blade ring diameter, for flow rate of $13.5 \mathrm{~kg} / \mathrm{s}$.
(ii) The power developed by a pair.
(iii) Specific enthalpy drop if the stage efficiency is 85%.
14. In a stage of impulse reaction turbine operating with 50% degree of reaction, the blades are identical in shape. The outlet angle of the moving blades is 19° and the absolute discharge velocity of nteam is $100 \mathrm{~m} / \mathrm{s}$ in the direction at 100° to the motion of the blades. If the rate of flow of steam through the turbine is $15000 \mathrm{~kg} / \mathrm{h}$, calculate the power developed by the turbine in kW .
[Ans. 327.5 kW]
15. At a stage in a reaction turbine the pressure of steam is 0.34 bar and the dryness 0.95 . For a flow rate of $36000 \mathrm{~kg} / \mathrm{h}$, the stage developa 950 kW . The turbine runs at $3600 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and the velocity of flow is 0.72 times the blade velocity. The outlet angle of both stator and rotor blades is 20°. Determine at this stage :
(i) Mean rotor diameter.
(ii) Height of bladea.
[Ans, (i) 0.951 m , (ii) 115 mm]
16. In a multi-stage reaction turbine at one of the stages the rotor diameter is 1250 mm and speed ratio 0.72 . The speed of the rotor is $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Determine: (i) The blade inlet angle if the outlet blade angle is 22°, (ii) Diagram efficiency, (iii) The percentage increase in diagram efficiency and rotor speed if turbine is designed to run at the best theoretical speed.
[Ans, (i) 61.5°, (ii) 82.2%, (iii) 30.47\%]
17. In a 50 per cent reaction turbine stage running at 3000 r.p.m., the exit angles are 30° and the inlet angles are 50°. The mean diameter is 1 m . The steam flow rate is $10000 \mathrm{~kg} / \mathrm{min}$ and the stage efficiency is 85%. Determine:
(i) Power output of the stage.
(ii) The specific enthalpy drop in the stage.
(iii) The percentage increase in the relative velocity of steam when it flows over the moving blades.
[Ans, (i) 11.6 MW , (ii) $82 \mathrm{kal} / \mathrm{kg}$, (iii) 52.2%]
18. Twelve succeskive stages of a reaction turbine have blades with effective inlet and outlet angles of 80° and 20° respectively. The mean diameter of the blade row is 1.2 m and the speed or rotation is $3000 \mathrm{r} . \mathrm{p} . \mathrm{m}$. Assuming constant velocity of flow throughout, estimate the enthalpy drop per stage.
For a steam inlet condition of 10 bar and $250^{\circ} \mathrm{C}$ and an outlet condition of 0.2 bar, estimate the stage efficiency.
Asaume a reheat factor of 1.04, determine the blade height at a atage where the specific volume is $1.02 \mathrm{~m}^{3} \mathrm{~kg}$.
[Ans, 40.4 ka/kg, 70.3\%, 57 mm]

Steam Condensers

Definition:

$>$ Condenser is a device in which steam is condensed to water at a pressure less than atmosphere.
$>$ Condensation can be done by removing heat from exhaust steam using circulating cooling water.
$>$ During condensation, the working substance changes its phase from vapour to liquid and rejects latent heat.
$>$ The exhaust pressure in the condenser is maintaned nearly 7 to 8 kpa which corresponds to condensate temperature of nearly 313 kelvin.

Functions of Condenser:

$>$ To reduce the turbine exhaust pressure so as to increase the specific output and hence increase the plant efficiency and decrease the specific steam consumption.
$>$ To condense the exhaust steam from the turbine and reuse it as pure feed water in the boiler. Thus only make up water is required to compensate loss of water
$>$ Enables removal of air and other non condensable gases from steam. Hence improved heat transfer.

Elements of Condensing Plant:

$>$ Condenser
$>$ Air Extraction Pump
$>$ Condensate Extraction Pump
$>$ Cooling Water Circulating Pump
$>$ Hot Well
$>$ Cooling Tower
> Make up Water Pump
$>$ Boiler Feed Pump

Classification of Condensers:

\square According to the type of flow:
> Parallel flow, Counter flow \& Cross flow
\square According to the Cooling Action:
> Jet Condensers:

- Low Level Parallel Flow Jet Condenser
- Low Level Counter Flow Jet Condenser
- High Level Jet Condenser
- Ejector Jet Condenser
> Surface Condensers:
- Shell and Tube type

1. Down Flow 2. Central Flow 3. Inverted Flow

- Evaporative type

Jet Condensers:

- In jet condensers exhaust steam and cooling water come in direct contact and mix up together. Thus, the final temperature of condensate and cooling water leaving the condenser is same.
- A jet condenser is very simple in design and cheaper.
- It can be used when cooling water is cheaply and easily available.
- Condensate can not be reused in boiler, because it contains impurities like dust, oil, metal particles etc.

Low Level Parallel Flow Jet Condenser:

- Wet air pump is used to extract the mixture of condensate, air \& coolant.
- Vacuum created is up to 6 kpa .

Low-level parallel-flow jet condenser

Low Level Counter Flow Jet Condenser:

A pump for water supply is required if it is to be lifted more than 5.5 m in height.

Low-lewel counter-flow jet comnlemser

High Level Jet Condenser:

Condenser shell is installed at height greater than that of atmospheric pressure in water column i.e. 10.33 m .

Ejector Condenser:

- Momentum of flowing water is used to remove the mixture of condensate \& coolant from condenser without the use of any extraction pump.

Advantages \mathcal{E} Disadvantages of Jet Condensers:

Advantages:

- Simple in design \& cheaper.
- Less floor area is required.

Disadvantages:

- Condensate is not pure hence can not be reused.
- Low vacuum efficiency.

Surface Condensers:

- In surface condenser, the exhaust steam and cooling water do not come in physical contact, rather they are separated by heat transfer wall. Hence condensate remains pure \& can be reused.

Down Flow Surface Condenser:

- Exhaust steam enters the top of condenser shell \& flows downward over water tubes.
- Water tubes are double passed. The cold water flows in lower side first \& then in upper side in the reverse direction, which enables the maximum heat transfer.

Down-flow surface condenser

Central Flow Surface Condenser:

- The steam flows radially inward
- The condensate is collected at the bottom of the shell from where it is taken out by the condensate extraction pump.
- The steam gets access to the entire periphery of tubes, and thus a large surface area for the hear transfer is available as compared to the down flow.

Inverted Flow Condenser:

- The steam enters the bottom of the shell and air extraction pump connected at the top.
- Steam flows upward first and subsequently, returns to the bottom of the condenser.
- The condensate extraction pump is connected at the bottom of the shell to extract the condensate.

Evaporative Condenser:

- The evaporation of some cooling water provides the cooling effect, thereby steam condenses.
- Steam to be condensed is passed through grilled tubes \& cooling water is sprayed over outer surface of tubes.
- The evaporative condensers are most suitable for small plants, where supply of cold water is limited.

Advantages \mathcal{E} Disadvantages

 of Surface Condensers:
Advantages:

- High vacuum efficiency.
- Pure condensate.
- Low quality cooling water can be used.
- It allows the expansion of steam through a higher pressure ratio.

Disadvantages:

- Large amount of water is required.
- Construction is complicated.
- Costly maintenance and skilled workers.
- Large floor area.

Comparison of Jet \mathcal{E} Surface Condensers:

Jet Condensers

Surface Condensers

1) Cooling water and steam are mixed up
2) Requires small floor space
3) The condensate cannot be used as feed water to boiler unless it is free from impurities
4) More power is required for air pump
5) Less power is required for water pump
6) Requires less quantity of cooling water
7) The condensing plant is simple
8) Less suitable for high capacity plants due to low vacuum efficiency
9) Cooling water \& steam aren't mixed up
10) Requires large floor space
11) The condensate can be used as feed water to boiler as it is not mixed with cooling water
12) Less power is required for air pump
13) More power is required for water pump
14) Requires large quantity of cooling water
15) The condensing plant is complicated
16) More suitable for high capacity plants as vacuum efficiency is high

Effect of Condenser Pressure on Rankine Efficiency:

- Lowering the condenser pressure will increase the area enclosed by the cycle on a T-s diagram which indicates that the net work will increase. Thus, the thermal efficiency of the cycle will be increased
- Lowering the back pressure causes an increase in moisture content of steam leaving the turbine.
- Increase in moisture content of steam in low pressure stages, there is decrease in efficiency \&

Fig. 4: Effect of lowering the condenser pressure on ideal Rankine cy erosion of blade may be a very serious problem and also the pump work required will be high.

Vacuum Creation in Condenser:

- When the steam condenses in a closed vessel, the vapour phase of working substance changes to liquid phase, and thus its specific volume reduces to more than one thousand times.
- Due to change in specific volume, the absolute pressure in the condenser falls below atmospheric pressure and a high vacuum is created.
- This minimum pressure that can be attained depends on the temperature of condensate and air present in the condenser.

The absolute pressure $=$ Atmospheric pressure - Vacuum Gauge in the condenser Pressure

Sources of Air in the Condenser:

- The ambient air leaks to the condenser chamber at the joints \& glands which are internally under pressure lower than that of ambient.
- Another source of air is the dissolved air with feed water. The dissolved air in feed water enters into boiler and it travels with steam into condenser.

Effects of Air Leakage:

- The presence of air lowers vacuum in the condenser. Thus back pressure of the plant increases, and consequently, the work output decreases.
- Air has very poor thermal conductivity. Hence, the rate of heat transfer from vapour to cooling medium is reduced.
- The presence of air in the condenser corrodes to the metal surfaces. Therefore, the life of condenser is reduced.

Artistic to Scientific Design of Cooling Towers

- The art of evaporative cooling is quite ancient, although it is only relatively recently that it has been studied scientifically.
- Merkel developed the theory for the thermal evaluation of cooling towers in 1925.
- This work was largely neglected until 1941 when the paper was translated into English.
- Since then, the model has been widely applied.
- The Merkel theory relies on several critical assumptions to reduce the solution to a simple hand calculation.
- Because of these assumptions, the Merkel method does not accurately represent the physics of heat and mass transfer process in the cooling tower fill.

What Does A Cooling Tower Do?

- Cooling Towers are used to transfer heat from cooling water to the atmosphere.

- Promotes efficient water usage
- Prevents environmental damage

What Does A Cooling Tower Do?

- Cooling Towers are used to transfer heat from cooling water to the atmosphere.

- Promotes efficient water usage
- Prevents environmental damage

Cooling water is continuously circulated through heat exchangers to absorb heat from process material and machinery.

Because it's cost efficient to reuse water and plants can't dump excessive amounts of hot water into rivers and lakes, cooling towers are used to remove the heat from the water, so it can be recirculated.

Used in power stations, oil refineries, petrochemical plants and natural gas plants.

Heat Transfer

Methods

- Wet Cooling Tower
- Uses evaporation to transfer heat
- Water can be cooled to a temperature lower than the ambient air "dry-bulb" temperature
- Dry Cooling Tower
- Uses convection to transfer heat
- Heat is transferred through a surface that separates the water from ambient air, such as in a heat exchanger.

Air Flow Generation Methods

- Natural Draft
- Warm air naturally rises due to the density differential to the dry, cooler outside air. This moist air buoyancy produces an airflow through the tower.
- Mechanical Draft
- A fan induces airflow through a tower.

NATURAL DRAFT

MECHANICAL DRAFT

Parameters of Cooling Towers

- A number of parameters describe the performance of a cooling tower.
- Range is the temperature difference between the hot water entering the cooling tower and the cold water leaving.
- The range is virtually identical with the condenser rise.
- Note that the range is not determined by performance of the tower, but is determined by the heat loading.
- Approach is the difference between the temperature of the water leaving the tower and the wet bulb temperature of the entering air.
- The approach is affected by the cooling tower capability.
- For a given heat loading, water flow rate, and entering air conditions, a larger tower will produce a smaller approach; i.e., the water leaving the tower will be colder.
- Water/Air Ratio $\left(m_{w} / m_{a}\right)$ is the mass ratio of water (Liquid) flowing through the tower to the air (Gas) flow.
- Each tower will have a design water/air ratio.
- An increase in this ratio will result in an increase of the approach, that is, warmer water will be leaving the tower.
- A test ratio is calculated when the cooling tower performance is evaluated.

Cooling Tower Mass Balances

COOLING TOMMER SYSTEM

$E=E W A P G B T E D$ MHTEF:

WH = PLAKELIP WHAEF:

Water and Salt Balances

A water balance around the entire system is:

$$
M=E+D+W
$$

Since the evaporated water (E) has no salts, a chloride balance around the system is:

$$
M\left(X_{M}\right)=D\left(X_{C}\right)+W\left(X_{C}\right)=X_{C}(D+W)
$$

and, therefore:
$X_{C} / X_{M}=$ Cycles of concentration

$$
\begin{gathered}
=M /(D+W) \\
=M /(M-E)=1+[E \div(D+W)]
\end{gathered}
$$

Heat Balance

From a simplified heat balance around the cooling tower:

$$
\begin{aligned}
E H_{v} & =\mathbf{C} \cdot \Delta \mathbf{T} \cdot \mathbf{c}_{\mathbf{p}} \\
H_{\mathrm{v}} & =\text { Latent heat of water evaporation } \\
& =2260 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$\Delta \mathrm{T}=$ Temperature difference top to bottom

$$
C_{p}=\text { Specific heat of water }=4.184 \mathrm{kJkg}^{-1} \mathrm{C}^{-1}
$$

Thermodynamics of Air Water Systems

Humidity Ratio:

$$
\begin{gathered}
\omega=\frac{\text { Mass Flow of Water Vapour }}{\text { Mass Flow of Dry Air }}=\frac{\dot{m}_{v}}{\dot{m}_{a}} \\
p_{a} \dot{V}=\dot{m}_{a} R_{a} T=\frac{\dot{m}_{a} R_{u} T}{M_{a}} \quad p_{v} \dot{V}=\dot{m}_{v} R_{v} T=\frac{\dot{m}_{v} R_{u} T}{M_{v}} \\
\omega=\frac{\frac{M_{v} p_{v} \dot{V}}{R_{u} T}}{\frac{M_{a} p_{a} \dot{V}}{R_{u} T}}=\left(\frac{M_{v}}{M_{a}}\right) \times\left(\frac{p_{v}}{p_{a}}\right)=0.622\left(\frac{p_{v}}{p_{a}}\right)
\end{gathered}
$$

sfer of sensible and latent

Mechanism of Heat Transfer in Cooling Towers

- Heat transfer in cooling towers occurs by two major mechanisms:
- Sensible heat from water to air (convection) and
- transfer of latent heat by the evaporation of water (diffusion).
- Both of these mechanisms operate at air-water boundary layer.
- The total heat transfer is the sum of these two boundary layer mechanisms.
- The total heat transfer can also be expressed in terms of the change in enthalpy of each bulk phase.
- A fundamental equation of heat transfer in cooling towers (the Merkel equation) is obtained.

$$
\dot{m}_{C W} C_{W} d T_{W}=K A\left(h_{s a}-h_{a}\right) d V=\dot{m}_{a i r} d h_{a i r}
$$

The Merkel Method

- The Merkel method, developed in the 1920 s, relies on several critical assumptions to reduce the solution to a simple manual iteration.
- These assumptions are:
- The resistance for heat transfer in the water film is negligible,
- The effect of water loss by evaporation on energy balance or air process state is neglected,
- The specific heat of air-stream mixture at constant pressure is same as that of the dry air, and
- The ratio of $h_{\text {conv }} / h_{\text {diff }}$ (Lewis factor) for humid air is unity.
- Merkel combined equations for heat and water vapor transfer into a single equation similar as

$$
M e_{M}=\frac{k A V}{\dot{m}_{w}}=\int_{T_{2}}^{T_{1}} \frac{d T}{h_{s a}-h_{a}}
$$

where:
kAV/mw = tower characteristic
$k=$ mass transfer coefficient
A = contact area/tower volume
$\mathrm{V}=$ active cooling volume/plan area
mw = water flow rate
$T_{1}=$ hot water temperature
$\mathrm{T}_{2}=$ cold water temperature
T = bulk water temperature
$h_{\text {sa }}=$ enthalpy of saturated air-water vapor mixture at bulk water temperature
(J/kg dry air)
$h_{a}=$ enthalpy of air-water vapor mixture $(\mathrm{J} / \mathrm{kg}$ dry air $)$

Tower Characteristics

- Tower Characteristic ($\mathrm{Me}_{\boldsymbol{M}}$ or NTU) is a characteristic of the tower that relates tower design and operating characteristics to the amount of heat that can be transferred.
- For a given set of operating conditions, the design constants that depend on the tower fill.
- For a tower that is to be evaluated using the characteristic curve method, the manufacturer will provide a tower characteristic curve.

$$
N T U=C\left\{\left\{\frac{\dot{m}_{w}}{\dot{m}_{a}}\right\}^{n}\right.
$$

SUPPLY TOWER CHARACTERISTIC

- The supply tower characteristic of the cooling tower can be evaluated with the help of cooling tower fill characteristics curves provided by manufacturer which takes into account the effect of rain and spray zones as well as fill fouling.
- These curves are certified by the cooling tower institute.

Generalized Equation for Cooling Tower Supply

- A generalized equation for cooling tower supply can be developed from the manufacturer curves (known as the supply equation) and is of the form:

$$
\frac{K A V}{L}=C \times u_{a i r}^{n} \times\left\{\frac{\dot{m}_{w}}{\dot{m}_{a}}\right\}^{m}
$$

BHP OF THE FAN

- The total pressure drop (PD) across the cooling tower which is the summation of the pressure drops across the drift eliminators, inlet louvers and the fill packing (constituting the static pressure drop) and also the velocity pressure drop is calculated.
- Now, the total fan power required is calculated as
BHP = (CFM * PD)/ (n * 6356)
where n is the efficiency of the fan.

Loss of Water

- Evaporation Rate is the fraction of the circulating water that is evaporated in the cooling process.
- A typical design evaporation rate is about 1% for every $12.5^{\circ} \mathrm{C}$ range at typical design conditions.
- It will vary with the season, since in colder weather there is more sensible heat transfer from the water to the air, and therefore less evaporation.
- The evaporation rate has a direct impact on the cooling tower makeup water requirements.
- Drift is water that is carried away from the tower in the form of droplets with the air discharged from the tower.
- Most towers are equipped with drift eliminators to minimize the amount of drift to a small fraction of a percent of the water circulation rate.
- Drift has a direct impact on the cooling tower makeup water requirements.
- Recirculation is warm, moist air discharged from the tower that mixes with the incoming air and re-enters the tower.
- This increases the wet bulb temperature of the entering air and reduces the cooling capability of the tower.
- During cold weather operation, recirculation may also lead to icing of the air intake areas.

15.1 What do you understand by condenser? Discuss its significance.
15.2 How does condenser improve performance of steam power plant?
15.3 Discuss different types of condenser briefly.
15.4 Differentiate between surface condenser and jet condenser.
15.5 Give a sketch of barometric jet condenser and explain its working.
15.6 Discuss the effect of air leakage upon the performance of condenser.
15.7 How the air leaking into condenser is extracted out? Explain.
15.8 Describe the factors affecting the efficiency of condensing plant.
15.9 Discuss the relevance of Dalton's law of partial pressures in condenser calculations.
15.10 What do you understand by cooling towers? Explain their utility.
15.11 Determine the vacuum efficiency of a surface condenser having vacuum of 715 mm of Hg and temperature of $32^{\circ} \mathrm{C}$. The barometer reading is 765 mm of Hg .
[98\%]
15.12 A surface condenser having vacuum of 715 mm Hg and temperature of $32^{\circ} \mathrm{C}$ has cooling water circulated at $800 \mathrm{~kg} / \mathrm{min}$. The cooling water entering condenser becomes warmer by $14^{\circ} \mathrm{C}$. The condensate is available from condenser at $25 \mathrm{~kg} / \mathrm{min}$. The hot well temperature is $30^{\circ} \mathrm{C}$. Barometer reading is 765 mm of Hg . Determine the mass of air in $\mathrm{kg} / \mathrm{m}^{3}$ of condenser volume and dryness fraction of steam entering.
[$\left.0.022 \mathrm{~kg} / \mathrm{m}^{3}, 0.84\right]$
15.13 A surface condenser has vacuum of 71 cm Hg and mean temperature of $35^{\circ} \mathrm{C}$. The barometer reading is 76.5 cm Hg . The hot well temperature is $28^{\circ} \mathrm{C}$. Steam enters condenser at $2000 \mathrm{~kg} / \mathrm{hr}$ and requires cooling water at $8^{\circ} \mathrm{C}$ at the rate of $1000 \mathrm{~kg} / \mathrm{min}$. Cooling water leaves condenser at $24^{\circ} \mathrm{C}$. Determine
(i) the vacuum efficiency of condenser,
(ii) the undercooling in condenser
(iii) corrected vacuum in reference to standard barometer reading, (iv) the condenser efficiency. [0.982, $\left.7^{\circ} \mathrm{C}, 70.5 \mathrm{~cm} \mathrm{Hg}, 0.505\right]$
15.14 In a surface condenser steam enters at $40^{\circ} \mathrm{C}$ and dryness fraction of 0.85 . Air leaks into it at 0.25 $\mathrm{kg} / \mathrm{min}$. An air pump is provided upon the condenser for extracting out air. Temperature at suction of air pump is $32^{\circ} \mathrm{C}$ while condensate temperature is $35^{\circ} \mathrm{C}$. Determine.
(i) the reading of vacuum gauge
(ii) the volume handling capacity of air pump in $\mathrm{m}^{3} / \mathrm{hr}$
(iii) the loss of condensate in $\mathrm{kg} / \mathrm{hr}$.
[$705 \mathrm{~mm} \mathrm{Hg}, 500 \mathrm{~m}^{3} / \mathrm{hr}, 16.9 \mathrm{~kg} / \mathrm{hr}$]
15.15 A steam turbine discharges steam into a surface condenser having vacuum of 700 mm Hg . The barometer reading is 760 mm Hg . Leakage into condenser is seen to be $1.4 \mathrm{~kg} / \mathrm{min}$. The air pump is employed for extracting out air leaking in. Temperature at the inlet of air pump is $20^{\circ} \mathrm{C}$. The air pump is of reciprocating type running at 300 rpm and has $\mathrm{L}: \mathrm{D}$ ratio of $2: 1$. Determine,
(i) the capacity of air pump is $\mathrm{m}^{3} / \mathrm{hr}$
(ii) the dimensions of air pump
(iii) the mass of vapour going out with air in air pump, $\mathrm{kg} / \mathrm{hr}$.
[$1250 \mathrm{~m}^{3} / \mathrm{hr}$, bore: 35.36 cm , stroke: $70.72 \mathrm{~cm}, 21.5 \mathrm{~kg} / \mathrm{hr}$]
15.16 A surface condenser handles condensate at 70.15 cm Hg when barometer reads 76 cm Hg . Steam entering at $2360 \mathrm{~kg} / \mathrm{hr}$ requires cooling water at $6.81 \times 10^{2} \mathrm{~kg} / \mathrm{hr}, 10^{\circ} \mathrm{C}$. Cooling water leaves condenser at $27.8^{\circ} \mathrm{C}$ while condenser has mean temperature of $37^{\circ} \mathrm{C}$. Air leaks into condenser at $0.3 \mathrm{~kg} / \mathrm{min}$. Determine,
(i) the mass of vapour going out with air per hour
(ii) the state of steam entering.
15.17 A steam condenses working at 71.5 cm Hg vacuum and temperature of $32.28^{\circ} \mathrm{C}$. Condenser has steam entering at $13750 \mathrm{~kg} / \mathrm{hr}$. The leakage of air into condenser is $0.4 \times 10^{-3} \mathrm{~kg} / \mathrm{kg}$ steam entering. Considering volumetric capacity of air pump as 80% determine the capacity of air pump, handling mixture of air and water vapour.
[$10.3 \mathrm{~m}^{3} / \mathrm{min}$]
15.18 A jet condenser has pressure at inlet as 0.07 bar. It is supplied steam at $4000 \mathrm{~kg} / \mathrm{hr}$. Water is supplied for condensation at $16 \times 10^{4} \mathrm{~kg} / \mathrm{hr}$. The volume of air dissolved in water at $1 \mathrm{bar}, 15^{\circ} \mathrm{C}$ is 0.05 of that water.
Air leaks in with steam at $0.05 \mathrm{~kg} / \mathrm{min}$. Temperature at suction of air pump is $30^{\circ} \mathrm{C}$ and volumetric efficiency is 80%. Determine the capacity of air pump in $\mathrm{m}^{3} / \mathrm{min}$ for extracting out air.
[$519 \mathrm{~kg} / \mathrm{hr}$]
15.19 A surface condenser has steam entering at 0.09 bar, 0.88 dry at the rate of $16000 \mathrm{~kg} / \mathrm{hr}$. The air leakage into condenser is $8 \mathrm{~kg} / \mathrm{hr}$. Temperature at condensate and air extraction pipe is $36^{\circ} \mathrm{C}$. For the average heat transfer rate of $133760 \mathrm{~kJ} / \mathrm{m}^{2} \cdot \mathrm{hr}$, determine the surface required. [254 m $\left.\mathrm{m}^{2}\right]$
15.20 A surface condenser has vacuum of 581 mm of Hg and steam enters into it at $57.4^{\circ} \mathrm{C}, 3100 \mathrm{~kg} /$ hr . The barometer reads 726 mm of Hg . The temperature at suction of air pump is $50^{\circ} \mathrm{C}$. The cooling water is supplied at $5.6 \times 10^{4} \mathrm{~kg} / \mathrm{hr}, 15^{\circ} \mathrm{C}$ and leaves at $43.6^{\circ} \mathrm{C}$. Determine,
(i) the mass of air entering condenser per kg of steam
(ii) the vacuum efficiency.

[^0]: * We know that hear drop tnst in friction

 $$
 \begin{aligned}
 & =\text { Mass } \times \text { Sp. heat } \times \text { Increase in temp. } \\
 \text { Increase in temp } & =\frac{\text { Heas drop lost in friction }}{\text { Mass } \times 5 p . \text { heat }}=\frac{28.442}{1 \times 1}=28.442 \mathrm{~K}
 \end{aligned}
 $$

[^1]: The sutsequest wokk by II M. Matin has enahled a curve which was sormad by him as the Wilson line.
 ** It has beet found that the density of sypernaturatod weam is about eight himes that of the ordirary saturatiod vapour an the corresponding pressore.

[^2]: Thitmal equibibveir means that the flow of steam of isenucgic.

[^3]: *The problems on melisuble flow cannot be soived by Mollier diagnam unkes Wilson lite is drawn.
 ** The feed tank may fe uteve or below the Ievel of the steam injocior.

